Skip to main content

PET Imaging of the α4β2* Nicotinic Acetylcholine Receptors in Alzheimer’s Disease

  • Chapter
  • First Online:
PET and SPECT in Neurology

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the most common form of dementia in the elderly. The subunits α4 and β2 of the nicotinic acetylcholine receptors (α4β2*-nAChRs) are widely abundant throughout the human brain and play an important role as neuromodulators in different neuronal systems. They are particularly important for cognitive functions and the loss of α4β2*-nAChRs, especially in cholinergic neurons may underlie memory loss in AD. Postmortem autoradiographic and immunohistochemical studies identified cortical and subcortical reductions in α4β2*-nAChR binding in patients with AD. Recently, the α4β2*-nAChR-specific PET and SPECT tracers 2-[18F]FA-85380 (2-FA) and 5-[123I]IA-85380 (5-IA) were developed enabling to study the α4β2*-nAChR availability in the living human brain. With such specific radioligands, α4β2*-nAChR binding and its association to cognitive symptoms can be quantitatively determined in patients with AD and mild cognitive impairment (MCI). Initial results show that α4β2*-nAChR availability is reduced in AD but also in amnestic MCI patients who progressed into AD. Hence, the prediction of conversion from MCI to AD seems to be feasible, and therefore, quantitative assessment of α4β2*-nAChR binding using 2-FA-PET or 5-IA-SPECT might become an early biomarker of mental dysfunction in AD. Novel, second-generation α4β2*-nAChR PET radioligands, characterized by faster kinetics, higher receptor affinity and selectivity, have been developed recently. Two first-in-human PET studies using the second-generation α4β2*-nAChR PET radioligands (-)[18F]Flubatine and (+)[18F]Flubatine, carried out successfully in patients with mild Alzheimer disease and healthy controls, showed promising results.

The asterisk used in the receptor nomenclature indicates that the receptor complex may contain additional subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-FA:

2-[18F]F-A85380

5-IA:

5-[123I]I-A85380

AD:

Alzheimer’s disease

APP:

β-amyloid-precursor protein

BP:

Binding potential

CC:

Corpus callosum

CERAD:

Consortium to Establish a Registry for Alzheimer’s Disease

CSF:

Cerebrospinal fluid

DV:

Distribution volume

DVR:

Distribution volume ratio

DVS:

Specific binding of the distribution volume

FWHM:

Full width at half maximum

HC:

Healthy controls

MCI:

Mild cognitive impairment

MMSE:

Mini-Mental State Examination

MRI:

Magnetic resonance imaging

NINCDS-ADRDA:

National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association

NINDS-AIREN:

National Institute of Neurological Disorder and Stroke-Association International pour la Recherche et l’Enseignement en Neurosciences

PET:

Positron emission tomography

ROI:

Region of interest

SPECT:

Single-photon emission computed tomography

SPM:

Statistical Parametric Mapping

VaD:

Vascular dementia

α4β2*-nAChR:

α4β2*-nicotinic acetylcholine receptor

References

  • Berti V, Pupi A, Mosconi L (2011) PET/CT in diagnosis of dementia. Ann N Y Acad Sci 1228:81–92. Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betthauser TJ, Hillmer AT, Lao PJ, Ehlerding E, Mukherjee J, Stone CK, Christian BT (2017) Human biodistribution and dosimetry of [18F]nifene, an α4β2* nicotinic acetylcholine receptor PET tracer. Nucl Med Biol 55:7–11. https://doi.org/10.1016/j.nucmedbio.2017.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohnen NI, Djang DS, Herholz K, Anzai Y, Minoshima S (2012) Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature. J Nucl Med 53:59–71. Review

    Article  CAS  PubMed  Google Scholar 

  • Brody AL, Mandelkern MA, London ED, Olmstead RE, Farahi J, Scheibal D, Jou J, Allen V, Tionqson E, Chefer SI, Koren AO, Mukhin AG (2006) Cigarette smoking saturates brain α4β2 nicotinic acetylcholine receptors. Arch Gen Psychiatry 63:907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brust P, Patt JT, Deuther-Conrad W, Becker G, Patt M, Schildan A, Sorger D, Kendziorra K, Meyer P, Steinbach J, Sabri O (2008) In vivo measurement of nicotinic acetylcholine receptors with [18F]norchloro-fluoro-homoepibatidine. Synapse 62:205–218

    Article  CAS  PubMed  Google Scholar 

  • Buckingham SD, Jones AK, Brown LA, Sattelle DB (2009) Nicotinic acetylcholine receptor signalling: roles in Alzheimer’s disease and amyloid neuroprotection. Pharmacol Rev 61:39–61. Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coughlin JM, Slania S, Du Y, Rosenthal HB, Lesniak WG, Minn I, Smith GS, Dannals RF, Kuwabara H, Wong DF, Wang Y, Horti AG, Pomper MG (2018) 18F-XTRA PET for enhanced imaging of the extrathalamic α4β2 nicotinic acetylcholine receptor. J Nucl Med 59:1603–1608. https://doi.org/10.2967/jnumed.117.205492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings JL (2008) The black book of Alzheimer’s disease, part 1. Prim Psychiatry 15:66–76. Review

    Google Scholar 

  • Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47:699–729

    Article  CAS  PubMed  Google Scholar 

  • Ding YS, Fowler JS, Logan J, Wang GJ, Telang F, Garza V, Biegon A, Pareto D, Rooney W, Shea C, Alexoff D, Volkow ND, Vocci F (2004) 6-[18F]fluoro-A-85380, a new PET tracer for the nicotinic acetylcholine receptor: studies in the human brain and in vivo demonstration of specific binding in white matter. Synapse 53:184–189

    Article  CAS  PubMed  Google Scholar 

  • Ellis JR, Villemagne VL, Nathan PJ, Mulligan RS, Gong SJ, Chan JG, Sachinidis J, O’Keefe GJ, Pathmaraj K, Wesnes KA, Savage G, Rowe CC (2008) Relationship between nicotinic receptors and cognitive function in early Alzheimer’s disease: a 2-[18F]fluoro-A-85380 PET study. Neurobiol Learn Mem 90:404–412

    Article  CAS  PubMed  Google Scholar 

  • Erkinjuntti T, Kurz A, Gauthier S, Bullock R, Lilienfeld S, Damaraju CV (2002) Efficacy of galantamine in probable vascular dementia and Alzheimer’s disease combined with cerebrovascular disease: a randomised trial. Lancet 359:1283–1290

    Article  PubMed  Google Scholar 

  • van der Flier WM, Pijnenburg YA, Fox NC, Scheltens P (2011) Early-onset versus late-onset Alzheimer’s disease: the case of the missing APOE ɛ4 allele. Lancet Neurol 10:280–288. Review

    Article  PubMed  CAS  Google Scholar 

  • Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillmer AT, Wooten DW, Moirano JM, Slesarev M, Barnhart TE, Engle JW, Nickles RJ, Murali D, Schneider ML, Mukherjee J, Christian BT (2011) Specific α4β2 nicotinic acetylcholine receptor binding of [18F]nifene in the rhesus monkey. Synapse 65:1309–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, Holden J, Houle S, Huang SC, Ichise M, Iida H, Ito H, Kimura Y, Koeppe RA, Knudsen GM, Knuuti J, Lammertsma AA, Laruelle M, Logan J, Maguire RP, Mintun MA, Morris ED, Parsey R, Price JC, Slifstein M, Sossi V, Suhara T, Votaw JR, Wong DF, Carson RE (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539

    Article  CAS  PubMed  Google Scholar 

  • Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9:119–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kendziorra K, Wolf H, Meyer PM, Barthel H, Hesse S, Becker GA, Luthardt J, Schildan A, Patt M, Sorger D, Seese A, Gertz HJ, Sabri O (2011) Decreased cerebral α4β2* nicotinic acetylcholine receptor availability in patients with mild cognitive impairment and Alzheimer’s disease assessed with positron emission tomography. Eur J Nucl Med Mol Imaging 38:515–525

    Article  CAS  PubMed  Google Scholar 

  • Kimes AS, Horti AG, London ED, Chefer SI, Contoreggi C, Ernst M, Friello P, Koren AO, Kurian V, Matochik JA, Pavlova O, Vaupel DB, Mukhin AG (2003) 2-[18F]F-A85380: PET imaging of brain nicotinic acetylcholine receptors and whole body distribution in humans. FASEB J 17:1331–1333

    Article  CAS  PubMed  Google Scholar 

  • Kimes AS, Chefer SI, Matochik JA, Contoreggi CS, Vaupel DB, Stein EA, Mukhin AG (2008) Quantification of nicotinic acetylcholine receptors in the human brain with PET: bolus plus infusion administration of 2-[18F]F-A85380. NeuroImage 39:717–727

    Article  PubMed  Google Scholar 

  • Klingner M, Apelt J, Kumar A, Sorger D, Sabri O, Steinbach J, Scheunemann M, Schliebs R (2003) Alterations in cholinergic and non-cholinergic neurotransmitter receptor densities in transgenic Tg2576 mouse brain with beta-amyloid plaque pathology. Int J Dev Neurosci 21:357–369

    Article  CAS  PubMed  Google Scholar 

  • Kranz M, Sattler B, Tiepolt S, Wilke S, Deuther-Conrad W, Donat CK, Fischer S, Patt M, Schildan A, Patt J, Smits R, Hoepping A, Steinbach J, Sabri O, Brust P (2016) Radiation dosimetry of the α4β2 nicotinic receptor ligand (+)-[18F]flubatine, comparing preclinical PET/MRI and PET/CT to first-in-human PET/CT results. EJNMMI Phys 3:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuhl DE, Minoshima S, Fessler JA, Frey KA, Foster NL, Ficaro EP, Wieland DM, Koeppe RA (1996) In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Ann Neurol 40:399–410

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara H, Wong DF, Gao Y, Valentine H, Holt DP, Ravert HT, Dannalsand RF, Horti AG (2012) PET imaging of nicotinic acetylcholine receptors in baboons with 18F-AZAN, a radioligand with improved brain kinetics. J Nucl Med 53:121

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara H, Gao Y, Stabin M, Coughlin J, Nimmagadda S, Dannals RF, Pomper MG, Horti AG (2017) Imaging α4β2 nicotinic acetylcholine receptors (nAChRs) in baboons with [18F]XTRA, a radioligand with improved specific binding in extra-thalamic regions. Mol Imaging Biol 19:280–288. https://doi.org/10.1007/s11307-016-0999-9

    Article  CAS  PubMed  Google Scholar 

  • Lao PJ, Betthauser TJ, Tudorascu DL, Barnhart TE, Hillmer AT, Stone CK, Mukherjee J, Christian BT (2017) [18F]Nifene test-retest reproducibility in first-in-human imaging of α4β2* nicotinic acetylcholine receptors. Synapse 71(8). https://doi.org/10.1002/syn.21981

  • Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440(7082):352–357

    Article  PubMed  CAS  Google Scholar 

  • Lombardo S, Maskos U (2015) Role of the nicotinic acetylcholine receptor in Alzheimer’s disease pathology and treatment. Neuropharmacology 96(Pt B):255–262. https://doi.org/10.1016/j.neuropharm.2014.11.018. Review

    Article  CAS  PubMed  Google Scholar 

  • Ludwig FA, Smits R, Fischer S, Donat CK, Hoepping A, Brust P, Steinbach J (2016) LC-MS supported studies on the in vitro metabolism of both enantiomers of Flubatine and the in vivo metabolism of (+)-[(18)F]Flubatine-a positron emission tomography radioligand for imaging α4β2 nicotinic acetylcholine receptors. Molecules 21(9):E1200. https://doi.org/10.3390/molecules21091200

    Article  CAS  PubMed  Google Scholar 

  • Ludwig FA, Fischer S, Smits R, Deuther-Conrad W, Hoepping A, Tiepolt S, Patt M, Sabri O, Brust P (2018) Exploring the metabolism of (+)-[18F]Flubatine in vitro and in vivo: LC-MS/MS aided identification of radiometabolites in a clinical PET study. Molecules 23(2):E464. https://doi.org/10.3390/molecules23020464

    Article  CAS  PubMed  Google Scholar 

  • Mamede M, Ishizu K, Ueda M, Mukai T, Iida Y, Fukuyama H, Saga T, Saji H (2004) Quantification of human nicotinic acetylcholine receptors with 123I-5-IA SPECT. J Nucl Med 45:1458–1470

    CAS  PubMed  Google Scholar 

  • McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer PM, Strecker K, Kendziorra K et al (2009) Reduced α4β2* Nicotinic acetylcholine receptor binding and its relationship to mild cognitive and depressive symptoms in Parkinson’s disease. Arch Gen Psychiatry 66:866–877

    Article  CAS  PubMed  Google Scholar 

  • Meyer PM, Gertz HJ, Schildan A, Luthardt J, Seese A, Sattler B, Barthel H, Hesse S, Sabri O (2012) Differentially decreased α4β2* nicotinic acetylcholine receptor availability (α4β2*-nAChR) in early-onset (EOAD) and late-onset Alzheimer’s disease (LOAD). J Nucl Med 53(Suppl 1):39

    Google Scholar 

  • Mitsis EM, Reech KM, Bois F, Tamagnan GD, Macavoy MG, Seibyl JP, Staley JK, van Dyck CH (2009) 123I-5-IA-85380 SPECT imaging of nicotinic receptors in Alzheimer disease and mild cognitive impairment. J Nucl Med 50:1455–1463

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee J, Lao PJ, Betthauser TJ, Samra GK, Pan ML, Patel IH, Liang C, Metherate R, Christian BT (2018) Human brain imaging of nicotinic acetylcholine α4β2* receptors using [18F]Nifene: selectivity, functional activity, toxicity, aging effects, gender effects, and extrathalamic pathways. J Comp Neurol 526(1):80–95. https://doi.org/10.1002/cne.24320

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama S, Ohba H, Kanazawa M, Kakiuchi T, Tsukada H (2015) Comparing α7 nicotinic acetylcholine receptor binding, amyloid-β deposition, and mitochondria complex-I function in living brain: a PET study in aged monkeys. Synapse 69(10):475–483. https://doi.org/10.1002/syn.21842

    Article  CAS  PubMed  Google Scholar 

  • Nordberg A (2001) Nicotinic receptor abnormalities of Alzheimer’s disease: therapeutic implications. Biol Psychiatry 49:200–210. Review

    Article  CAS  PubMed  Google Scholar 

  • Nordberg A, Lundqvist H, Hartvig P, Lilja A, Långström B (1995) Kinetic analysis of regional (S)(-)11C-nicotine binding in normal and Alzheimer brains – in vivo assessment using positron emission tomography. Alzheimer Dis Assoc Disord 9:21–27

    Article  CAS  PubMed  Google Scholar 

  • O’Brien JT, Colloby SJ, Pakrasi S, Perry EK, Pimlott SL, Wyper DJ, McKeith IG, Williams ED (2007) α4β2 nicotinic receptor status in Alzheimer’s disease using 123I-5-IA-85380 SPECT. J Neurol Neurosurg Psychiatry 78:356–362

    Article  PubMed  Google Scholar 

  • Okada H, Ouchi Y, Ogawa M, Futatsubashi M, Saito Y, Yoshikawa E, Terada T, Oboshi Y, Tsukada H, Ueki T, Watanabe M, Yamashita T, Magata Y (2013) Alterations in α4β2 nicotinic receptors in cognitive decline in Alzheimer’s aetiopathology. Brain 136(Pt 10):3004–3017. https://doi.org/10.1093/brain/awt195

    Article  PubMed  Google Scholar 

  • Perry EK, Morris CM, Court JA et al (1995) Alteration in nicotine binding sites in Parkinson’s disease, Lewy body dementia and Alzheimer’s disease: possible index of early neuropathology. Neuroscience 64:385–395

    Article  CAS  PubMed  Google Scholar 

  • Rinne JO, Myllykyla T, Lonnberg P, Marjamaki P (1991) A post mortem study of brain nicotinic receptors in Parkinson’s and Alzheimer’s disease. Brain Res 547:167–170

    Article  CAS  PubMed  Google Scholar 

  • Rinne JO, Kaasinen V, Järvenpää T, Någren K, Roivainen A, Yu M, Oikonen V, Kurki T (2003) Brain acetylcholinesterase activity in mild cognitive impairment and early Alzheimer’s disease. J Neurol Neurosurg Psychiatry 74:113–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Román GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, Amaducci L, Orgogozo JM, Brun A, Hofman A et al (1993) Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 43:250–260

    Article  PubMed  Google Scholar 

  • Sabri O, Schneider R, Schreckenberger M, Hellwig D, Kaiser HJ, Wagenknecht G, Mull M, Ringelstein EB, Buell U (1999) Neuropsychological impairment correlates to hyperperfusion and hypometabolism but not to severity of white matter lesions on MRI in cerebral microangiopathy. In: Korczyn AD (ed) First International Congress on Vascular Dementia, Geneva, Switzerland, October 3–6, 1999. Monduzzi, Bologna

    Google Scholar 

  • Sabri O, Kendziorra K, Wolf H, Gertz HJ, Brust P (2008) Acetylcholine receptors in dementia and mild cognitive impairment. Eur J Nucl Med Mol Imaging 35(Suppl 1):S30–S45. Review

    Article  CAS  PubMed  Google Scholar 

  • Sabri O, Wilke S, Graef S, Schoenknecht P, Becker G, Patt M, Wagenknecht G, Hoepping A, Hegerl U, Brust P (2011a) Cerebral α4β2 nicotinic acetylcholine receptors (nAChRs) in early Alzheimer disease (AD) assessed with the new PET tracer (-)-[18F]-norchloro-fluoro-homoepibatidine (NCFHEB). J Nucl Med 52(Suppl 1):1267

    Google Scholar 

  • Sabri O, Wilke S, Graef S, Schoenknecht P, Habermann B, Becker G, Luthardt J, Patt M, Kendziorra K, Meyer P, Hesse S, Wagenknecht G, Hoepping A, Hegerl U, Brust P (2011b) PET imaging of cerebral nicotinic acetylcholine receptors (nAChRs) in early Alzheimer’s disease (AD) assessed with the new radioligand (-)-[18F]-NorChloro-Fluoro-HomoEpiBatidine (NCFHEB). In: Book of Abstracts, the XXVth International Symposium on Cerebral Blood Flow, Metabolism and Function and the Xth International Conference on Quantification of Brain Function with PET, Barcelona, Spain, May 25–28, 2011

    Google Scholar 

  • Sabri O, Wilke S, Graef S, Lengler U, Gertz H-J, Schönknecht P, Habermann B, Becker G, Luthardt J, Patt M, Kendziorra K, Meyer P, Hesse S, Barthel H, Wagenknecht G, Hoepping A, Hegerl U, Brust P (2011c) First in man study to image α4β2 cerebral nicotinic acetylcholine receptors (nAChRs) in early Alzheimer’s disease (AD) with the new radioligand (-)-[18F]-norchloro-fluoro-homoepibatidine (NCFHEB) and PET. Alzheimers Dement 7(Suppl 1):S37

    Article  Google Scholar 

  • Sabri O, Wilke S, Gräf S, Gertz H, Schönknecht P, Becker G, Luthardt J, Patt M, Meyer P, Hesse S, Barthel H, Wagenknecht G, Höpping A, Hegerl U, Brust P (2011d) First in man study with the new radioligand (-)-[18F]-norchloro-fluoro-homoepibatidine (NCFHEB) to image alpha4beta2 cerebral nicotinic acetylcholine receptors (nAChRs) in early Alzheimer’s disease (AD) with PET. Eur J Nucl Med Mol Imaging 38(Suppl 2):S122

    Google Scholar 

  • Sabri O, Becker GA, Meyer PM, Hesse S, Wilke S, Graef S, Patt M, Luthardt J, Wagenknecht G, Hoepping A, Smits R, Franke A, Sattler B, Habermann B, Neuhaus P, Fischer S, Tiepolt S, Deuther-Conrad W, Barthel H, Schönknecht P, Brust P (2015) First-in-human PET quantification study of cerebral α4β2* nicotinic acetylcholine receptors using the novel specific radioligand (-)-[(18)F]Flubatine. NeuroImage 118:199–208. https://doi.org/10.1016/j.neuroimage.2015.05.065

    Article  CAS  PubMed  Google Scholar 

  • Sabri O, Meyer PM, Gräf S, Hesse S, Wilke S, Becker GA, Rullmann M, Patt M, Luthardt J, Wagenknecht G, Hoepping A, Smits R, Franke A, Sattler B, Tiepolt S, Fischer S, Deuther-Conrad W, Hegerl U, Barthel H, Schönknecht P, Brust P (2018) Cognitive correlates of α4β2 nicotinic acetylcholine receptors in mild Alzheimer’s dementia. Brain 141(6):1840–1854. https://doi.org/10.1093/brain/awy099

    Article  PubMed  PubMed Central  Google Scholar 

  • Samra GK, Dang K, Ho H, Baranwal A, Mukherjee J (2018) Dual targeting agents for Aβ plaque/P-glycoprotein and Aβ plaque/nicotinic acetylcholine α4β2* receptors-potential approaches to facilitate Aβ plaque removal in Alzheimer’s disease brain. Med Chem Res 27:1634–1646. https://doi.org/10.1007/s00044-018-2178-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schildan A, Patt M, Sabri O (2007) Synthesis procedure for routine production of 2-[18F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[18F]FA-85380). Appl Radiat Isot 65:1244–1248

    Article  CAS  PubMed  Google Scholar 

  • Schliebs R (2005) Basal forebrain cholinergic dysfunction in Alzheimer’s disease – interrelationship with beta-amyloid, inflammation and neurotrophin signaling. Neurochem Res 30:895–908. Review

    Article  CAS  PubMed  Google Scholar 

  • Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221:555–563. Review

    Article  CAS  PubMed  Google Scholar 

  • Sorger D, Becker GA, Hauber K, Schildan A, Patt M, Birkenmeier G, Otto A, Meyer P, Kluge M, Schliebs R, Sabri O (2006) Binding properties of the cerebral α4β2 nicotinic acetylcholine receptor ligand 2-[18F]fluoro A85380 to plasma. Nucl Med Biol 33:899–906

    Article  CAS  PubMed  Google Scholar 

  • Sorger D, Becker GA, Patt M, Schildan A, Grossmann U, Schliebs R, Seese A, Kendziorra K, Kluge M, Brust P, Mukhin AG, Sabri O (2007) Measurement of the α4β2* nicotinic acetylcholine receptor ligand 2-[18F]Fluoro-A-85380 and its metabolites in human blood during PET investigation: a methodological study. Nucl Med Biol 34:331–342

    Article  CAS  PubMed  Google Scholar 

  • Terrière E, Dempsey MF, Herrmann LL, Tierney KM, Lonie JA, O’Carroll RE, Pimlott S, Wyper DJ, Herholz K, Ebmeier KP (2010) 5-123I-A-85380 binding to the α4β2-nicotinic receptor in mild cognitive impairment. Neurobiol Aging 31:1885–1893

    Article  PubMed  CAS  Google Scholar 

  • Tiepolt S, Becker GA, Wilke S, Cecchin D, Meyer PM, Barthel H, Hesse S, Patt M, Rullmann M, Wagenknecht G, Deuther-Conrad W, Ludwig FA, Wagner A, Gertz HJ, Smits R, Hoepping A, Brust P, Sabri O (2018) [(+)-[18F]Flubatine ein neuer α4β2 nikotinischer Acetylcholin-Rezeptor (nAChR) PET Radioligand - Ergebnisse der First-In-Human Studie bei Patienten mit Alzheimer Demenz (AD) und gesunden Probanden (HC)]. Nuklearmedizin 57(Suppl):V103

    Google Scholar 

  • Tiernan CT, Ginsberg SD, He B, Ward SM, Guillozet-Bongaarts AL, Kanaan NM, Mufson EJ, Counts SE (2018) Pretangle pathology within cholinergic nucleus basalis neurons coincides with neurotrophic and neurotransmitter receptor gene dysregulation during the progression of Alzheimer’s disease. Neurobiol Dis 117:125–136. https://doi.org/10.1016/j.nbd.2018.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilke S, Tiepolt S, Rullmann M, Meyer PM, Hesse S, Patt M, Luthardt J, Barthel H, Wagenknecht G, Smits R, Hoepping A, Sattler B, Deuther-Conrad W, Gertz HJ, Brust P, Becker GA, Sabri O (2019) Comparison of the novel α4β2 nicotinic acetylcholine receptor PET radioligands (-)-Flubatine and (+)-Flubatine in healthy controls. Nuklearmedizin (Suppl) 58:159–160. https://doi.org/10.1055/s-0039-1683635

    Article  Google Scholar 

  • Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Bäckman L, Albert M, Almkvist O, Arai H, Basun H, Blennow K, de Leon M, DeCarli C, Erkinjuntti T, Giacobini E, Graff C, Hardy J, Jack C, Jorm A, Ritchie K, van Duijn C, Visser P, Petersen RC (2004) Mild cognitive impairment – beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 256:240–246. Review

    Article  CAS  PubMed  Google Scholar 

  • Wong DF, Kuwabara H, Kim J, Brasic JR, Chamroonrat W, Gao Y, Valentine H, Willis W, Mathur A, McCaul ME, Wand G, Gean EG, Dannals RF, Horti AG (2013) PET imaging of high-affinity α4β2 nicotinic acetylcholine receptors in humans with 18F-AZAN, a radioligand with optimal brain kinetics. J Nucl Med 54:1308–1314. https://doi.org/10.2967/jnumed.112.108001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the cyclotron operators, PET physicists, chemists and technologists for their assistance. The studies were funded by Interdisziplinäres Zentrum für Klinische Forschung (IZKF) and Bundesministerium für Bildung und Forschung (BMBF) grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osama Sabri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabri, O. et al. (2021). PET Imaging of the α4β2* Nicotinic Acetylcholine Receptors in Alzheimer’s Disease. In: Dierckx, R.A.J.O., Otte, A., de Vries, E.F.J., van Waarde, A., Leenders, K.L. (eds) PET and SPECT in Neurology. Springer, Cham. https://doi.org/10.1007/978-3-030-53168-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53168-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53167-6

  • Online ISBN: 978-3-030-53168-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics