Skip to main content

Basics of Fungal Siderophores: Classification, Iron Transport and Storage, Chemistry and Biosynthesis, Application, and More

  • Chapter
  • First Online:
Fungal Siderophores

Part of the book series: Fungal Biology ((FUNGBIO))

  • 455 Accesses

Abstract

Iron is needed in micro-quantities for cellular homeostasis. In humans, iron is bound to transferrin and ferritin, the essential proteins for cellular functions. The human body maintains an optimal iron content through an intrinsic mechanism. The accumulation of iron in soft tissues leads to clinical attention. In microorganisms such as bacteria and fungi, iron is required for their optimal growth. The microorganisms acquire iron from the hosts they infect by secreting siderophores. Siderophores are the iron-chelating agents with low molecular weight. While a large number of studies are available on the siderophores secreted by bacteria, a minimum information is known about the siderophores secreted by fungi. In this chapter, we summarized the basic information on fungal siderophores based on the information available in the published biomedical literature. We focused on the classification, iron uptake and storage, chemistry and biosynthesis, and application of fungal siderophores, with a special reference to potential research areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed E, Holmström SJ (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7(3):196–208

    Article  CAS  Google Scholar 

  • An Z, Mei B, Yuan WM, Leong SA (1997a) The distal GATA sequences of the sid1 promoter of Ustilago maydis mediate iron repression of siderophore production and interact directly with Urbs1, a GATA family transcription factor. EMBO J 16(7):1742–1750

    Article  CAS  Google Scholar 

  • An Z, Zhao Q, McEvoy J, Yuan WM, Markley JL, Leong SA (1997b) The second finger of Urbs1 is required for iron-mediated repression of sid1 in Ustilago maydis. Proc Natl Acad Sci U S A 94(11):5882–5887

    Article  CAS  Google Scholar 

  • Armstrong J.E AND Baalen C.V. (1979), Iron transport in microalgae: the isolation and biological activity of a hydroxamate siderophore from the blue-green algae Agmenellum quadruplicatum J Gen Microbiol 111, 253–262

    Article  CAS  Google Scholar 

  • Ã…rstøl E, Hohmann-Marriott MF (2019) Cyanobacterial siderophores-physiology, structure, biosynthesis, and applications. Mar Drugs 17(5):281. https://doi.org/10.3390/md17050281

    Article  CAS  PubMed Central  Google Scholar 

  • Balhara M, Chaudhary R, Ruhil S, Singh B, Dahiya N, Parmar VS et al (2016) Siderophores; iron scavengers: the novel & promising targets for pathogen specific antifungal therapy. Expert Opin Ther Targets 20(12):1477–1489

    Article  CAS  Google Scholar 

  • Blatzer M, Schrettl M, Sarg B, Lindner HH, Pfaller K, Haas H (2011) SidL, an Aspergillus fumigatus transacetylase involved in biosynthesis of the siderophores ferricrocin and hydroxyferricrocin. Appl Environ Microbiol 77(14):4959–4966

    Article  CAS  Google Scholar 

  • Bou-Abdallah F (2010) The iron redox and hydrolysis chemistry of the ferritins. Biochim Biophys Acta Gen Subj 1800(8):719–731

    Article  CAS  Google Scholar 

  • Dave B, Anshuman K, Hajela P (2006) Siderophores of halophilic archaea and their chemical characterization. Indian J Exp Biol 44:340–344

    CAS  PubMed  Google Scholar 

  • Forester NT, Lane GA, Steringa M, Lamont IL, Johnson LJ (2018) Contrasting roles of fungal siderophores in maintaining iron homeostasis in Epichloë festucae. Fungal Genet Biol 111:60–72

    Article  CAS  Google Scholar 

  • Gerwien F, Safyan A, Wisgott S, Hille F, Kaemmer P, Linde J et al (2016) A novel hybrid Iron regulation network combines features from pathogenic and nonpathogenic yeasts. MBio 7(5):e01782-16

    Article  Google Scholar 

  • Haas H (2003) Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl Microbiol Biotechnol 62(4):316–330

    Article  CAS  Google Scholar 

  • Haas H (2014) Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat Prod Rep 31(10):1266–1276

    Article  CAS  Google Scholar 

  • Höfte M (1992) Classes of microbial siderophores. In: Barton L, Hemming B (eds) Iron chelation in plants and soil microorganisms. Academic, New York, pp 3–26

    Google Scholar 

  • Holinsworth B, Martin JD (2009) Siderophore production by marine-derived fungi. Biometals 22(4):625–632

    Article  CAS  Google Scholar 

  • Howard DH (1999) Acquisition, transport, and storage of iron by pathogenic fungi. Clin Microbiol Rev 12(3):394–404

    Article  CAS  Google Scholar 

  • Karuna G et al (2010) J Biosci Technol 1(3):127–134

    Google Scholar 

  • Khan A, Singh P, Srivastava A (2018) Synthesis, nature and utility of universal iron chelator – siderophore: a review. Microbiol Res 212–213:103–111

    Article  Google Scholar 

  • Li L, Bagley D, Ward DM, Kaplan J (2008) Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast. Mol Cell Biol 28(4):1326–1337

    Article  Google Scholar 

  • Li L, Miao R, Bertram S, Jia X, Ward DM, Kaplan J (2012) A role for iron-sulfur clusters in the regulation of transcription factor Yap5-dependent high iron transcriptional responses in yeast. J Biol Chem 287(42):35709–35721

    Article  CAS  Google Scholar 

  • Luca N, Wood P (2000) Iron uptake by fungi: contrasted mechanisms with internal or external reduction. Adv Microb Physiol 43:39–74

    Article  Google Scholar 

  • Neilands JB (1981) Microbial iron compounds. Annu Rev Biochem 50(1):715–731

    Article  CAS  Google Scholar 

  • Pérez-Miranda S, Cabirol N, George-Téllez R, Zamudio-Rivera LS, Fernández FJ (2007) O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods 70(1):127–131

    Article  Google Scholar 

  • Pimentel C, Vicente C, Menezes RA, Caetano S, Carreto L, Rodrigues-Pousada C (2012) The role of the Yap5 transcription factor in remodeling gene expression in response to Fe bioavailability. PLoS One 7(5):e37434

    Article  CAS  Google Scholar 

  • Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106(10):1123–1142

    Article  CAS  Google Scholar 

  • Riquelme M (1996) Fungal siderophores in plant-microbe interactions. Microbiologia 12:537–546

    CAS  PubMed  Google Scholar 

  • Saha R, Saha N, Donofrio RS, Bestervelt LL (2012) Microbial siderophores: a mini review. J Basic Microbiol 53(4):303–317

    Article  Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2015) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23(5):3984–3999

    Article  Google Scholar 

  • Ueta R, Fujiwara N, Iwai K, Yamaguchi-Iwai Y (2012) Iron-induced dissociation of the Aft1p transcriptional regulator from target gene promoters is an initial event in iron-dependent gene suppression. Mol Cell Biol 32(24):4998–5008

    Article  CAS  Google Scholar 

  • Winkelmann G (2007) Ecology of siderophores with special reference to the fungi. Biometals 20(3–4):379–392

    Article  CAS  Google Scholar 

  • Zheng T, Nolan EM (2012) Siderophore-based detection of Fe(iii) and microbial pathogens. Metallomics 4(9):866

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arputhanantham, S.S., Raja, K., Shanmugam, L., Raman, V. (2021). Basics of Fungal Siderophores: Classification, Iron Transport and Storage, Chemistry and Biosynthesis, Application, and More. In: Dhusia, K., Raja, K., Ramteke, P. (eds) Fungal Siderophores. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-53077-8_1

Download citation

Publish with us

Policies and ethics