Skip to main content
Log in

Reduced PBR/TSPO Expression After Minocycline Treatment in a Rat Model of Focal Cerebral Ischemia: A PET Study Using [18F]DPA-714

  • Brief Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Background

Many new candidate pharmaceuticals designed to improve recovery after stroke have been proposed recently, but there are still too few molecular imaging methods capable to assess their efficacy. A hallmark of the inflammatory reaction that follows focal cerebral ischemia is overexpression of the mitochondrial peripheral benzodiazepine receptor/18 kDa translocator protein (PBR/TSPO) in the monocytic lineage and astrocytes. This overexpression can be imaged with positron emission tomography (PET) using PBR/TSPO-selective radioligands such as [18F]DPA-714.

Purpose

Here, we tested whether PET with [18F]DPA-714 would evidence the effect of minocycline, a broad spectrum antibiotic presently tested as neuroprotective agent after stroke, on the inflammatory reaction induced in an experimental model of stroke.

Procedures

Ten rats were subjected to a 2-h transient middle cerebral artery occlusion with reperfusion. Minocycline or saline was intravenously administrated 1 h after reperfusion and daily during the following 6 days. PET studies were performed using [18F]DPA-714 at 7 days after cerebral ischemia.

Results

In vivo PET imaging showed a significant decrease in [18F]DPA-714 uptake at 7 days after cerebral ischemia in rats treated with minocycline with respect to saline-treated animals. Minocycline treatment had no effect on the size of the infarcted area.

Conclusion

Minocycline administered daily during 7 days after ischemia decreases [18F]DPA-714 binding, suggesting that the drug exerts an anti-inflammatory activity. [18F]DPA-714 PET is a useful biomarker to study novel anti-inflammatory strategies in experimental cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) Tissue plasminogen activation for acute ischemic stroke. N Engl J Med 333:1581-1587

    Article  Google Scholar 

  2. Montaner J, Rovira A, Molina CA, Arenillas JF, Ribo M, Chacon P, Monasterio J, Alvarez-Sabin (2003) Plasmatic level of neuroinflammatory markers predict the extent of diffusion-weighted image lesions in hyperacute stroke. J Cereb Blood Flow Metab 23:1403-1407

    Article  CAS  PubMed  Google Scholar 

  3. Emsley HC, Tyrrell PJ (2002) Inflammation and infection in clinical stroke. J Cereb Blood Flow Metab 22:1399-419

    Article  CAS  PubMed  Google Scholar 

  4. Yrjänheikki J, Keinänen R, Pellikka M, Hökfelt T, Koistinaho J (1998) Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci U S A 95:15769-15774

    Article  PubMed  Google Scholar 

  5. Yrjänheikki J, Tikka T, Keinänen R, Goldsteins G, Chan PH, Koistinaho J (1999) A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci U S A 96:13496-13500

    Article  PubMed  Google Scholar 

  6. Wang CX, Yang T, Shuaib A (2003) Effects of minocycline alone and in combination with mild hypothermia in embolic stroke. Brain Res 963:327-329

    Article  CAS  PubMed  Google Scholar 

  7. Xu L, Fagan SC, Waller JL, Edwards D, Borlongan CV, Zheng J, Hill WD, Feuerstein G, Hess DC (2004) Low dose intravenous minocycline is neuroprotective after middle cerebral artery occlusion-reperfusion in rats. BMC Neurol 26:4-7

    Google Scholar 

  8. He Y, Appel S, Le W (2001) Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res 909:187-193

    Article  CAS  PubMed  Google Scholar 

  9. Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22:1763-1771

    CAS  PubMed  Google Scholar 

  10. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapère JJ, Lindemann P, Norenberg MD, Nutt D, Weizman A, Zhang MR, Gavish M (2006) Trends Pharmacol Sci 27:402-409

    Article  CAS  PubMed  Google Scholar 

  11. Rojas S, Martín A, Arranz MJ, Pareto D, Purroy J, Verdaguer E, Llop J, Gómez V, Gispert JD, Millán O, Chamorro A, Planas AM (2007) Imaging brain inflammation with [11C]PK11195 by PET and induction of the peripheral-type benzodiazepine receptor after transient focal ischemia in rats. J Cereb Blood Flow Metab 27:1975-1986

    Article  CAS  PubMed  Google Scholar 

  12. Martín A, Boisgard R, Thézé B, Van Camp N, Kuhnast B, Damont A, Kassiou M, Dollé F, Tavitian B (2010) Evaluation of the PBR/TSPO radioligand [18F]DPA-714 in a rat model of focal cerebral ischemia. J Cereb Blood Flow Metab 30(1):230-241

    Google Scholar 

  13. Dollé F, Luus C, Reynolds A, Kassiou M (2009) Radiolabelled molecules for imaging the translocator protein (18 kDa) using Positron Emission Tomography. Curr Med Chem 16:2899-2923

    Article  PubMed  Google Scholar 

  14. Chaveau F, Boutin H, Van Camp N, Dollé F, Tavitian T (2008) Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imag 35:2304-2319

    Article  Google Scholar 

  15. James ML, Fulton RR, Vercoullie J, Henderson DJ, Garreau L, Chalon S, Dolle F, Costa B, Guilloteau D, Kassiou M (2008) DPA-714, a new translocator protein-specific ligand: synthesis, radiofluorination, and pharmacologic characterization. J Nucl Med 49:814-822

    Article  CAS  PubMed  Google Scholar 

  16. Doorduin J, Klein HC, Dierckx RA, James M, Kassiou M, de Vries EF (2009) [11C]DPA-713 and [18F]DPA-714 as new PET tracers for TSPO: a comparison with [11C]-(R)-PK11195 in a rat model of herpes encephalitis. Mol Imaging Biol 11:386-398

    Article  PubMed  Google Scholar 

  17. Chauveau F, Van Camp N, Dollé F, Kuhnast B, Hinnen F, Damont A, Boutin H, James M, Kassiou M, Tavitian B (2009) Comparative evaluation of the translocator protein radioligands [11C]DPA-713, [18F]DPA-714, and [11C]PK11195 in a rat model of acute neuroinflammation. J Nucl Med 50:468-476

    Article  CAS  PubMed  Google Scholar 

  18. Justicia C, Martín A, Rojas S, Gironella M, Cervera A, Panés J, Chamorro A, Planas AM (2006) Anti-VCAM-1 antibodies did not protect against ischemic damage either in rats or in mice. J Cereb Blood Flow Metab 26:421-432

    Article  CAS  PubMed  Google Scholar 

  19. Damont A, Hinnen F, Kunhast B et al. (2008) Radiosynthesis of [18F]DPA-714, a selective radioligand for imaging the translocator protein (18 kDa) with PET. J Labelled Comp Radiopharm 51:286-292

    Article  CAS  Google Scholar 

  20. Schweinhardt P, Fransson P, Olson L, Spenger C, Andersson JL (2003) A template for spatial normalisation of MR images of the rat brain. J Neurosci Methods 129:105-113

    Article  PubMed  Google Scholar 

  21. Ji B, Maeda J, Sawada M, Ono M, Okauchi T, Inaji M, Zhang MR, Suzuki K, Ando K, Staufenbiel M, Trojanowski JQ, Lee VM, Higuchi M, Suhara T (2008) Imaging of peripheral benzodiazepine receptor expression as biomarkers of detrimental versus beneficial glial responses in mouse models of Alzheimer's and other CNS pathologies. J Neurosci 28:12255-12267

    Article  CAS  PubMed  Google Scholar 

  22. Koistinaho M, Malm TM, Kettunen MI, Goldsteins G, Starckx S, Kauppinen RA, Opdenakker G, Koistinaho J (2005) Minocycline protects against permanent cerebral ischemia in wild type but not in matrix metalloprotease-9-deficient mice. J Cereb Blood Flow Metab 25:460-467

    Article  CAS  PubMed  Google Scholar 

  23. Stirling DP, Khodarahmi K, Liu J, McPhail LT, McBride CB, Steeves JD, Ramer MS, Tetzlaff W (2004) Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci 24:2182-2190

    Article  CAS  PubMed  Google Scholar 

  24. Power C, Henry S, Del Bigio MR, Larsen PH, Corbett D, Imai Y, Yong VW, Peeling J (2003) Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann Neurol 53:731-742

    Article  CAS  PubMed  Google Scholar 

  25. Murata Y, Rosell A, Scannevin RH, Rhodes KJ, Wang X, Lo EH (2008) Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke 39:3372-3377

    Article  CAS  PubMed  Google Scholar 

  26. Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, Bian J, Guo L, Farrell LA, Hersch SM, Hobbs W, Vonsattel JP, Cha JH, Friedlander RM (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 6:797-801

    Article  CAS  PubMed  Google Scholar 

  27. Du Y, Ma Z, Lin S, Dodel RC, Gao F, Bales KR, Triarhou LC, Chernet E, Perry KW, Nelson DL, Luecke S, Phebus LA, Bymaster FP, Paul SM (2001) Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. Proc Natl Acad Sci U S A 98:14669-14674

    Article  CAS  PubMed  Google Scholar 

  28. Tikka TM, Vartiainen NE, Goldsteins G, Oja SS, Andersen PM, Marklund SL, Koistinaho J (2002) Minocycline prevents neurotoxicity induced by cerebrospinal fluid from patients with motor neurone disease. Brain 125:722-731

    Article  PubMed  Google Scholar 

  29. Jander S, Schroeter M, Peters O, Witte OW, Stoll G (2003) Cortical spreading depression induces proinflammatory cytokine gene expression in the rat brain. J Neurosci 23:11602-11610

    Google Scholar 

  30. Fagan SC, Edwards DJ, Borlongan CV, Xu L, Arora A, Feuerstein G, Hess DC (2004) Optimal delivery of minocycline to the brain: implication for human studies of acute neuroprotection. Exp Neurol 186:248-251

    Article  CAS  PubMed  Google Scholar 

  31. Nessler S, Dodel R, Bittner A, et al (2002) Effect of minocycline in experimental autoimmune encephalomyelitis. Ann Neurol 52:689-690

    Article  PubMed  Google Scholar 

  32. Rosell A, Lo EH (2008) Multiphasic roles for matrix metalloproteinases after stroke. Curr Opin Pharmacol 8:82-89

    Article  CAS  PubMed  Google Scholar 

  33. Yong VW, Wells J, Giuliani F, Casha S, Power C, Metz LM (2004) The promise of minocycline in neurology. Lancet Neurol 3:744-751

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank A. Blossier for technical assistance in the PET studies. This work was funded in part by the EU-FP6 network EMIL (LSHC-CT-2004-503569) and the EU-FP6 network DiMI (LSHB-CT-2005-512146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Tavitian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín, A., Boisgard, R., Kassiou, M. et al. Reduced PBR/TSPO Expression After Minocycline Treatment in a Rat Model of Focal Cerebral Ischemia: A PET Study Using [18F]DPA-714. Mol Imaging Biol 13, 10–15 (2011). https://doi.org/10.1007/s11307-010-0324-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0324-y

Key words

Navigation