Skip to main content

Brown Adipose Tissue in Obesity and Diabetes

  • Chapter
  • First Online:
Obesity and Diabetes
  • 2328 Accesses

Abstract

The scientific community is leading efforts to find efficient therapies for obesity and diabetes, which led to the rediscovery in 2009 of the presence of functional brown adipose tissue (BAT) depots in adult humans. In this chapter, we describe the main characteristics of this tissue and the image techniques available for its detection. In addition, we discuss the secretory capacity of BAT that is responsible for crosstalk with other organs and confers a regulatory role in several processes beyond the canonical generation of heat. Finally, we explain the mechanisms through which obesity and diabetes interrupt the physiological role and development of BAT and we summarize the latest results of the studies that use BAT transplant as a new therapy in the treatment of metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acosta FM, Berchem J, Martinez-Tellez B et al (2019) Near-infrared spatially resolved spectroscopy as an indirect technique to assess brown adipose tissue in young women. Mol Imaging Biol 21:328–338

    CAS  PubMed  Google Scholar 

  • Alcalá M, Calderon-Dominguez M, Bustos E et al (2017) Increased inflammation, oxidative stress and mitochondrial respiration in brown adipose tissue from obese mice. Sci Rep 7:16082

    PubMed  PubMed Central  Google Scholar 

  • Alcalá M, Calderon-Dominguez M, Serra D et al (2019) Mechanisms of impaired brown adipose tissue recruitment in obesity. Front Physiol 10:94

    PubMed  PubMed Central  Google Scholar 

  • Ali Khan A, Hansson J, Weber P et al (2018) Comparative secretome analyses of primary murine white and brown adipocytes reveal novel adipokines. Mol Cell Proteomics 17:2358–2370

    PubMed  PubMed Central  Google Scholar 

  • Bagchi M, Kim LA, Boucher J et al (2013) Vascular endothelial growth factor is important for brown adipose tissue development and maintenance. FASEB J 27:3257–3271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bamshad M, Song CK, Bartness TJ (1999) CNS origins of the sympathetic nervous system outflow to brown adipose tissue. Am J Physiol 276:R1569–R1578

    CAS  PubMed  Google Scholar 

  • Bartelt A, Bruns OT, Reimer R et al (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17:200–206

    CAS  Google Scholar 

  • Bartness TJ, Wade GN (1984) Effects of interscapular brown adipose tissue denervation on body weight and energy metabolism in ovariectomized and estradiol-treated rats. Behav Neurosci 98:674–685

    CAS  PubMed  Google Scholar 

  • Bartness TJ, Vaughan CH, Song CK (2010) Sympathetic and sensory innervation of brown adipose tissue. Int J Obes 34:S36–S42

    Google Scholar 

  • Blaszkiewicz M, Willows JW, Johnson CP, Townsend KL (2019) The importance of peripheral nerves in adipose tissue for the regulation of energy balance. Biology (Basel) 8:10

    CAS  Google Scholar 

  • Bonet ML, Oliver P, Palou A (2013) Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochim Biophys Acta - Mol Cell Biol Lipids 1831:969–985

    CAS  Google Scholar 

  • Boon MR, van den Berg SAA, Wang Y et al (2013) BMP7 activates brown adipose tissue and reduces diet-induced obesity only at subthermoneutrality. PLoS One 8:e74083

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bordicchia M, Liu D, Amri EZ et al (2012) Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest 122:1022–1036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boström P, Wu J, Jedrychowski MP et al (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468

    PubMed  PubMed Central  Google Scholar 

  • Branca RT, Warren WS (2011) In vivo brown adipose tissue detection and characterization using water-lipid intermolecular zero-quantum coherences. Magn Reson Med 65:313–319

    CAS  PubMed  Google Scholar 

  • Branca RT, He T, Zhang L et al (2014) Detection of brown adipose tissue and thermogenic activity in mice by hyperpolarized xenon MRI. Proc Natl Acad Sci USA 111:18001–18006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brito NA, Brito MN, Bartness TJ (2008) Differential sympathetic drive to adipose tissues after food deprivation, cold exposure or glucoprivation. Am J Physiol Integr Comp Physiol 294:R1445–R1452

    CAS  Google Scholar 

  • Calderon-Dominguez M, Mir JF, Fucho R et al (2016) Fatty acid metabolism and the basis of brown adipose tissue function. Adipocyte 5:98–118

    CAS  PubMed  Google Scholar 

  • Campderrós L, Moure R, Cairó M et al (2019) Brown adipocytes secrete GDF15 in response to thermogenic activation. Obesity 27:1606–1616

    PubMed  Google Scholar 

  • Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    CAS  PubMed  Google Scholar 

  • Cano G, Passerin AM, Schiltz JC et al (2003) Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure. J Comp Neurol 460:303–326

    PubMed  Google Scholar 

  • Cereijo R, Gavaldà-Navarro A, Cairó M et al (2018) CXCL14, a brown adipokine that mediates brown-fat-to-macrophage communication in thermogenic adaptation. Cell Metab 28:750–763.e6

    CAS  PubMed  Google Scholar 

  • Chen KY, Cypess AM, Laughlin MR et al (2016) Brown adipose reporting criteria in imaging studies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans. Cell Metab 24:210–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras C, Nogueiras R, Diéguez C et al (2017) Traveling from the hypothalamus to the adipose tissue: the thermogenic pathway. Redox Biol 12:854–863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui X, Xiao W, You L et al (2019) Age-induced oxidative stress impairs adipogenesis and thermogenesis in brown fat. FEBS J 286:2753–2768

    CAS  PubMed  Google Scholar 

  • Cypess AM, Lehman S, Williams G et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cypess AM, Weiner LS, Roberts-Toler C et al (2015) Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab 21:33–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Matteis R, Lucertini F, Guescini M et al (2013) Exercise as a new physiological stimulus for brown adipose tissue activity. Nutr Metab Cardiovasc Dis 23:582–590

    PubMed  Google Scholar 

  • Deshmukh AS, Peijs L, Beaudry JL et al (2019) Proteomics-based comparative mapping of the secretomes of human Brown and White adipocytes reveals EPDR1 as a novel batokine. Cell Metab 30:963–975.e7

    CAS  PubMed  Google Scholar 

  • Dodd GT, Decherf S, Loh K et al (2015) Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell 160:88–104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doh K-O, Kim Y-W, Park S-Y et al (2005) Interrelation between long-chain fatty acid oxidation rate and carnitine palmitoyltransferase 1 activity with different isoforms in rat tissues. Life Sci 77:435–443

    CAS  PubMed  Google Scholar 

  • Dowal L, Parameswaran P, Phat S et al (2017) Intrinsic properties of brown and white adipocytes have differential effects on macrophage inflammatory responses. Mediators Inflamm 2017:1–11

    Google Scholar 

  • Dulloo AG, Miller DS (1984) Energy balance following sympathetic denervation of brown adipose tissue. Can J Physiol Pharmacol 62:235–240

    CAS  PubMed  Google Scholar 

  • El Hadi H, Frascati A, Granzotto M et al (2016) Infrared thermography for indirect assessment of activation of brown adipose tissue in lean and obese male subjects. Physiol Meas 37:N118–N128

    PubMed  Google Scholar 

  • Enriori PJ, Sinnayah P, Simonds SE et al (2011) Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. J Neurosci 31:12189–12197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson O, Selvaraju RK, Berglund M, Espes D (2019) Metabolically active brown adipose tissue is found in adult subjects with type 1 diabetes. Int J Mol Sci 20:5827

    CAS  PubMed Central  Google Scholar 

  • Fischer AW, Cannon B, Nedergaard J (2019) The answer to the question “What is the best housing temperature to translate mouse experiments to humans?” is: thermoneutrality. Mol Metab 26:1–3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flávia RO, Mamede M, Bizzi MF et al (2019) Brown adipose tissue activity is reduced in women with polycystic ovary syndrome. Eur J Endocrinol 181:473–480

    Google Scholar 

  • Flynn A, Li Q, Panagia M et al (2015) Contrast-enhanced ultrasound: a novel noninvasive, nonionizing method for the detection of brown adipose tissue in humans. J Am Soc Echocardiogr 28:1247–1254

    PubMed  PubMed Central  Google Scholar 

  • François M, Qualls-Creekmore E, Berthoud H-R et al (2018) Genetics-based manipulation of adipose tissue sympathetic innervation. Physiol Behav 190:21–27

    PubMed  Google Scholar 

  • Fromme T, Klingenspor M (2011) Uncoupling protein 1 expression and high-fat diets. Am J Physiol Integr Comp Physiol 300:R1–R8

    CAS  Google Scholar 

  • Garcia CA, Van Nostrand D, Atkins F et al (2006) Reduction of brown fat 2-deoxy-2-[F-18]fluoro-D-glucose uptake by controlling environmental temperature prior to positron emission tomography scan. Mol Imaging Biol 8:24–29

    PubMed  Google Scholar 

  • Garretson JT, Szymanski LA, Schwartz GJ et al (2016) Lipolysis sensation by white fat afferent nerves triggers brown fat thermogenesis. Mol Metab 5:626–634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giordano A, Morroni M, Santone G et al (1996) Tyrosine hydroxylase, neuropeptide Y, substance P, calcitonin gene-related peptide and vasoactive intestinal peptide in nerves of rat periovarian adipose tissue: an immunohistochemical and ultrastructural investigation. J Neurocytol 25:125–136

    CAS  PubMed  Google Scholar 

  • Gnad T, Scheibler S, Von Kugelgen I et al (2014) Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature 516:395–399

    CAS  PubMed  Google Scholar 

  • Grunewald ZI, Winn NC, Gastecki ML et al (2018) Removal of interscapular brown adipose tissue increases aortic stiffness despite normal systemic glucose metabolism in mice. Am J Physiol Regul Integr Comp Physiol 314:R584–R597

    CAS  PubMed  Google Scholar 

  • Gunawardana SC, Piston DW (2012) Reversal of type 1 diabetes in mice by brown adipose tissue transplant. Diabetes 61:674–682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gunawardana SC, Piston DW (2015) Insulin-independent reversal of type 1 diabetes in nonobese diabetic mice with brown adipose tissue transplant. Am J Physiol Metab 308:E1043–E1055

    Google Scholar 

  • Hamilton G, Smith DL Jr, Bydder M et al (2011) MR properties of brown and white adipose tissues. J Magn Reson Imaging 34:468–473

    PubMed  PubMed Central  Google Scholar 

  • Hany TF, Gharehpapagh E, Kamel EM et al (2002) Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med 29:1393–1398

    Google Scholar 

  • Harlan SM, Morgan DA, Agassandian K et al (2011) Ablation of the leptin receptor in the hypothalamic arcuate nucleus abrogates leptin-induced sympathetic activation. Circ Res 108:808–812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwig V, Guiducci L, Marinelli M et al (2017) Multimodal imaging for the detection of brown adipose tissue activation in women: a pilot study using NIRS and infrared thermography. J Heal Eng 2017:5986452

    Google Scholar 

  • Hondares E, Rosell M, Gonzalez FJ et al (2010) Hepatic FGF21 expression is induced at birth via PPARα in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab 11:206–212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hondares E, Iglesias R, Giralt A et al (2011) Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem 286:12983–12990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang JJ, Yeckel CW, Gallezot JD et al (2015) Imaging human brown adipose tissue under room temperature conditions with (11)C-MRB, a selective norepinephrine transporter PET ligand. Metabolism 64:747–755

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iris Chen Y-C, Cypess AM, Chen Y-C et al (2013) Measurement of human brown adipose tissue volume and activity using anatomic MR imaging and functional MR imaging. J Nucl Med 54:1584–1587

    Google Scholar 

  • Karampinos DC, Weidlich D, Wu M et al (2019) Techniques and applications of magnetic resonance imaging for studying brown adipose tissue morphometry and function. Handb Exp Pharmacol 251:299–324

    CAS  PubMed  Google Scholar 

  • Kikai M, Yamada H, Wakana N et al (2017) Transplantation of brown adipose tissue inhibits atherosclerosis in apoE-/- mice: contribution of the activated FGF-21-adiponectin axis. Cardiovasc Res. https://doi.org/10.1093/cvr/cvx212

  • Kishida T, Ejima A, Yamamoto K et al (2015) Reprogrammed functional brown adipocytes ameliorate insulin resistance and dyslipidemia in diet-induced obesity and type 2 diabetes. Stem Cell Rep 5:569–581

    CAS  Google Scholar 

  • Klingenspor M, Meywirth A, Stöhr S, Heldmaier G (1994) Effect of unilateral surgical denervation of brown adipose tissue on uncoupling protein mRNA level and cytochrom-c-oxidase activity in the Djungarian hamster. J Comp Physiol B 163:664–670

    CAS  PubMed  Google Scholar 

  • Kong D, Tong Q, Ye C et al (2012) GABAergic RIP-Cre neurons in the arcuate nucleus selectively regulate energy expenditure. Cell 151:645–657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong X, Yao T, Zhou P et al (2018) Brown adipose tissue controls skeletal muscle function via the secretion of myostatin. Cell Metab 28:631–643.e3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Law J, Morris DE, Izzi-Engbeaya C et al (2018) Thermal imaging is a noninvasive alternative to PET/CT for measurement of brown adipose tissue activity in humans. J Nucl Med 59:516–522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C-W, Hsiao W-T, Lee OK-S (2017) Mesenchymal stromal cell-based therapies reduce obesity and metabolic syndromes induced by a high-fat diet. Transl Res 182:61–74.e8

    PubMed  Google Scholar 

  • Lee M-W, Lee M, Oh K-J (2019) Adipose tissue-derived signatures for obesity and type 2 diabetes: adipokines, batokines and microRNAs. J Clin Med 8:854

    CAS  PubMed Central  Google Scholar 

  • Levin BE, Triscari J, Sullivan AC (1983) Altered sympathetic activity during development of diet-induced obesity in rat. Am J Physiol Regul Integr Comp Physiol 13:R347–R355

    Google Scholar 

  • Liu X, Zheng Z, Zhu X et al (2013) Brown adipose tissue transplantation improves whole-body energy metabolism. Cell Res 23:851–854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Wang S, You Y et al (2015) Brown adipose tissue transplantation reverses obesity in Ob/Ob mice. Endocrinology 156:2461–2469

    CAS  PubMed  Google Scholar 

  • Madar I, Isoda T, Finley P et al (2011) 18F-fluorobenzyl triphenyl phosphonium: a noninvasive sensor of brown adipose tissue thermogenesis. J Nucl Med 52:808–814

    CAS  PubMed  Google Scholar 

  • Markan KR, Naber MC, Ameka MK et al (2014) Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes 63:4057–4063

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGregor RA, Kwon E-Y, Shin S-K et al (2013) Time-course microarrays reveal modulation of developmental, lipid metabolism and immune gene networks in intrascapular brown adipose tissue during the development of diet-induced obesity. Int J Obes 37:1524–1531

    CAS  Google Scholar 

  • Min SY, Kady J, Nam M et al (2016) Human “brite/beige” adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat Med 22:312–318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison SF, Madden CJ, Tupone D (2014) Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab 19:741–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mueez UD, Raiko J, Saari T et al (2016) Human brown adipose tissue [(15)O]O2 PET imaging in the presence and absence of cold stimulus. Eur J Nucl Med Mol Imaging 43:1878–1886

    Google Scholar 

  • Murano I, Barbatelli G, Giordano A, Cinti S (2009) Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. J Anat 214:171–178

    CAS  PubMed  Google Scholar 

  • Mutsnaini L, Kim C-S, Kim J et al (2019) Fibroblast growth factor 21 deficiency aggravates obesity-induced hypothalamic inflammation and impairs thermogenic response. Inflamm Res 68:351–358

    CAS  PubMed  Google Scholar 

  • Néchad M, Ruka E, Thibault J (1994) Production of nerve growth factor by brown fat in culture: relation with the in vivo developmental stage of the tissue. Comp Biochem Physiol Comp Physiol 107:381–388

    PubMed  Google Scholar 

  • Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293:E444–E452

    CAS  PubMed  Google Scholar 

  • Nguyen NLT, Barr CL, Ryu V et al (2017) Separate and shared sympathetic outflow to white and brown fat coordinately regulates thermoregulation and beige adipocyte recruitment. Am J Physiol Regul Integr Comp Physiol 312:R132–R145

    PubMed  Google Scholar 

  • Nirengi S, Yoneshiro T, Sugie H et al (2015) Human brown adipose tissue assessed by simple, noninvasive near-infrared time-resolved spectroscopy. Obes (Silver Spring) 23:973–980

    CAS  Google Scholar 

  • Oldfield B, Giles M, Watson A et al (2002) The neurochemical characterisation of hypothalamic pathways projecting polysynaptically to brown adipose tissue in the rat. Neuroscience 110:515–526

    CAS  PubMed  Google Scholar 

  • Ong FJ, Ahmed BA, Oreskovich SM et al (2018) Recent advances in the detection of brown adipose tissue in adult humans: a review. Clin Sci 132:1039–1054

    CAS  Google Scholar 

  • Ouellet V, Labbé SM, Blondin DP et al (2012) Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 122:545–552

    PubMed  PubMed Central  Google Scholar 

  • Pace L, Nicolai E, D’Amico D et al (2011) Determinants of physiologic 18F-FDG uptake in brown adipose tissue in sequential PET/CT examinations. Mol Imaging Biol 13:1029–1035

    PubMed  Google Scholar 

  • Pedersen SB, Bruun JM, Kristensen K, Richelsen B (2001) Regulation of UCP1, UCP2, and UCP3 mRNA expression in brown adipose tissue, white adipose tissue, and skeletal muscle in rats by estrogen. Biochem Biophys Res Commun 288:191–197

    CAS  PubMed  Google Scholar 

  • Pellegrinelli V, Peirce VJ, Howard L et al (2018) Adipocyte-secreted BMP8b mediates adrenergic-induced remodeling of the neuro-vascular network in adipose tissue. Nat Commun 9:4974

    PubMed  PubMed Central  Google Scholar 

  • Pfannenberg C, Werner MK, Ripkens S et al (2010) Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes 59:1789–1793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piao Z, Zhai B, Jiang X et al (2018) Reduced adiposity by compensatory WAT browning upon iBAT removal in mice. Biochem Biophys Res Commun 501:807–813

    CAS  PubMed  Google Scholar 

  • Planavila A, Redondo I, Hondares E et al (2013) Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat Commun 4:2019

    CAS  PubMed  Google Scholar 

  • Rahmouni K, Morgan DA (2007) Hypothalamic arcuate nucleus mediates the sympathetic and arterial pressure responses to leptin. Hypertension 49:647–652

    CAS  PubMed  Google Scholar 

  • Rakheja R, Ciarallo A, Alabed YZ, Hickeson M (2011) Intravenous administration of diazepam significantly reduces brown fat activity on 18F-FDG PET/CT. Am J Nucl Med Mol Imaging 1:29–35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ran C, Albrecht DS, Bredella MA et al (2018) PET imaging of human brown adipose tissue with the TSPO tracer [(11)C]PBR28. Mol Imaging Biol 20:188–193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao RR, Long JZ, White JP et al (2014) Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157:1279–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rashnonejad A, Ercan G, Gunduz C et al (2018) Comparative analysis of human UCB and adipose tissue derived mesenchymal stem cells for their differentiation potential into brown and white adipocytes. Mol Biol Rep. https://doi.org/10.1007/s11033-018-4156-1

  • Rosell M, Kaforou M, Frontini A et al (2014) Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. Am J Physiol Endocrinol Metab 306:E945–E964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan CC, Kong LR, Chen XH et al (2018) A2A receptor activation attenuates hypertensive cardiac remodeling via promoting brown adipose tissue-derived FGF21. Cell Metab 28:476–489.e5

    CAS  PubMed  Google Scholar 

  • Ryu V, Garretson JT, Liu Y et al (2015) Brown adipose tissue has sympathetic-sensory feedback circuits. J Neurosci 35:2181–2190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu V, Watts AG, Xue B, Bartness TJ (2017) Bidirectional crosstalk between the sensory and sympathetic motor systems innervating brown and white adipose tissue in male Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 312:R324–R337

    PubMed  PubMed Central  Google Scholar 

  • Saito M, Okamatsu-Ogura Y, Matsushita M et al (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–1531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto T, Nitta T, Maruno K et al (2016) Macrophage infiltration into obese adipose tissues suppresses the induction of UCP1 level in mice. Am J Physiol Metab 310:E676–E687

    Google Scholar 

  • Sampath SC, Sampath SC, Bredella MA et al (2016) Imaging of brown adipose tissue: state of the art. Radiology 280:4–19

    PubMed  Google Scholar 

  • Schlein C, Talukdar S, Heine M et al (2016) FGF21 lowers plasma triglycerides by accelerating lipoprotein catabolism in white and Brown adipose tissues. Cell Metab 23:441–453

    CAS  PubMed  Google Scholar 

  • Shen H, Jiang L, Lin JD et al (2019) Brown fat activation mitigates alcohol-induced liver steatosis and injury in mice. J Clin Invest 129:2305–2317

    PubMed  PubMed Central  Google Scholar 

  • Silva FJ, Holt DJ, Vargas V et al (2014) Metabolically active human brown adipose tissue derived stem cells. Stem Cells 32:572–581

    CAS  PubMed  Google Scholar 

  • Soderlund V, Larsson SA, Jacobsson H (2007) Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol. Eur J Nucl Med Mol Imaging 34:1018–1022

    PubMed  Google Scholar 

  • Soler-Vázquez MC, Mera P, Zagmutt S et al (2018) New approaches targeting brown adipose tissue transplantation as a therapy in obesity. Biochem Pharmacol 155:346–355

    PubMed  Google Scholar 

  • Song CK, Vaughan CH, Keen-Rhinehart E et al (2008) Melanocortin-4 receptor mRNA expressed in sympathetic outflow neurons to brown adipose tissue: neuroanatomical and functional evidence. Am J Physiol Regul Integr Comp Physiol 295:R417–R428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stanford KI, Middelbeek RJW, Townsend KL et al (2013) Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest 123:215–223

    CAS  PubMed  Google Scholar 

  • Stanford KI, Middelbeek RJW, Townsend KL et al (2015) A novel role for subcutaneous adipose tissue in exercise-induced improvements in glucose homeostasis. Diabetes 64:2002–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stanford KI, Lynes MD, Takahashi H et al (2018) 12,13-diHOME: an exercise-induced lipokine that increases skeletal muscle fatty acid uptake. Cell Metab 27:1111–1120.e3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun K, Kusminski CM, Scherer PE (2011) Adipose tissue remodeling and obesity. J Clin Invest 121:2094–2101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan CY, Vidal-Puig A (2008) Adipose tissue expandability: the metabolic problems of obesity may arise from the inability to become more obese. Biochem Soc Trans 36:935–940

    CAS  PubMed  Google Scholar 

  • Thomou T, Mori MA, Dreyfuss JM et al (2017) Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542:450–455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thoonen R, Ernande L, Cheng J et al (2015) Functional brown adipose tissue limits cardiomyocyte injury and adverse remodeling in catecholamine-induced cardiomyopathy. J Mol Cell Cardiol 84:202–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng Y-H, Kokkotou E, Schulz TJ et al (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000–1004

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508

    PubMed  Google Scholar 

  • Verdeguer F, Soustek MS, Hatting M et al (2015) Brown adipose YY1 deficiency activates expression of secreted proteins linked to energy expenditure and prevents diet-induced obesity. Mol Cell Biol 36:184–196

    PubMed  PubMed Central  Google Scholar 

  • Villarroya F, Vidal-Puig A (2013) Beyond the sympathetic tone: the new brown fat activators. Cell Metab 17:638–643

    CAS  PubMed  Google Scholar 

  • Villarroya F, Cereijo R, Villarroya J, Giralt M (2017a) Brown adipose tissue as a secretory organ. Nat Rev Endocrinol 13:26–35

    CAS  PubMed  Google Scholar 

  • Villarroya F, Gavaldà-Navarro A, Peyrou M et al (2017b) The lives and times of brown adipokines. Trends Endocrinol Metab 28:855–867

    CAS  PubMed  Google Scholar 

  • Villarroya F, Cereijo R, Gavaldà-Navarro A et al (2018a) Inflammation of brown/beige adipose tissues in obesity and metabolic disease. J Intern Med 284:492–504

    CAS  PubMed  Google Scholar 

  • Villarroya F, Cereijo R, Villarroya J et al (2018b) Toward an understanding of how immune cells control brown and beige adipobiology. Cell Metab 27:954–961

    CAS  PubMed  Google Scholar 

  • Villarroya J, Cereijo R, Gavaldà-Navarro A et al (2019a) New insights into the secretory functions of brown adipose tissue. J Endocrinol 243:R19–R27

    CAS  PubMed  Google Scholar 

  • Villarroya J, Cereijo R, Giralt M, Villarroya F (2019b) Secretory proteome of brown adipocytes in response to cAMP-mediated thermogenic activation. Front Physiol 10:67

    PubMed  PubMed Central  Google Scholar 

  • Virtanen KA, Lidell ME, Orava J et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525

    CAS  PubMed  Google Scholar 

  • Wade GN, Gray JM (1978) Cytoplasmic 17β-[3H]estradiol binding in rat adipose tissues. Endocrinology 103:1695–1701

    CAS  PubMed  Google Scholar 

  • Wang G-X, Zhao X-Y, Meng Z-X et al (2014) The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat Med 20:1436–1443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe M, Houten SM, Mataki C et al (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439:484–489

    CAS  PubMed  Google Scholar 

  • White JD, Dewal RS, Stanford KI (2019) The beneficial effects of brown adipose tissue transplantation. Mol Aspects Med 68:74–81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whittle AJ, Carobbio S, Martins L et al (2012) BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149:871–885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Cohen P, Spiegelman BM (2013) Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev 27:234–250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu R, Liu XM, Sun JG et al (2017) DJ-1 maintains energy and glucose homeostasis by regulating the function of brown adipose tissue. Cell Discov 3:1–18

    Google Scholar 

  • Yasuda T, Masaki T, Kakuma T, Yoshimatsu H (2004) Hypothalamic melanocortin system regulates sympathetic nerve activity in brown adipose tissue. Exp Biol Med 229:235–239

    CAS  Google Scholar 

  • Yuan X, Hu T, Zhao H et al (2016) Brown adipose tissue transplantation ameliorates polycystic ovary syndrome. Proc Natl Acad Sci USA 113:2708–2713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Kerman IA, Laque A et al (2011) Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J Neurosci 31:1873–1884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, Spicer EG, Gavini CK et al (2014) Enhanced sympathetic activity in mice with brown adipose tissue transplantation (transBATation). Physiol Behav 125:21–29

    CAS  PubMed  Google Scholar 

  • Zhu Q, Glazier BJ, Hinkel BC et al (2019) Neuroendocrine regulation of energy metabolism involving different types of adipose tissues. Int J Mol Sci 20:2707

    CAS  PubMed Central  Google Scholar 

  • Zingaretti MC, Crosta F, Vitali A et al (2009) The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 23:3113–3120

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Spain (MINECO) (SAF2017-83813-C3-1-R to DS and LH, cofounded by the ERDF), the Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN) (Grant CB06/03/0001 to DS), the Government of Catalonia (2017SGR278 to DS), the Universidad CEU San Pablo-Banco Santander (FUSP-BS-PPC-USP02/2017) to MA and the Fundació La Marató de TV3 (201627-30 to DS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Viana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alcalá, M., Herrero, L., Serra, D., Viana, M. (2020). Brown Adipose Tissue in Obesity and Diabetes. In: Faintuch, J., Faintuch, S. (eds) Obesity and Diabetes. Springer, Cham. https://doi.org/10.1007/978-3-030-53370-0_4

Download citation

Publish with us

Policies and ethics