Skip to main content

Diversity of Endophytic Fungi of Empetrum rubrum Vahl ex Willd (Ericaceae): A Medicinal Plant from Austral South America

  • Chapter
  • First Online:
Neotropical Endophytic Fungi

Abstract

We studied the diversity of endophytic fungal assemblages associated with Empetrum rubrum Vahl ex Willd (Ericaceae), a medicinal plant from austral South America, collected at the eastern Malvinas/Falkland Islands. From the leaves and stems of E. rubrum, 83 endophytic fungal isolates were recovered and identified using molecular biology taxonomy methods within 18 genera and 24 different taxa. Fungi from the Leotiomycetes class were the most abundant, followed by those of Dothideomycetes, Sordariomycetes, Eurotiomycetes, and Pezizomycetes. Phacidium, Allantophomopsis, Preussia, and Cladosporium were the most abundant genera. In addition, 18 taxa were detected as singlets representing rare taxa within the fungal assemblages. From the stem tissues of E. rubrum, 11 exclusive fungal genera from 15 taxa were recovered. In contrast, six fungal genera and seven taxa were identified in the leaves. Only endophytic Phacidium pseudophacidioides was found in the stem and leaf tissues. Our results showed that the tissues of E. rubrum, a medicinal species from austral South America, harbored a diverse endophytic fungal assemblage similar to those reported for the plants in the Ericaceae family from temperate regions. However, E. rubrum displayed unusual fungal taxa, reported as endophytes, such as Allantophomopsis cytisporea, Humicolopsis cephalosporioides, Phacidium grevilleae, Pseudocercospora pseudophacidioides, Pseudocercospora brackenicola, and Pseudopithomyces sp. Additionally, the E. rubrum fungal assemblage was dominated by rare species (singlets).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829–1845

    Article  CAS  Google Scholar 

  • Arenal F, Platas G, Pela´ez F (2005) Preussia africana and Preussia isabellae, two new Preussia species based on morphological and molecular evidence. Fungal Divers 20:1–15

    Google Scholar 

  • Arenal F, Platas G, Pela´ez F (2007) A new endophytic species of Preussia (Sporormiaceae) inferred from morphological observations and molecular phylogenetic analysis. Fungal Divers 25:1–17

    Google Scholar 

  • Bardou P, Mariette J, Escudié F et al (2014) Jvenn: an interactive Venn diagram viewer. BMC Bioinform 15:293

    Article  Google Scholar 

  • Bell A (2005) An illustrated guide to the coprophilous Ascomycetes of Australia. CBS Biodivers Ser 3:1–178

    Google Scholar 

  • Bensch K, Braun U, Groenewald JZ, Crous PW (2012) The genus Cladosporium. Stud Mycol 72:1–401

    Article  CAS  Google Scholar 

  • Bensch K, Groenewald JZ, Meijer M, Dijksterhuis J, Jurjević Ž, Andersen B, Houbraken J, Crous PW, Samson RA (2018) Cladosporium species in indoor environments. Stud Mycol 89:177–301

    Article  CAS  Google Scholar 

  • Bhardwaj A, Agrawal P (2014) A review fungal endophytes: as a store house of bioactive compound. World J Pharm Pharm Sci 3:228–237

    Google Scholar 

  • Blackwell M (2011) The Fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98:426–438

    Article  Google Scholar 

  • Carris LM (1990) Cranberry black rot fungi: Allantophomopsis cytisporea and Allantophomopsis lycopodina. Can J Bot 68:2283–2291

    Article  Google Scholar 

  • Carvalho CR, Gonçalves VN, Pereira CB, Johann S, Galliza IV, Alves TMA, Rabello A, Sobral MEG, Zani CL, Rosa CA, Rosa LH (2012) The diversity, antimicrobial and anticancer activity of endophytic fungi associated with the medicinal plant Stryphnodendron adstringens (Mart.) Coville (Fabaceae) from the Brazilian savannah. Symbiosis 57:95–107

    Article  Google Scholar 

  • Chang JH, Wang YZ (2009) The genera Sporormia and Preussia (Sporormiaceae, Pleosporales) in Taiwan. Nova Hedwigia 1:245–254

    Article  Google Scholar 

  • Chen X, Shi Q, Lin G, Guo S, Yang J (2009) Spirobisnaphthalene analogues from the endophytic fungus Preussia sp. J Nat Prod 72:1712–1715

    Article  CAS  Google Scholar 

  • Collantes M, Anchorena JÁ, Koremblit G (1989) A soil nutrient gradient in Magellanic Empetrum heathlands. Vegetation 80:183–193

    Google Scholar 

  • Crous PW, Quaedvlieg W, Hansen K, Hawksworth DL, Gronewald JZ (2014) Phacidium and Ceuthospora (Phacidiaceae) are congeneric: taxonomic and nomenclatural implications. IMA Fungus 5:73–193

    Google Scholar 

  • Crous PW, Carris LM, Giraldo A et al (2015) Wood the genera of Fungi - fixing the application of the type species of generic names - G 2: Allantophomopsis, Latorua, Macrodiplodiopsis, Macrohilum, Milospium, Protostegia, Pyricularia, Robillarda, Rotula, Septoriella, Torula, and Wojnowicia. IMA Fungus 6:163–198

    Article  Google Scholar 

  • Davies TH, McAdam JH (1989) Wild flowers of the Falkland Islands: a fully introduction to the main species and a guide to their identification. Bluntisham Books Huntingdon, United Kingdom

    Google Scholar 

  • Egger KN (1996) Molecular systematics of E-strain mycorrhizal fungi: Wilcoxina and its relationship to Tricharina (Pezizales). Can J Bot 74:773–779

    Article  CAS  Google Scholar 

  • Egger KN, Paden JW (1986) Biotrophic associations between lodgepole pine seedlings and postfire ascomycetes (Pezizales) in monoxenic culture. Can J Bot 64:2719–2725

    Article  Google Scholar 

  • Ermilova EV, Kadyrova TV, Krasnov EA, Khazanov VA, Il'yushenko SV, Pisareva SI (2001) Dense crowberry extract: production technology, antioxidant and Antihypoxant activity. Pharm Chem J 35:610–612

    Article  CAS  Google Scholar 

  • Gargas A, Trest MT, Christensen M, Volk TJ, Blehert DS (2009) Geomyces destructans sp. nov. associated with bat white-nose syndrome. Mycotaxon 108:147–154

    Article  Google Scholar 

  • Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. Appl Biochem Microbiol 44:136–142

    Article  CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the Fungi, 10th edn. CAB International, Wallingford

    Google Scholar 

  • Lorch JM, Meteyer CU, Behr MJ, Boyles JG, Cryan PM, Hicks AC, Ballmann AE, Coleman JTH, Redell DN, Reeder DM, Blehert DS (2011) Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480:376–378

    Article  CAS  Google Scholar 

  • Otley H, Munro G, Clausen A, Ingham B (2008) Falkland Islands State of the Environment Report. Falkland Islands Government and Falklands Conservation, Stanley 288

    Google Scholar 

  • Peterson R, Bradner J, Roberts T, Nevalainen K (2009) Fungi from koala (Phascolarctos cinereus) faeces exhibit a broad range of enzyme activities against recalcitrant substrates. Lett Appl Microbiol 48:218–225

    Article  CAS  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews J.H., Hirano S.S. (eds) Microbial ecology of leaves. Brock/springer series in contemporary bioscience. Springer, New York 179–197

    Google Scholar 

  • Popp M, Mirré V, Brochmann CA (2011) Single mid-Pleistocene long-distance dispersal by a bird can explain the extreme bipolar disjunction in crowberries (Empetrum). Proc Natl Acad Sci U S A 108:6520–6525

    Article  CAS  Google Scholar 

  • Putnam M (2005) Allantophomopsis lycopodina — a new aerial pathogen of lingonberry (Vaccinium vitis-idaea). Plant Pathol 54:248

    Article  Google Scholar 

  • Rosa LH, Vaz ABM, Caligiorne RLB, Campolina SA, Rosa CA (2009) Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:161–167

    Article  Google Scholar 

  • Smith SA, Tank DC, Boulanger LA, Bascom-Slack CA, Eisenman K, Kingery D, Keehner J (2008) Bioactive endophytes warrant intensified exploration and conservation. PLoS One 3:3052

    Article  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol R 67:491–502

    Article  CAS  Google Scholar 

  • Sun X, Guo L-D, Hyde KD (2011) Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Divers 47:85–95

    Article  Google Scholar 

  • Upson R, Lewis R (2014) Updated atlas and checklist. Report to Falklands Conservation. 226

    Google Scholar 

  • Vilella D, Sa´nchez M, Platas G, Salazar O, Genilloud O, Royo I, Cascales C, Martin I, Diez T, Silverman K (2000) Inhibitors of farnesylation of Ras from a microbial natural products screening program. J Ind Microbiol Biotechnol 25:315–327

    Article  CAS  Google Scholar 

  • Vilka L, Rancane R, Eihe M (2009) Fungal diseases of Vaccinium macrocarpon in Latvia. Agronomijas Vëstis 12:125–133

    Google Scholar 

  • Wang Y, Guo LD (2007) A comparative study of endophytic fungi in needles, bark, and xylem of Pinus tabulaeformis. Can J Bot 85:911–917

    Article  Google Scholar 

  • Weber RW (2011) Phacidiopycnis washingtonensis, cause of a new storage rot of apples in northern Europe. J Phytopathol 159:682–686

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press. Inc, New York, pp 315–322

    Google Scholar 

  • Wiseman M, Kim Y-K, Dugan F, Rogers J, Xiao C-L (2015) A new postharvest fruit rot in apple and pear caused by Phacidium lacerum. Plant Dis 100:32–39

    Article  Google Scholar 

  • Xiao C, Rogers J, Kim Y, Liu Q (2005) Phacidiopycnis washingtonensis - a new species associated with pome fruits from Washington state. Mycologia 97:464–473

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Henrique Rosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferreira, M.C. et al. (2021). Diversity of Endophytic Fungi of Empetrum rubrum Vahl ex Willd (Ericaceae): A Medicinal Plant from Austral South America. In: Rosa, L.H. (eds) Neotropical Endophytic Fungi. Springer, Cham. https://doi.org/10.1007/978-3-030-53506-3_17

Download citation

Publish with us

Policies and ethics