Skip to main content

From Adipogenic Viruses to Antidiabetic Drug: A Translational Journey

  • Chapter
  • First Online:
Obesity and Diabetes
  • 2275 Accesses

Abstract

Obesity is a complex disease with multifactorial etiology requiring cause-specific treatment approaches. Among the various causes, obesity due to microbial infections has been reported since 1982, linking several microbes to obesity. Among them, avian adenovirus SMAM-1 and the human adenovirus Ad36 have been extensively studied for the past 25 years. Experimental Ad36 infection causes obesity in animal models, yet paradoxically improves glycemic control. The E4orf1 gene of Ad36 has been shown to be necessary and sufficient for adipogenesis and also responsible for better glycemic control. Animal models show that E4orf1 may be a candidate to treat type 1 or type 2 diabetes or nonalcoholic fatty liver disease. Collectively these studies show a causational and correlational link of Ad36 to animal and human obesity. Overall, developing vaccines to prevent virus-induced obesity and harnessing the antihyperglycemic potential of E4orf1 are the two long-term goals of this line of investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akheruzzaman M, Hegde V, Dhurandhar NV (2019) Twenty-five years of research about adipogenic adenoviruses: a systematic review. Obes Rev 20(4):499–509

    PubMed  Google Scholar 

  • Arslan E, Atilgan H, Yavasoglu I (2009) The prevalence of helicobacter pylori in obese subjects. Eur J Intern Med 20(7):695–697

    PubMed  Google Scholar 

  • Atkinson RL, Dhurandhar NV, Allison DB et al (2005) Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids. Int J Obes 29(3):281–286

    CAS  Google Scholar 

  • Bayon V, Leger D, Gomez-Merino D, Vecchierini M-F, Chennaoui M (2014) Sleep debt and obesity. Ann Med 46(5):264–272

    PubMed  Google Scholar 

  • Butler AA, Kesterson RA, Khong K et al (2000) A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 141(9):3518–3521

    CAS  PubMed  Google Scholar 

  • Chida D, Osaka T, Hashimoto O, Iwakura Y (2006) Combined interleukin-6 and interleukin-1 deficiency causes obesity in young mice. Diabetes 55(4):971–977

    CAS  PubMed  Google Scholar 

  • Collaboration NCDRF (2016) Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.3872 million participants. Lancet (10026):1377–1396

    Google Scholar 

  • Collaboration NCDRF (2017) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 390(10113):2627–2642

    Google Scholar 

  • Dart AM, Martin JL, Kay S (2002) Association between past infection with chlamydia pneumoniae and body mass index, low-density lipoprotein particle size and fasting insulin. Int J Obes Relat Metab Disord 26(4):464–468

    CAS  PubMed  Google Scholar 

  • Dhurandhar NV (2002) Infections and body weight: an emerging relationship? Int J Obes Relat Metab Disord 26(6):745–746

    CAS  PubMed  Google Scholar 

  • Dhurandhar NV (2011) A framework for identification of infections that contribute to human obesity. Lancet Infect Dis 11:963–969

    PubMed  Google Scholar 

  • Dhurandhar NV (2013) Insulin sparing action of adenovirus 36 and its E4orf1 protein. J Diabetes Complicat 27(2):191–199

    Google Scholar 

  • Dhurandhar N, Kulkarni P, Ajinkya S, Sherikar A (1990) Avian adenovirus leading to pathognomonic obesity in chicken. J Bom Vet College 2:131–132

    Google Scholar 

  • Dhurandhar NV, Kulkarni P, Ajinkya SM, Sherikar A (1992) Effect of adenovirus infection on adiposity in chicken. Vet Microbiol 31(2-3):101–107

    CAS  PubMed  Google Scholar 

  • Dhurandhar NV, Kulkarni PR, Ajinkya SM, Sherikar AA, Atkinson RL (1997) Association of adenovirus infection with human obesity. Obes Res 5(5):464–469

    CAS  PubMed  Google Scholar 

  • Dhurandhar NV, Israel BA, Kolesar JM, Mayhew GF, Cook ME, Atkinson RL (2000) Increased adiposity in animals due to a human virus. Int J Obes Relat Metab Disord 24(8):989–996

    CAS  PubMed  Google Scholar 

  • Dhurandhar NV, Israel BA, Kolesar JM, Mayhew G, Cook ME, Atkinson RL (2001) Transmissibility of adenovirus-induced adiposity in a chicken model. Int J Obes Relat Metab Disord 25(7):990–996

    CAS  PubMed  Google Scholar 

  • Dhurandhar NV, Whigham LD, Abbott DH et al (2002) Human adenovirus Ad-36 promotes weight gain in male rhesus and marmoset monkeys. J Nutr 132(10):3155–3160

    CAS  PubMed  Google Scholar 

  • Dhurandhar EJ, Dubuisson O, Mashtalir N, Krishnapuram R, Hegde V, Dhurandhar NV (2011a) E4orf1: a novel ligand that improves glucose disposal in cell culture. PLoS One 6(8):e23394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dhurandhar EJ, Dong C, Ye J, NV D (2011b) Ad36 E4orf1: a novel ligand to attenuate hepatic steatosis without weight loss? Obesity 19(Suppl 1):S86

    Google Scholar 

  • Dhurandhar EJ, Krishnapuram R, Hegde V et al (2012) E4orf1 improves lipid and glucose metabolism in hepatocytes: a template to improve steatosis & hyperglycemia. PLoS One 7(10):e47813

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dhurandhar NV, Bailey D, Thomas D (2015) Interaction of obesity and infections. Obes Rev 16(12):1017–1029

    CAS  PubMed  Google Scholar 

  • Dubuisson O, Dhurandhar EJ, Krishnapuram R et al (2011) PPARgamma-independent increase in glucose uptake and adiponectin abundance in fat cells. Endocrinology 152(10):3648–3660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Real JM, Ferri MJ, Vendrell J, Ricart W (2007) Burden of infection and fat mass in healthy middle-aged men. Obesity (Silver Spring) 15(1):245–252

    Google Scholar 

  • Frese KK, Lee SS, Thomas DL et al (2003) Selective PDZ protein-dependent stimulation of phosphatidylinositol 3-kinase by the adenovirus E4-ORF1 oncoprotein. Oncogene 22(5):710–721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goodson JM, Groppo D, Halem S, Carpino E (2009) Is obesity an oral bacterial disease? J Dent Res 88(6):519–523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hegde V, Na HN, Dubuisson O et al (2016) An adenovirus-derived protein: a novel candidate for anti-diabetic drug development. Biochimie 121:140–150

    CAS  PubMed  Google Scholar 

  • Kong K, Kumar M, Taruishi M, Javier RT (2014) The human adenovirus E4-ORF1 protein subverts discs large 1 to mediate membrane recruitment and dysregulation of phosphatidylinositol 3-kinase. PLoS Pathog 10(5):e1004102

    PubMed  PubMed Central  Google Scholar 

  • Krishnapuram R, Dhurandhar EJ, Dubuisson O et al (2011) Template to improve glycemic control without reducing adiposity or dietary fat. Am J Physiol Endocrinol Metab 300(5):E779–E789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnapuram R, Dhurandhar EJ, Dubuisson O, Hegde V, Dhurandhar NV (2013) Doxycycline-regulated 3T3-L1 preadipocyte cell line with inducible, stable expression of adenoviral E4orf1 gene: a cell model to study insulin-independent glucose disposal. PLoS One 8(3):e60651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Kong K, Javier RT (2014) Hijacking discs large 1 for oncogenic phosphatidylinositol 3-kinase activation in human epithelial cells is a conserved mechanism of human adenovirus E4-ORF1 proteins. J Virol 88(24):14268–14277

    PubMed  PubMed Central  Google Scholar 

  • Kusminski CM, Gallardo-Montejano VI, Wang ZV et al (2015) E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte. Mol Metab 4(10):653–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lang P, van Harmelen V, Ryden M et al (2008) Monomeric tartrate resistant acid phosphatase induces insulin sensitive obesity. PLoS One 3(3):e1713

    PubMed  PubMed Central  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023

    CAS  PubMed  Google Scholar 

  • Li DK, Chen H, Ferber J, Odouli R (2017) Infection and antibiotic use in infancy and risk of childhood obesity: a longitudinal birth cohort study. Lancet Diabetes Endocrinol 5(1):18–25

    PubMed  Google Scholar 

  • Lyons MJ, Faust IM, Hemmes RB, Buskirk DR, Hirsch J, Zabriskie JB (1982) A virally induced obesity syndrome in mice. Science 216(4541):82–85

    CAS  PubMed  Google Scholar 

  • McAllister EJ, Dhurandhar NV, Keith SW et al (2009) Ten putative contributors to the obesity epidemic. Crit Rev Food Sci Nutr 49(10):868–913

    PubMed  PubMed Central  Google Scholar 

  • McMurphy TB, Huang W, Xiao R, Liu X, Dhurandhar NV, Cao L (2016) Hepatic expression of adenovirus 36 E4ORF1 improves glycemic control and promotes glucose metabolism via AKT activation. Diabetes 66:358–371

    PubMed  PubMed Central  Google Scholar 

  • McMurphy TB, Huang W, Xiao R, Liu X, Dhurandhar NV, Cao L (2017) Hepatic expression of adenovirus 36 E4ORF1 improves glycemic control and promotes glucose metabolism through AKT activation. Diabetes 66(2):358–371

    CAS  PubMed  Google Scholar 

  • Na HN, Nam JH (2012) Adenovirus 36 as an obesity agent maintains the obesity state by increasing MCP-1 and inducing inflammation. J Infect Dis 205(6):914–922

    CAS  PubMed  Google Scholar 

  • Na HN, Hong YM, Kim J, Kim HK, Jo I, Nam JH (2010) Association between human adenovirus-36 and lipid disorders in Korean schoolchildren. Int J Obes 34(1):89–93

    Google Scholar 

  • Na HN, Kim J, Lee HS et al (2012) Association of human adenovirus-36 in overweight Korean adults. Int J Obes 36(2):281–285

    CAS  Google Scholar 

  • Na HN, Dubuisson O, Hegde V, Nam JH, NV d (2013) Human adenovirus Ad36 and its E4orf1 gene enhance cellular glucose uptake even in presence of inflammatory cytokines. Obesity Abstract Book S210

    Google Scholar 

  • Na HN, Hegde V, Dubuisson O, Dhurandhar NV (2016a) E4orf1 enhances glucose uptake independent of proximal insulin signaling. PLoS One 11(8):e0161275

    PubMed  PubMed Central  Google Scholar 

  • Na HN, Dubuisson O, Hegde V, Nam JH, Dhurandhar NV (2016b) Human adenovirus Ad36 and its E4orf1 gene enhance cellular glucose uptake even in the presence of inflammatory cytokines. Biochimie 124:3–10

    CAS  PubMed  Google Scholar 

  • Pasarica M, Dhurandhar NV (2007) Infectobesity: obesity of infectious origin. Adv Food Nutr Res 52:61–102

    CAS  PubMed  Google Scholar 

  • Pasarica M, Shin AC, Yu M et al (2006) Human adenovirus 36 induces adiposity, increases insulin sensitivity, and alters hypothalamic monoamines in rats. Obesity (Silver Spring) 14(11):1905–1913

    CAS  Google Scholar 

  • Pasarica M, Loiler S, Dhurandhar NV (2008a) Acute effect of infection by adipogenic human adenovirus Ad36. Arch Virol 153(11):2097–2102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pasarica M, Mashtalir N, McAllister EJ et al (2008b) Adipogenic human adenovirus Ad-36 induces commitment, differentiation, and lipid accumulation in human adipose-derived stem cells. Stem Cells 26(4):969–978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pollack A (2013) A.M.A. recognizes obesity as a disease. www.nytimes.com/2013/06/19/business/ama-recognizes-obesity-as-a-disease.html (Accessed 5 Sept 2018).

  • Rathod MA, Rogers PM, Vangipuram SD, McAllister EJ, Dhurandhar NV (2009) Adipogenic cascade can be induced without adipogenic media by a human adenovirus. Obesity (Silver Spring) 17(4):657–664

    CAS  Google Scholar 

  • Rogers PM, Fusinski KA, Rathod MA et al (2008a) Human adenovirus Ad-36 induces adipogenesis via its E4 orf-1 gene. Int J Obes 32(3):397–406

    CAS  Google Scholar 

  • Rogers PM, Mashtalir N, Rathod MA et al (2008b) Metabolically favorable remodeling of human adipose tissue by human adenovirus type 36. Diabetes 57(9):2321–2331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shang Q, Wang H, Song Y et al (2014) Serological data analyses show that adenovirus 36 infection is associated with obesity: a meta-analysis involving 5739 subjects. Obesity (Silver Spring) 22(3):895–900

    Google Scholar 

  • Shastri AA, Hegde V, Peddibhotla S, Feizy Z, Dhurandhar NV (2018) E4orf1: a protein for enhancing glucose uptake despite impaired proximal insulin signaling. PLoS One 13(12):e0208427

    PubMed  PubMed Central  Google Scholar 

  • Trovato GM, Castro A, Tonzuso A et al (2009) Human obesity relationship with Ad36 adenovirus and insulin resistance. Int J Obes 33(12):1402–1409

    CAS  Google Scholar 

  • Trovato GM, Martines GF, Garozzo A et al (2010) Ad36 adipogenic adenovirus in human non-alcoholic fatty liver disease. Liver Int 30(2):184–190

    CAS  PubMed  Google Scholar 

  • Trovato GM, Martines GF, Trovato FM et al (2012) Adenovirus-36 seropositivity enhances effects of nutritional intervention on obesity, bright liver, and insulin resistance. Dig Dis Sci 57:535–544

    CAS  PubMed  Google Scholar 

  • Vangipuram SD, Sheele J, Atkinson RL, Holland TC, Dhurandhar NV (2004) A human adenovirus enhances preadipocyte differentiation. Obes Res 12(5):770–777

    CAS  PubMed  Google Scholar 

  • Voss JD, Atkinson RL, Dhurandhar NV (2015) Role of adenoviruses in obesity. Rev Med Virol 25(6):379–387

    CAS  PubMed  Google Scholar 

  • Wang ZQ, Cefalu WT, Zhang XH et al (2008) Human adenovirus type 36 enhances glucose uptake in diabetic and nondiabetic human skeletal muscle cells independent of insulin signaling. Diabetes 57(7):1805–1813

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wigand R (1980) Age and susceptibility of Swiss mice for mouse adenovirus, strain FL. Arch Virol 64(4):349–357

    CAS  PubMed  Google Scholar 

  • Xu MY, Cao B, Wang DF et al (2015) Human adenovirus 36 infection increased the risk of obesity: a meta-analysis update. Medicine (Baltimore) 94(51):e2357

    Google Scholar 

  • Yamada T, Hara K, Kadowaki T (2012) Association of adenovirus 36 infection with obesity and metabolic markers in humans: a meta-analysis of observational studies. PLoS One 7(7):e42031

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon IS, Park S, Kim RH, Ko HL, Nam JH (2017) Insulin-sparing and fungible effects of E4orf1 combined with an adipocyte-targeting sequence in mouse models of type 1 and type 2 diabetes. Int J Obes

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil V. Dhurandhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hegde, V., Dhurandhar, N.V. (2020). From Adipogenic Viruses to Antidiabetic Drug: A Translational Journey. In: Faintuch, J., Faintuch, S. (eds) Obesity and Diabetes. Springer, Cham. https://doi.org/10.1007/978-3-030-53370-0_7

Download citation

Publish with us

Policies and ethics