Skip to main content

Neuroinflammation: From Target Selection to Preclinical and Clinical Studies

  • Chapter
  • First Online:
PET and SPECT of Neurobiological Systems

Abstract

Inflammation is a highly dynamic and complex adaptive process to preserve and restore tissue homeostasis in neurological disorders and often serves as a prognostic marker for disease outcome. The underlying cellular and factorial heterogeneity represents an opportunity in the development of disease-modifying therapies.

Molecular imaging of neuroinflammation (NI) may support the characterization of key aspects of the dynamic interplay of various inducers, sensors, transducers, and effectors of the multifactorial inflammatory response in vivo in animal models and patients. The characterization of the NI response by molecular imaging will (i) support early diagnosis and disease follow-up, (ii) guide (stereotactic) biopsy sampling, (iii) highlight the dynamic changes during disease pathogenesis in a noninvasive manner, (iv) help monitoring existing therapies, (v) support the development of novel NI-modifying therapies, and (vi) aid stratification of patients, according to their individual NI profile.

This book chapter will review the basic principles of NI, recent developments and applications of novel molecular imaging targets, key considerations for the selection and development of imaging targets, as well as examples of successful clinical translation of NI imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abourbeh G, Thézé B, Maroy R, Dubois A, Brulon V, Fontyn Y, Dollé F, Tavitian B, Boisgard R (2012) Imaging microglial/macrophage activation in spinal cords of experimental autoimmune encephalomyelitis rats by positron emission tomography using the mitochondrial 18 kDa translocator protein radioligand [18F]DPA-714. J Neurosci 32:5728–5736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ardura-Fabregat A, Boddeke EWGM, Boza-Serrano A, Brioschi S, Castro-Gomez S, Ceyzériat K, Dansokho C, Dierkes T, Gelders G, Heneka MT, Hoeijmakers L, Hoffmann A, Iaccarino L, Jahnert S, Kuhbandner K, Landreth G, Lonnemann N, Löschmann PA, McManus RM, Paulus A, Reemst K, Sanchez-Caro JM, Tiberi A, Van der Perren A, Vautheny A, Venegas C, Webers A, Weydt P, Wijasa TS, Xiang X, Yang Y (2017) Targeting neuroinflammation to treat Alzheimer’s disease. CNS Drugs 31:1057–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arlicot N, Vercouillie J, Ribeiro M-J, Tauber C, Venel Y, Baulieu J-L, Maia S, Corcia P, Stabin MG, Reynolds A, Kassiou M, Guilloteau D (2012) Initial evaluation in healthy humans of [18F]DPA-714, a potential PET biomarker for neuroinflammation. Nucl Med Biol 39:570–578

    Article  CAS  PubMed  Google Scholar 

  • Auvity S, Saba W, Goutal S, Leroy C, Buvat I, Cayla J, Caillé F, Bottlaender M, Cisternino S, Tournier N (2016) Acute morphine exposure increases the brain distribution of [ 18 F]DPA-714, a PET biomarker of glial activation in nonhuman Primates. Int J Neuropsychopharmacol 20:pyw077

    Article  Google Scholar 

  • Auvity S, Goutal S, Thézé B, Chaves C, Hosten B, Kuhnast B, Saba W, Boisgard R, Buvat I, Cisternino S, Tournier N (2017) Evaluation of TSPO PET imaging, a marker of glial activation, to study the neuroimmune footprints of morphine exposure and withdrawal. Drug Alcohol Depend 170:43–50

    Article  CAS  PubMed  Google Scholar 

  • Awde AR, Boisgard R, Thézé B, Dubois A, Zheng J, Dollé F, Jacobs AH, Tavitian B, Winkeler A (2013) The translocator protein radioligand 18F-DPA-714 monitors antitumor effect of erufosine in a rat 9L intracranial glioma model. J Nucl Med 54:2125–2131

    Article  CAS  PubMed  Google Scholar 

  • Boche D, Gerhard A, Rodriguez-Vieitez E, Faculty, on behalf of the M (2019) Prospects and challenges of imaging neuroinflammation beyond TSPO in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 46(13):2831–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boutin H, Prenant C, Maroy R, Galea J, Greenhalgh AD, Smigova A, Cawthorne C, Julyan P, Wilkinson SM, Banister SD, Brown G, Herholz K, Kassiou M, Rothwell NJ (2013) [18F]DPA-714: direct comparison with [11C]PK11195 in a model of cerebral ischemia in rats. PLoS One 8:e56441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buck AK, Stolzenburg A, Hänscheid H, Schirbel A, Lückerath K, Schottelius M, Wester H-J, Lapa C (2017) Chemokine receptor – directed imaging and therapy. Methods 130:63–71

    Article  CAS  PubMed  Google Scholar 

  • Chaney A, Williams SR, Boutin H (2019) In vivo molecular imaging of neuroinflammation in Alzheimer’s disease. J Neurochem 149:438–451

    Article  CAS  PubMed  Google Scholar 

  • Chauveau F, Van Camp N, Dollé F, Kuhnast B, Hinnen F, Damont A, Boutin H, James M, Kassiou M, Tavitian B (2009) Comparative evaluation of the translocator protein radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a rat model of acute neuroinflammation. J Nucl Med 50:468–476

    Article  CAS  PubMed  Google Scholar 

  • Colás L, Domercq M, Ramos-Cabrer P, Palma A, Gómez-Vallejo V, Padro D, Plaza-García S, Pulagam KR, Higuchi M, Matute C, Llop J, Martín A (2018) In vivo imaging of Α7 nicotinic receptors as a novel method to monitor neuroinflammation after cerebral ischemia. Glia 66:1611–1624

    Article  PubMed  Google Scholar 

  • Corcia P, Tauber C, Vercoullie J, Arlicot N, Prunier C, Praline J, Nicolas G, Venel Y, Hommet C, Baulieu J-L, Cottier J-P, Roussel C, Kassiou M, Guilloteau D, Ribeiro M-J (2012) Molecular imaging of microglial activation in amyotrophic lateral sclerosis. PLoS One 7:e52941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domercq M, Szczupak B, Gejo J, Gómez-Vallejo V, Padro D, Gona KB, Dollé F, Higuchi M, Matute C, Llop J, Martín A (2016) PET imaging with [ 18 F]FSPG evidences the role of system xc - on brain inflammation following cerebral ischemia in rats. Theranostics 6:1753–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsinga PH (2002) Radiopharmaceutical chemistry for positron emission tomography. Methods 27:208–217

    Article  CAS  PubMed  Google Scholar 

  • Fricke IB, Viel T, Worlitzer MM, Collmann FM, Vrachimis A, Faust A, Wachsmuth L, Faber C, Dollé F, Kuhlmann MT, Schäfers K, Hermann S, Schwamborn JC, Jacobs AH (2016) 6-hydroxydopamine-induced Parkinson’s disease-like degeneration generates acute micro- and astrogliosis in the nigrostriatal system but no bioluminescence imaging detectable alteration in adult neurogenesis. Eur J Neurosci 43:1352

    Article  PubMed  Google Scholar 

  • García-Lorenzo D, Lavisse S, Leroy C, Wimberley C, Bodini B, Remy P, Veronese M, Turkheimer F, Stankoff B, Bottlaender M (2018) Validation of an automatic reference region extraction for the quantification of [ 18 F]DPA-714 in dynamic brain PET studies. J Cereb Blood Flow Metab 38:333–346

    Article  PubMed  Google Scholar 

  • Gargiulo S, Anzilotti S, Coda ARD, Gramanzini M, Greco A, Panico M, Vinciguerra A, Zannetti A, Vicidomini C, Dollé F, Pignataro G, Quarantelli M, Annunziato L, Brunetti A, Salvatore M, Pappatà S (2016) Imaging of brain TSPO expression in a mouse model of amyotrophic lateral sclerosis with 18F-DPA-714 and micro-PET/CT. Eur J Nucl Med Mol Imaging 43:1348–1359

    Article  CAS  PubMed  Google Scholar 

  • Golla SSV, Boellaard R, Oikonen V, Hoffmann A, van Berckel BNM, Windhorst AD, Virta J, Haaparanta-Solin M, Luoto P, Savisto N, Solin O, Valencia R, Thiele A, Eriksson J, Schuit RC, Lammertsma AA, Rinne JO (2015) Quantification of [18F]DPA-714 binding in the human brain: initial studies in healthy controls and Alzheimer’s disease patients. J Cereb Blood Flow Metab 35:766–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golla SSV, Boellaard R, Oikonen V, Hoffmann A, van Berckel BNM, Windhorst AD, Virta J, Te Beek ET, Groeneveld GJ, Haaparanta-Solin M, Luoto P, Savisto N, Solin O, Valencia R, Thiele A, Eriksson J, Schuit RC, Lammertsma AA, Rinne JO (2016) Parametric binding images of the TSPO ligand 18F-DPA-714. J Nucl Med 57:1543–1547

    Article  CAS  PubMed  Google Scholar 

  • González H, Elgueta D, Montoya A, Pacheco R (2014) Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol 274:1–13

    Article  PubMed  Google Scholar 

  • Graeber MB, Li W, Rodriguez ML (2011) Role of microglia in CNS inflammation. FEBS Lett 585:3798–3805

    Article  CAS  PubMed  Google Scholar 

  • Hamelin L, Lagarde J, Dorothée G, Leroy C, Labit M, Comley RA, de Souza LC, Corne H, Dauphinot L, Bertoux M, Dubois B, Gervais P, Colliot O, Potier MC, Bottlaender M, Sarazin M (2016) Early and protective microglial activation in Alzheimer’s disease: a prospective study using 18 F-DPA-714 PET imaging. Brain 139:1252–1264

    Article  PubMed  Google Scholar 

  • Hamelin L, Lagarde J, Dorothée G, Potier MC, Corlier F, Kuhnast B, Caillé F, Dubois B, Fillon L, Chupin M, Bottlaender M, Sarazin M (2018) Distinct dynamic profiles of microglial activation are associated with progression of Alzheimer’s disease. Brain 141:1855–1870

    Article  PubMed  Google Scholar 

  • Harhausen D, Sudmann V, Khojasteh U, Muller J, Zille M, Graham K, Thiele A, Dyrks T, Dirnagl U, Wunder A (2013) Specific imaging of inflammation with the 18kDa translocator protein ligand DPA-714 in animal models of epilepsy and stroke. PLoS One 8:e69529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickman S, Izzy S, Sen P, Morsett L, El Khoury J (2018) Microglia in neurodegeneration. Nat Neurosci 21:1359–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honer M, Gobbi L, Knust H, Kuwabara H, Muri D, Koerner M, Valentine H, Dannals RF, Wong DF, Borroni E (2017) Preclinical evaluation of 18 F-RO6958948, 11 C-RO6931643 and 11 C-RO6924963 as novel radiotracers for imaging aggregated tau in Alzheimer’s disease with positron emission tomography. J Nucl Med

    Google Scholar 

  • Horti AG, Naik R, Foss CA, Minn I, Misheneva V, Du Y, Wang Y, Mathews WB, Wu Y, Hall A, LaCourse C, Ahn H-H, Nam H, Lesniak WG, Valentine H, Pletnikova O, Troncoso JC, Smith MD, Calabresi PA, Savonenko AV, Dannals RF, Pletnikov MV, Pomper MG (2019) PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proc Natl Acad Sci U S A 116:1686–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Israel I, Ohsiek A, Al-Momani E, Albert-Weissenberger C, Stetter C, Mencl S, Buck AK, Kleinschnitz C, Samnick S, Sirén A-L (2016) Combined [18F]DPA-714 micro-positron emission tomography and autoradiography imaging of microglia activation after closed head injury in mice. J Neuroinflammation 13:140

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobs AH, Tavitian B, Consortium, Inm (2012) Noninvasive molecular imaging of neuroinflammation. J Cereb Blood Flow Metab 32:1393–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson O, Weiss ID (2013) CXCR4 chemokine receptor overview: biology, pathology and applications in imaging and therapy. Theranostics 3:1–2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James ML, Fulton RR, Vercoullie J, Henderson DJ, Garreau L, Chalon S, Dolle F, Selleri S, Guilloteau D, Kassiou M (2008) DPA-714, a new translocator protein–specific ligand: synthesis, radiofluorination, and pharmacologic characterization. J Nucl Med 49:814–822

    Article  CAS  PubMed  Google Scholar 

  • James ML, Hoehne A, Mayer AT, Lechtenberg K, Moreno M, Gowrishankar G, Ilovich O, Natarajan A, Johnson EM, Nguyen J, Quach L, Han M, Buckwalter M, Chandra S, Gambhir SS (2017) Imaging B cells in a mouse model of multiple sclerosis using 64 cu-rituximab PET. J Nucl Med 58:1845–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen B, Vugts DJ, Windhorst AD, Mach RH (2018) PET imaging of microglial activation-beyond targeting TSPO. Molecules 23:607

    Article  PubMed Central  Google Scholar 

  • Kuhnast B, Damont A, Hinnen F, Catarina T, Demphel S, Le Helleix S, Coulon C, Goutal S, Gervais P, Dollé F (2012) [18F]DPA-714, [18F]PBR111 and [18F]FEDAA1106—selective radioligands for imaging TSPO 18kDa with PET: automated radiosynthesis on a TRACERLAb FX-FN synthesizer and quality controls. Appl Radiat Isot 70:489–497

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara H, Comley RA, Borroni E, Honer M, Kitmiller K, Roberts J, Gapasin L, Mathur A, Klein G, Wong DF (2018) Evaluation of18F-RO-948 PET for quantitative assessment of tau accumulation in the human brain. J Nucl Med 59:1877–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavisse S, Guillermier M, Herard AS, Petit F, Delahaye M, Van Camp N, Ben Haim L, Lebon V, Remy P, Dolle F, Delzescaux T, Bonvento G, Hantraye P, Escartin C (2012) Reactive astrocytes overexpress TSPO and are detected by TSPO positron emission tomography imaging. J Neurosci 32:10809–10818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavisse S, García-Lorenzo D, Peyronneau M-A, Bodini B, Thiriez C, Kuhnast B, Comtat C, Remy P, Stankoff B, Bottlaender M (2015a) Optimized quantification of translocator protein radioligand 18F-DPA-714 uptake in the brain of genotyped healthy volunteers. J Nucl Med 56:1048–1054

    Article  CAS  PubMed  Google Scholar 

  • Lavisse S, Inoue K, Jan C, Peyronneau MA, Petit F, Goutal S, Dauguet J, Guillermier M, Dollé F, Rbah-Vidal L, Van Camp N, Aron-Badin R, Remy P, Hantraye P (2015b) [18F]DPA-714 PET imaging of translocator protein TSPO (18 kDa) in the normal and excitotoxically-lesioned nonhuman primate brain. Eur J Nucl Med Mol Imaging 42:478–494

    Article  CAS  PubMed  Google Scholar 

  • Lee DE, Yue X, Ibrahim WG, Lentz MR, Peterson KL, Jagoda EM, Kassiou M, Maric D, Reid WC, Hammoud DA (2015) Lack of neuroinflammation in the HIV-1 transgenic rat: an [18F]-DPA714 PET imaging study. J Neuroinflammation 12:171

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Gunsten SP, Sultan DH, Luehmann HP, Zhao Y, Blackwell TS, Bollermann-Nowlis Z, Pan J, Byers DE, Atkinson JJ, Kreisel D, Holtzman MJ, Gropler RJ, Combadiere C, Brody SL (2017) PET-based imaging of chemokine receptor 2 in experimental and disease-related lung inflammation. Radiology 283:758–768

    Article  PubMed  PubMed Central  Google Scholar 

  • Martín A, Boisgard R, Thézé B, Van Camp N, Kuhnast B, Damont A, Kassiou M, Dollé F, Tavitian B (2010) Evaluation of the PBR/TSPO radioligand [(18)F]DPA-714 in a rat model of focal cerebral ischemia. J Cereb Blood Flow Metab 30:230–241

    Article  PubMed  Google Scholar 

  • Martin A, Boisgard R, Kassiou M, Dolle F, Tavitian B (2011) Reduced PBR/TSPO expression after minocycline treatment in a rat model of focal cerebral ischemia: a PET study using [(18)F]DPA-714. Mol Imaging Biol 13:10–15

    Article  PubMed  Google Scholar 

  • Martín A, Szczupak B, Gómez-Vallejo V, Domercq M, Cano A, Padro D, Muñoz C, Higuchi M, Matute C, Llop J (2015) In vivo PET imaging of the α4β2 nicotinic acetylcholine receptor as a marker for brain inflammation after cerebral ischemia. J Neurosci 35:5998–6009

    Article  PubMed  PubMed Central  Google Scholar 

  • Movahedi K, Schoonooghe S, Laoui D, Houbracken I, Waelput W, Breckpot K, Bouwens L, Lahoutte T, De Baetselier P, Raes G, Devoogdt N, Van Ginderachter JA (2012) Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res 72:4165–4177

    Article  CAS  PubMed  Google Scholar 

  • Nguyen D-L, Wimberley C, Truillet C, Jego B, Caillé F, Pottier G, Boisgard R, Buvat I, Bouilleret V (2018) Longitudinal positron emission tomography imaging of glial cell activation in a mouse model of mesial temporal lobe epilepsy: toward identification of optimal treatment windows. Epilepsia 59:1234–1244

    Article  CAS  PubMed  Google Scholar 

  • Niemeijer AN, Leung D, Huisman MC, Bahce I, Hoekstra OS, van Dongen GAMS, Boellaard R, Du S, Hayes W, Smith R, Windhorst AD, Hendrikse NH, Poot A, Vugts DJ, Thunnissen E, Morin P, Lipovsek D, Donnelly DJ, Bonacorsi SJ, Velasquez LM, de Gruijl TD, Smit EF, de Langen AJ (2018) Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat Commun 9:4664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen DR, Howell OW, Tang S-P, Wells LA, Bennacef I, Bergstrom M, Gunn RN, Rabiner EA, Wilkins MR, Reynolds R, Matthews PM, Parker CA (2010) Two binding sites for [3H]PBR28 in human brain: implications for TSPO PET imaging of neuroinflammation. J Cereb Blood Flow Metab 30:1608–1618

    Article  PubMed  PubMed Central  Google Scholar 

  • Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, Rhodes C, Pulford DJ, Bennacef I, Parker CA, StJean PL, Cardon LR, Mooser VE, Matthews PM, Rabiner EA, Rubio JP (2012) An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab 32:1–5

    Article  CAS  PubMed  Google Scholar 

  • Owen DR, Guo Q, Rabiner EA, Gunn RN (2015) The impact of the rs6971 polymorphism in TSPO for quantification and study design. Clin Transl Imaging 3:417–422

    Article  Google Scholar 

  • Patel S, Gibson R (2008) In vivo site-directed radiotracers: a mini-review. Nucl Med Biol 35:805–815

    Article  CAS  PubMed  Google Scholar 

  • Perani D, Iaccarino L, Lammertsma AA, Windhorst AD, Edison P, Boellaard R, Hansson O, Nordberg A, Jacobs AH, Bottlaender M, Brooks D, Carroll MA, Chalon S, Gee A, Gerhard A, Halldin C, Herholz K, Herth MM, Hinz R, Knudsen GM, Kuhnast B, López-Picón F, Moresco RM, Pappata S, Rinne JO, Rodriguez-Vieitez E, Santiago-Ribeiro MJ, Turkheimer FE, Van Laere K, Varrone A, Vercouillie J, Winkeler A (2019) A new perspective for advanced positron emission tomography–based molecular imaging in neurodegenerative proteinopathies. Alzheimers Dement 15:1081–1103

    Article  PubMed  Google Scholar 

  • Peyronneau M-A, Saba W, Goutal S, Damont A, Dollé F, Kassiou M, Bottlaender M, Valette H (2013) Metabolism and quantification of [ 18 F]DPA-714, a new TSPO positron emission tomography Radioligand. Drug Metab Dispos 41:122–131

    Article  CAS  PubMed  Google Scholar 

  • Pigeon H, Pérès EA, Truillet C, Jego B, Boumezbeur F, Caillé F, Zinnhardt B, Jacobs AH, Le Bihan D, Winkeler A (2019) TSPO-PET and diffusion-weighted MRI for imaging a mouse model of infiltrative human glioma. Neuro Oncol 21:755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pike VW (2009) PET radiotracers: crossing the blood–brain barrier and surviving metabolism. Trends Pharmacol Sci 30:431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ransohoff RM (2009) Chemokines and chemokine receptors: standing at the crossroads of Immunobiology and neurobiology. Immunity 31:711–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashidian M, Ingram JR, Dougan M, Dongre A, Whang KA, LeGall C, Cragnolini JJ, Bierie B, Gostissa M, Gorman J, Grotenbreg GM, Bhan A, Weinberg RA, Ploegh HL (2017) Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J Exp Med 214:2243–2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro M-J, Vercouillie J, Debiais S, Cottier J-P, Bonnaud I, Camus V, Banister S, Kassiou M, Arlicot N, Guilloteau D (2014) Could (18) F-DPA-714 PET imaging be interesting to use in the early post-stroke period? EJNMMI Res 4:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, Groyer G, Adams D, Schumacher M (2010) Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov 9:971–988

    Article  CAS  PubMed  Google Scholar 

  • Saba W, Goutal S, Auvity S, Kuhnast B, Coulon C, Kouyoumdjian V, Buvat I, Leroy C, Tournier N (2018) Imaging the neuroimmune response to alcohol exposure in adolescent baboons: a TSPO PET study using 18 F-DPA-714. Addict Biol 23:1000–1009

    Article  CAS  PubMed  Google Scholar 

  • Serdons K, Verbruggen A, Bormans GM (2009) Developing new molecular imaging probes for PET. Methods 48:104–111

    Article  CAS  PubMed  Google Scholar 

  • Sérrière S, Tauber C, Vercouillie J, Mothes C, Pruckner C, Guilloteau D, Kassiou M, Doméné A, Garreau L, Page G, Chalon S (2015) Amyloid load and translocator protein 18 kDa in APPswePS1-dE9 mice: a longitudinal study. Neurobiol Aging 36:1639–1652

    Article  PubMed  Google Scholar 

  • Sinharay S, Tu T-W, Kovacs ZI, Schreiber-Stainthorp W, Sundby M, Zhang X, Papadakis GZ, Reid WC, Frank JA, Hammoud DA (2019) In vivo imaging of sterile microglial activation in rat brain after disrupting the blood-brain barrier with pulsed focused ultrasound: [18F]DPA-714 PET study. J Neuroinflammation 16:155

    Article  PubMed  PubMed Central  Google Scholar 

  • Sridharan S, Lepelletier F-X, Trigg W, Banister S, Reekie T, Kassiou M, Gerhard A, Hinz R, Boutin H (2017) Comparative evaluation of three TSPO PET radiotracers in a LPS-induced model of mild Neuroinflammation in rats. Mol Imaging Biol 19:77–89

    Article  CAS  PubMed  Google Scholar 

  • Stephenson J, Nutma E, van der Valk P, Amor S (2018) Inflammation in CNS neurodegenerative diseases. Immunology 154:204–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takkinen JS, López-Picón FR, Al Majidi R, Eskola O, Krzyczmonik A, Keller T, Löyttyniemi E, Solin O, Rinne JO, Haaparanta-Solin M (2017) Brain energy metabolism and neuroinflammation in ageing APP/PS1-21 mice using longitudinal 18 F-FDG and 18 F-DPA-714 PET imaging. J Cereb Blood Flow Metab 37:2870–2882

    Article  CAS  PubMed  Google Scholar 

  • Tan C, Zhao S, Higashikawa K, Wang Z, Kawabori M, Abumiya T, Nakayama N, Kazumata K, Ukon N, Yasui H, Tamaki N, Kuge Y, Shichinohe H, Houkin K (2018) [18F]DPA-714 PET imaging shows immunomodulatory effect of intravenous administration of bone marrow stromal cells after transient focal ischemia. EJNMMI Res 8:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang D, Hight MR, McKinley ET, Fu A, Buck JR, Smith RA, Tantawy MN, Peterson TE, Colvin DC, Ansari MS, Nickels M, Manning HC (2012) Quantitative preclinical imaging of TSPO expression in glioma using N,N-diethyl-2-(2-(4-(2-18F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide. J Nucl Med 53:287–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavaré R, McCracken MN, Zettlitz KA, Salazar FB, Olafsen T, Witte ON, Wu AM (2015) Immuno-PET of murine T cell reconstitution postadoptive stem cell transplantation using anti-CD4 and anti-CD8 Cys-diabodies. J Nucl Med 56:1258–1264

    Article  PubMed  PubMed Central  Google Scholar 

  • Tronel C, Largeau B, Santiago Ribeiro MJ, Guilloteau D, Dupont A-C, Arlicot N (2017) Molecular targets for PET imaging of activated microglia: the current situation and future expectations. Int J Mol Sci 18:802

    Article  PubMed Central  Google Scholar 

  • Van de Bittner GC, Ricq EL, Hooker JM (2014) A philosophy for CNS radiotracer design. Acc Chem Res 47:3127–3134

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Dongen GA, Huisman MC, Boellaard R, Harry Hendrikse N, Windhorst AD, Visser GW, Molthoff CF, Vugts DJ (2015) 89Zr-immuno-PET for imaging of long circulating drugs and disease targets: why, how and when to be applied? Q J Nucl Med Mol Imaging 59:18–38

    PubMed  Google Scholar 

  • Varasteh Z, Mohanta S, Li Y, López Armbruster N, Braeuer M, Nekolla SG, Habenicht A, Sager HB, Raes G, Weber W, Hernot S, Schwaiger M (2019) Targeting mannose receptor expression on macrophages in atherosclerotic plaques of apolipoprotein E-knockout mice using 68Ga-NOTA-anti-MMR nanobody: non-invasive imaging of atherosclerotic plaques. EJNMMI Res 9:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Vermeulen K, Vandamme M, Bormans G, Cleeren F (2019) Design and challenges of radiopharmaceuticals. Semin Nucl Med 49:339

    Article  PubMed  Google Scholar 

  • Vicidomini C, Panico M, Greco A, Gargiulo S, Coda ARD, Zannetti A, Gramanzini M, Roviello GN, Quarantelli M, Alfano B, Tavitian B, Dollé F, Salvatore M, Brunetti A, Pappatà S (2015) In vivo imaging and characterization of [18F]DPA-714, a potential new TSPO ligand, in mouse brain and peripheral tissues using small-animal PET. Nucl Med Biol 42:309–316

    Article  CAS  PubMed  Google Scholar 

  • Villa A, Klein B, Janssen B, Pedragosa J, Pepe G, Zinnhardt B, Vugts DJ, Gelosa P, Sironi L, Beaino W, Damont A, Dollé F, Jego B, Winkeler A, Ory D, Solin O, Vercouillie J, Funke U, Laner-Plamberger S, Blomster LV, Christophersen P, Vegeto E, Aigner L, Jacobs A, Planas AM, Maggi A, Windhorst AD (2018) Identification of new molecular targets for PET imaging of the microglial anti-inflammatory activation state. Theranostics 8:5400–5418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries EFJ, Doorduin J, Dierckx RA, van Waarde A (2008) Evaluation of [11C]rofecoxib as PET tracer for cyclooxygenase 2 overexpression in rat models of inflammation. Nucl Med Biol 35:35–42

    Article  PubMed  Google Scholar 

  • Wagner S, Breyholz HJ, Law MP, Faust A, Höltke C, Schröer S, Haufe G, Levkau B, Schober O, Schäfers M, Kopka K (2007) Novel fluorinated derivatives of the broad-spectrum MMP inhibitors N-hydroxy-2(R)-[[(4-methoxyphenyl)sulfonyl](benzyl)- and (3-picolyl)-amino]-3-methyl-butanamide as potential tools for the molecular imaging of activated MMPs with PET. J Med Chem 50:5752–5764

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yue X, Kiesewetter DO, Niu G, Teng G, Chen X (2014a) PET imaging of neuroinflammation in a rat traumatic brain injury model with radiolabeled TSPO ligand DPA-714. Eur J Nucl Med Mol Imaging 41:1440–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Yue X, Kiesewetter DO, Wang Z, Lu J, Niu G, Teng G, Chen X (2014b) [(18)F]DPA-714 PET imaging of AMD3100 treatment in a mouse model of stroke. Mol Pharm 11:3463–3470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y-L, Han Q-Q, Gong W-Q, Pan D-H, Wang L-Z, Hu W, Yang M, Li B, Yu J, Liu Q (2018) Microglial activation mediates chronic mild stress-induced depressive- and anxiety-like behavior in adult rats. J Neuroinflammation 15:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiesmann M, Zinnhardt B, Reinhardt D, Eligehausen S, Wachsmuth L, Hermann S, Dederen PJ, Hellwich M, Kuhlmann MT, Broersen LM, Heerschap A, Jacobs AH, Kiliaan AJ (2017) A specific dietary intervention to restore brain structure and function after ischemic stroke. Theranostics 7:493–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wimberley C, Lavisse S, Brulon V, Peyronneau M-A, Leroy C, Bodini B, Remy P, Stankoff B, Buvat I, Bottlaender M (2018) Impact of endothelial 18-kDa translocator protein on the quantification of 18F-DPA-714. J Nucl Med 59:307–314

    Article  CAS  PubMed  Google Scholar 

  • Winkeler A, Boisgard R, Awde AR, Dubois A, Thézé B, Zheng J, Ciobanu L, Dollé F, Viel T, Jacobs AH, Tavitian B (2012) The translocator protein ligand [18F]DPA-714 images glioma and activated microglia in vivo. Eur J Nucl Med Mol Imaging 39:811–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong DF, Comley RA, Kuwabara H, Rosenberg PB, Resnick SM, Ostrowitzki S, Vozzi C, Boess F, Oh E, Lyketsos CG, Honer M, Gobbi L, Klein G, George N, Gapasin L, Kitzmiller K, Roberts J, Sevigny J, Nandi A, Brasic J, Mishra C, Thambisetty M, Mogekar A, Mathur A, Albert M, Dannals RF, Borroni E (2018) Characterization of 3 novel tau radiopharmaceuticals, 11C-RO-963, 11C-RO-643, and 18F-RO-948, in healthy controls and in Alzheimer subjects. J Nucl Med 59:1869–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zettlitz KA, Tavaré R, Tsai W-TK, Yamada RE, Ha NS, Collins J, van Dam RM, Timmerman JM, Wu AM (2019) 18F-labeled anti-human CD20 cys-diabody for same-day immunoPET in a model of aggressive B cell lymphoma in human CD20 transgenic mice. Eur J Nucl Med Mol Imaging 46:489–500

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Villalobos A (2017) Strategies to facilitate the discovery of novel CNS PET ligands. EJNMMI Radiopharm Chem 1:13

    Article  PubMed  Google Scholar 

  • Zinnhardt B, Viel T, Wachsmuth L, Vrachimis A, Wagner S, Breyholz H-JH-J, Faust A, Hermann S, Kopka K, Faber C, Dollé F, Pappata S, Planas AMAM, Tavitian B, Schäfers M, Sorokin LMLM, Kuhlmann MTMT, Jacobs AHAH (2015) Multimodal imaging reveals temporal and spatial microglia and matrix metalloproteinase activity after experimental stroke. J Cereb Blood Flow Metab 35:1711–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinnhardt B, Pigeon H, Thézé B, Viel T, Wachsmuth L, Fricke IB, Schelhaas S, Honold L, Schwegmann K, Wagner S, Faust A, Faber C, Kuhlmann MT, Hermann S, Schäfers M, Winkeler A, Jacobs AH (2017) Combined PET imaging of the inflammatory tumor microenvironment identifies margins of unique radiotracer uptake. Cancer Res 77:1831–1841

    Article  CAS  PubMed  Google Scholar 

  • Zinnhardt B, Wiesmann M, Honold L, Barca C, Schäfers M, Kiliaan AJ, Jacobs AH (2018) In vivo imaging biomarkers of neuroinflammation in the development and assessment of stroke therapies - towards clinical translation. Theranostics 8:2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinnhardt B, Belloy M, Fricke IB, Orije J, Guglielmetti C, Hermann S, Wagner S, Schäfers M, Van Der Linden A, Jacobs AH (2019) Molecular imaging of immune cell dynamics during De- and remyelination in the cuprizone model of multiple sclerosis by [18F]DPA-714 PET and MRI. Theranostics 9:1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was partly supported by the EU Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 278850 (INMiND), the Horizon 2020 Programme under grant agreement no. 675417 (PET3D), the “Cells-in-Motion” Cluster of Excellence (DFG EXC1003 – CiM), the EU/EFPIA/Innovative Medicines Initiative 2 Joint Undertaking Immune-Image under grant no. 831514, and the Interdisciplinary Center for Clinical Research (IZKF core unit PIX), Münster, Germany. The authors thank Nina Knubel for the design and production of Figs. 17.117.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas H. Jacobs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zinnhardt, B. et al. (2021). Neuroinflammation: From Target Selection to Preclinical and Clinical Studies. In: Dierckx, R.A., Otte, A., de Vries, E.F., van Waarde, A., Lammertsma, A.A. (eds) PET and SPECT of Neurobiological Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-53176-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53176-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53175-1

  • Online ISBN: 978-3-030-53176-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics