Skip to main content

Chronic Hemodialysis in Children

  • Reference work entry
  • First Online:
Pediatric Nephrology

Abstract

Conventional hemodialysis (HD) is a widely used kidney replacement therapy for children with end-stage kidney disease. HD is based on diffusive transport of solutes across a semipermeable membrane and is effective in removing small uremic retention solutes such as urea, correcting electrolyte abnormalities and restoring fluid balance. The addition of convective therapies with hemodiafiltration (HDF) allows the removal of larger uremic retention solutes, such as β2-microglobulin and inflammatory cytokines. Extended hours of hemodialysis, best achieved through home hemodialysis programs, achieves optimal clearances without the hemodynamic strain of conventional HD. Despite technical advances, children on dialysis continue to experience high rates of morbidity and mortality compared to the general pediatric population.

In this chapter we discuss the principles, technique and practical aspects of performing conventional HD and intensified dialysis techniques, including HDF and home hemodialysis, in children, and relevant pediatric and adult studies to support these practices. We outline commonly encountered complications of HD and strategies for their prevention and treatment. Vascular access, often called the “Achilles’ heel” of dialysis, is discussed at length, comparing the relative merits of central venous lines and arteriovenous fistulas. Finally, we suggest future directions for children treated with HD including the benefits of intensified hemodialysis options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kolff WJ, Berk HT, ter Welle M, van der Ley AJ, van Dijk EC, van Noordwijk J. The artificial kidney: a dialyser with a great area. 1944. J Am Soc Nephrol. 1997;8(12):1959–65.

    Article  CAS  PubMed  Google Scholar 

  2. Goldstein SL, Silverstein DM, Leung JC, Feig DI, Soletsky B, Knight C, et al. Frequent hemodialysis with NxStage system in pediatric patients receiving maintenance hemodialysis. Pediatr Nephrol. 2008;23(1):129–35.

    Article  PubMed  Google Scholar 

  3. UK Renal Registry UK Renal Registry 21st annual report – data to 31/12/2017, Bristol, UK; 2019.

    Google Scholar 

  4. Harambat J, Bonthuis M, Groothoff JW, Schaefer F, Tizard EJ, Verrina E, et al. Lessons learned from the ESPN/ERA-EDTA Registry. Pediatr Nephrol. 2016;31(11):2055–64.

    Article  PubMed  Google Scholar 

  5. Chan CT, Blankestijn PJ, Dember LM, Gallieni M, Harris DCH, Lok CE, et al. Dialysis initiation, modality choice, access, and prescription: conclusions from a kidney disease: improving global outcomes (KDIGO) controversies conference. Kidney Int. 2019;96(1):37–47.

    Article  PubMed  Google Scholar 

  6. Cooper BA, Branley P, Bulfone L, Collins JF, Craig JC, Fraenkel MB, et al. A randomized, controlled trial of early versus late initiation of dialysis. N Engl J Med. 2010;363(7):609–19.

    Article  CAS  PubMed  Google Scholar 

  7. Blagg CR, Kjellstrand CM, Ting GO, Young BA. Comparison of survival between short-daily hemodialysis and conventional hemodialysis using the standardized mortality ratio. Hemodial Int. 2006;10(4):371–4.

    Article  PubMed  Google Scholar 

  8. Gilbert J, Lovibond K, Mooney A, Dudley J, Guideline C. Renal replacement therapy: summary of NICE guidance. BMJ. 2018;363:k4303.

    Article  PubMed  Google Scholar 

  9. Nesrallah GE, Mustafa RA, Clark WF, Bass A, Barnieh L, Hemmelgarn BR, et al. Canadian Society of Nephrology 2014 clinical practice guideline for timing the initiation of chronic dialysis. CMAJ. 2014;186(2):112–7.

    Article  PubMed  PubMed Central  Google Scholar 

  10. National Kidney Foundation. KDOQI clinical practice guideline for hemodialysis adequacy: 2015 update. Am J Kidney Dis. 2015;66(5):884–930.

    Article  Google Scholar 

  11. Preka E, Bonthuis M, Harambat J, Jager KJ, Groothoff JW, Baiko S, et al. Association between timing of dialysis initiation and clinical outcomes in the paediatric population: an ESPN/ERA-EDTA registry study. Nephrol Dial Transplant. 2019;34(11):1932–40.

    Article  PubMed  Google Scholar 

  12. Okuda Y, Soohoo M, Tang Y, Obi Y, Laster M, Rhee CM, et al. Estimated GFR at dialysis initiation and mortality in children and adolescents. Am J Kidney Dis. 2019;73(6):797–805.

    Article  PubMed  Google Scholar 

  13. Winnicki E, Johansen KL, Cabana MD, Warady BA, McCulloch CE, Grimes B, et al. Higher eGFR at dialysis initiation is not associated with a survival benefit in children. J Am Soc Nephrol. 2019;30(8):1505–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. System URD. Annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2019.

    Google Scholar 

  15. Winnicki E, McCulloch CE, Mitsnefes MM, Furth SL, Warady BA, Ku E. Use of the kidney failure risk equation to determine the risk of progression to end-stage renal disease in children with chronic kidney disease. JAMA Pediatr. 2018;172(2):174–80.

    Article  PubMed  Google Scholar 

  16. Furth SL, Pierce C, Hui WF, White CA, Wong CS, Schaefer F, et al. Estimating time to ESRD in children with CKD. Am J Kidney Dis. 2018;71(6):783–92.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Warady BA, Schaefer F, Bagga A, Cano F, McCulloch M, Yap HK, et al. Prescribing peritoneal dialysis for high-quality care in children. Perit Dial Int. 2020;40(3):333–40.

    Article  PubMed  Google Scholar 

  18. Boure T, Vanholder R. Which dialyser membrane to choose? Nephrol Dial Transplant. 2004;19(2):293–6.

    Article  CAS  PubMed  Google Scholar 

  19. Sargent JA, Gotch FA, Lam M, Prowitt M, Keen M. Technical aspects of on-line proportioning of bicarbonate dialysate. Proc Clin Dial Transplant Forum. 1977;7:109–16.

    CAS  PubMed  Google Scholar 

  20. Martin K, Laydet E, Canaud B. Design and technical adjustment of a water treatment system: 15 years of experience. Adv Ren Replace Ther. 2003;10(2):122–32.

    Article  PubMed  Google Scholar 

  21. Chand DH, Valentini RP. International pediatric fistula first initiative: a call to action. Am J Kidney Dis. 2008;51(6):1016–24.

    Article  PubMed  Google Scholar 

  22. Ma A, Shroff R, Hothi D, Lopez MM, Veligratli F, Calder F, et al. A comparison of arteriovenous fistulas and central venous lines for long-term chronic haemodialysis. Pediatr Nephrol. 2013;28(2):321–6.

    Article  PubMed  Google Scholar 

  23. Mak RH, Dialysis WBA. Vascular access in children--arteriovenous fistula or CVC? Nat Rev Nephrol. 2013;9(1):9–11.

    Article  PubMed  Google Scholar 

  24. Wartman SM, Rosen D, Woo K, Gradman WS, Weaver FA, Rowe V. Outcomes with arteriovenous fistulas in a pediatric population. J Vasc Surg. 2014;60(1):170–4.

    Article  PubMed  Google Scholar 

  25. Foundation NK. Clinical practice guidelines for vascular access. Am J Kidney Dis. 2006;48(Suppl 1):S176–247.

    Google Scholar 

  26. Shroff R, Calder F, Bakkaloglu S, Nagler EV, Stuart S, Stronach L, et al. Vascular access in children requiring maintenance haemodialysis: a consensus document by the European Society for Paediatric Nephrology Dialysis Working Group. Nephrol Dial Transplant. 2019;34(10):1746–65.

    Article  PubMed  Google Scholar 

  27. Borzych-Duzalka D, Shroff R, Ariceta G, Yap YC, Paglialonga F, Xu H, et al. Vascular access choice, complications, and outcomes in children on maintenance Hemodialysis: findings from the International Pediatric Hemodialysis Network (IPHN) Registry. Am J Kidney Dis. 2019;74(2):193–202.

    Article  PubMed  Google Scholar 

  28. Boehm M, Bonthuis M, Noordzij M, Harambat J, Groothoff JW, Melgar AA, et al. Hemodialysis vascular access and subsequent transplantation: a report from the ESPN/ERA-EDTA Registry. Pediatr Nephrol. 2019;34(4):713–21.

    Article  PubMed  Google Scholar 

  29. Hayes WN, Watson AR, Callaghan N, Wright E, Stefanidis CJ. European Pediatric Dialysis Working G. Vascular access: choice and complications in European paediatric haemodialysis units. Pediatr Nephrol. 2012;27(6):999–1004.

    Article  PubMed  Google Scholar 

  30. Chand DH, Geary D, Patel H, Greenbaum LA, Nailescu C, Brier ME, et al. Barriers, biases, and beliefs about arteriovenous fistula placement in children: a survey of the International Pediatric Fistula First Initiative (IPFFI) within the Midwest Pediatric Nephrology Consortium (MWPNC). Hemodial Int. 2015;19(1):100–7.

    Article  PubMed  Google Scholar 

  31. Shroff R, Sterenborg RB, Kuchta A, Arnold A, Thomas N, Stronach L, et al. A dedicated vascular access clinic for children on haemodialysis: two years’ experience. Pediatr Nephrol. 2016;31(12):2337–44.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Akaraborworn O. A review in emergency central venous catheterization. Chin J Traumatol. 2017;20(3):137–40.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schillinger F, Schillinger D, Montagnac R, Milcent T. Post catheterisation vein stenosis in haemodialysis: comparative angiographic study of 50 subclavian and 50 internal jugular accesses. Nephrol Dial Transplant. 1991;6(10):722–4.

    Article  CAS  PubMed  Google Scholar 

  34. Manook M, Calder F. Practical aspects of arteriovenous fistula formation in the pediatric population. Pediatr Nephrol. 2013;28(6):885–93.

    Article  PubMed  Google Scholar 

  35. Bourquelot P, Cussenot O, Corbi P, Pillion G, Gagnadoux MF, Bensman A, et al. Microsurgical creation and follow-up of arteriovenous fistulae for chronic haemodialysis in children. Pediatr Nephrol. 1990;4(2):156–9.

    Article  CAS  PubMed  Google Scholar 

  36. Elsharawy MA, Moghazy KM. Impact of pre-operative venography on the planning and outcome of vascular access for hemodialysis patients. J Vasc Access. 2006;7(3):123–8.

    Article  CAS  PubMed  Google Scholar 

  37. Kim SM, Min SK, Ahn S, Min SI, Ha J. Outcomes of arteriovenous fistula for hemodialysis in pediatric and adolescent patients. Vasc Spec Int. 2016;32(3):113–8.

    Article  Google Scholar 

  38. Almasi-Sperling V, Galiano M, Lang W, Rother U, Rascher W, Regus S. Timing of first arteriovenous fistula cannulation in children on hemodialysis. Pediatr Nephrol. 2016;31(10):1647–57.

    Article  PubMed  Google Scholar 

  39. Grudzinski A, Mendelssohn D, Pierratos A, Nesrallah G. A systematic review of buttonhole cannulation practices and outcomes. Semin Dial. 2013;26(4):465–75.

    Article  PubMed  Google Scholar 

  40. Wong B, Muneer M, Wiebe N, Storie D, Shurraw S, Pannu N, et al. Buttonhole versus rope-ladder cannulation of arteriovenous fistulas for hemodialysis: a systematic review. Am J Kidney Dis. 2014;64(6):918–36.

    Article  PubMed  Google Scholar 

  41. Parisotto MT, Schoder VU, Miriunis C, Grassmann AH, Scatizzi LP, Kaufmann P, et al. Cannulation technique influences arteriovenous fistula and graft survival. Kidney Int. 2014;86(4):790–7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Macrae JM, Ahmed SB, Hemmelgarn BR. Buttonhole cannulation technique as the cannulation method of choice. Am J Kidney Dis. 2014;63(1):165.

    Article  PubMed  Google Scholar 

  43. Chand DH, Swartz S, Tuchman S, Valentini RP, Somers MJ. Dialysis in children and adolescents: the Pediatric nephrology perspective. Am J Kidney Dis. 2017;69(2):278–86.

    Article  PubMed  Google Scholar 

  44. Ahmad S, Callan R, Cole JJ, Blagg CR. Dialysate made from dry chemicals using citric acid increases dialysis dose. Am J Kidney Dis. 2000;35(3):493–9.

    Article  CAS  PubMed  Google Scholar 

  45. Kossmann RJ, Gonzales A, Callan R, Ahmad S. Increased efficiency of hemodialysis with citrate dialysate: a prospective controlled study. Clin J Am Soc Nephrol. 2009;4(9):1459–64.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hanevold C, Lu S, Yonekawa K. Utility of citrate dialysate in management of acute kidney injury in children. Hemodial Int. 2010;14(Suppl 1):S2–6.

    Article  PubMed  Google Scholar 

  47. Hegbrant J, Martensson L, Ekman R, Nielsen AL, Thysell H. Dialysis fluid temperature and vasoactive substances during routine hemodialysis. ASAIO J. 1994;40(3):M678–82.

    Article  CAS  PubMed  Google Scholar 

  48. Hegbrant J, Sternby J, Larsson A, Martensson L, Lassen Nielsen A, Thysell H. Beneficial effect of cold dialysate for the prevention of hemodialysis-induced hypoxia. Blood Purif. 1997;15(1):15–24.

    Article  CAS  PubMed  Google Scholar 

  49. Sherman RA, Rubin MP, Cody RP, Eisinger RP. Amelioration of hemodialysis-associated hypotension by the use of cool dialysate. Am J Kidney Dis. 1985;5(2):124–7.

    Article  CAS  PubMed  Google Scholar 

  50. Hothi DK, Harvey E, Goia CM, Geary D. Blood-volume monitoring in paediatric haemodialysis. Pediatr Nephrol. 2008;23(5):813–20.

    Article  PubMed  Google Scholar 

  51. Patel HP, Goldstein SL, Mahan JD, Smith B, Fried CB, Currier H, et al. A standard, noninvasive monitoring of hematocrit algorithm improves blood pressure control in pediatric hemodialysis patients. Clin J Am Soc Nephrol. 2007;2(2):252–7.

    Article  PubMed  Google Scholar 

  52. Agar JW. Personal viewpoint: limiting maximum ultrafiltration rate as a potential new measure of dialysis adequacy. Hemodial Int. 2016;20(1):15–21.

    Article  PubMed  Google Scholar 

  53. Tattersall JE, Ward RA. Online haemodiafiltration: definition, dose quantification and safety revisited. Nephrol Dial Transplant. 2013;28(3):542–50.

    Article  CAS  PubMed  Google Scholar 

  54. Blankestijn PJ, Ledebo I, Canaud B. Hemodiafiltration: clinical evidence and remaining questions. Kidney Int. 2010;77(7):581–7.

    Article  PubMed  Google Scholar 

  55. Grooteman MP, van den Dorpel MA, Bots ML, Penne EL, van der Weerd NC, Mazairac AH, et al. Effect of online hemodiafiltration on all-cause mortality and cardiovascular outcomes. J Am Soc Nephrol. 2012;23(6):1087–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Maduell F, Moreso F, Pons M, Ramos R, Mora-Macia J, Carreras J, et al. High-efficiency postdilution online hemodiafiltration reduces all-cause mortality in hemodialysis patients. J Am Soc Nephrol. 2013;24(3):487–97.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ok E, Asci G, Toz H, Ok ES, Kircelli F, Yilmaz M, et al. Mortality and cardiovascular events in online haemodiafiltration (OL-HDF) compared with high-flux dialysis: results from the Turkish OL-HDF study. Nephrol Dial Transplant. 2013;28(1):192–202.

    Article  PubMed  Google Scholar 

  58. Peters SA, Bots ML, Canaud B, Davenport A, Grooteman MP, Kircelli F, et al. Haemodiafiltration and mortality in end-stage kidney disease patients: a pooled individual participant data analysis from four randomized controlled trials. Nephrol Dial Transplant. 2016;31(6):978–84.

    Article  PubMed  Google Scholar 

  59. Teatini U, Steckiph D, Romei LG. Evaluation of a new online hemodiafiltration mode with automated pressure control of convection. Blood Purif. 2011;31(4):259–67.

    Article  CAS  PubMed  Google Scholar 

  60. Canaud B, Levesque R, Krieter D, Desmeules S, Chalabi L, Moragues H, et al. On-line hemodiafiltration as routine treatment of end-stage renal failure: why pre- or mixed dilution mode is necessary in on-line hemodiafiltration today? Blood Purif. 2004;22(Suppl 2):40–8.

    Article  PubMed  Google Scholar 

  61. Maduell F, Arias M, Vera M, Fontsere N, Blasco M, Barros X, et al. Mid-dilution hemodiafiltration: a comparison with pre- and postdilution modes using the same polyphenylene membrane. Blood Purif. 2009;28(3):268–74.

    Article  CAS  PubMed  Google Scholar 

  62. Ronco C, Clark WR. Haemodialysis membranes. Nat Rev Nephrol. 2018;14(6):394–410.

    Article  CAS  PubMed  Google Scholar 

  63. Consensus conference on biocompatibility. Nephrol Dial Transplant. 1994;9(Suppl 2):1–186.

    Google Scholar 

  64. Ronco C. Backfiltration: a controversial issue in modern dialysis. Int J Artif Organs. 1988;11(2):69–74.

    Article  CAS  PubMed  Google Scholar 

  65. Ronco C, Orlandini G, Brendolan A, Lupi A, La GG. Enhancement of convective transport by internal filtration in a modified experimental hemodialyzer: technical note. Kidney Int. 1998;54(3):979–85.

    Article  CAS  PubMed  Google Scholar 

  66. Cheung AK, Rocco MV, Yan G, Leypoldt JK, Levin NW, Greene T, et al. Serum beta-2 microglobulin levels predict mortality in dialysis patients: results of the HEMO study. J Am Soc Nephrol. 2006;17(2):546–55.

    Article  CAS  PubMed  Google Scholar 

  67. Agbas A, Canpolat N, Caliskan S, Yilmaz A, Ekmekci H, Mayes M, et al. Hemodiafiltration is associated with reduced inflammation, oxidative stress and improved endothelial risk profile compared to high-flux hemodialysis in children. PLoS One. 2018;13(6):e0198320.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Locatelli F, Altieri P, Andrulli S, Bolasco P, Sau G, Pedrini LA, et al. Hemofiltration and hemodiafiltration reduce intradialytic hypotension in ESRD. J Am Soc Nephrol. 2010;21(10):1798–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Morena M, Jaussent A, Chalabi L, Leray-Moragues H, Chenine L, Debure A, et al. Treatment tolerance and patient-reported outcomes favor online hemodiafiltration compared to high-flux hemodialysis in the elderly. Kidney Int. 2017;91(6):1495–509.

    Article  PubMed  Google Scholar 

  70. Shroff R, Smith C, Ranchin B, Bayazit AK, Stefanidis CJ, Askiti V, et al. Effects of Hemodiafiltration versus conventional hemodialysis in children with ESKD: the HDF, heart and height study. J Am Soc Nephrol. 2019;30(4):678–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nistor I, Palmer SC, Craig JC, Saglimbene V, Vecchio M, Covic A, et al. Haemodiafiltration, haemofiltration and haemodialysis for end-stage kidney disease. Cochrane Database Syst Rev. 2015;5:CD006258.

    Google Scholar 

  72. Fischbach M, Terzic J, Menouer S, Dheu C, Seuge L, Zalosczic A. Daily on line haemodiafiltration promotes catch-up growth in children on chronic dialysis. Nephrol Dial Transplant. 2010;25(3):867–73.

    Article  CAS  PubMed  Google Scholar 

  73. Fischbach M, Attal Y, Geisert J. Hemodiafiltration versus hemodialysis in children. Int J Pediatr Nephrol. 1984;5(3):151–4.

    CAS  PubMed  Google Scholar 

  74. Fischbach M, Terzic J, Menouer S, Dheu C, Soskin S, Helmstetter A, et al. Intensified and daily hemodialysis in children might improve statural growth. Pediatr Nephrol. 2006;21(11):1746–52.

    Article  PubMed  Google Scholar 

  75. Schaefer F. Daily online haemodiafiltration: the perfect ‘stimulus package’ to induce growth? Nephrol Dial Transplant. 2010;25(3):658–60.

    Article  PubMed  Google Scholar 

  76. Shroff R, Bayazit A, Stefanidis CJ, Askiti V, Azukaitis K, Canpolat N, et al. Effect of haemodiafiltration vs conventional haemodialysis on growth and cardiovascular outcomes in children the HDF, heart and height (3H) study. BMC Nephrol. 2018;19(1):199.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Penne EL, van Berkel T, van der Weerd NC, Grooteman MP, Blankestijn PJ. Optimizing haemodiafiltration: tools, strategy and remaining questions. Nephrol Dial Transplant. 2009;24(12):3579–81.

    Article  PubMed  Google Scholar 

  78. Klingel R, Schaefer M, Schwarting A, Himmelsbach F, Altes U, Uhlenbusch-Korwer I, et al. Comparative analysis of procoagulatory activity of haemodialysis, haemofiltration and haemodiafiltration with a polysulfone membrane (APS) and with different modes of enoxaparin anticoagulation. Nephrol Dial Transplant. 2004;19(1):164–70.

    Article  CAS  PubMed  Google Scholar 

  79. Sombolos KI, Fragia TK, Gionanlis LC, Veneti PE, Bamichas GI, Fragidis SK, et al. The anticoagulant activity of enoxaparin sodium during on-line hemodiafiltration and conventional hemodialysis. Hemodial Int. 2009;13(1):43–7.

    Article  PubMed  Google Scholar 

  80. McMahon LP, Chester K, Walker RG. Effects of different dialysis membranes on serum concentrations of epoetin alfa, darbepoetin alfa, enoxaparin, and iron sucrose during dialysis. Am J Kidney Dis. 2004;44(3):509–16.

    Article  CAS  PubMed  Google Scholar 

  81. Eknoyan G, Beck GJ, Cheung AK, Daugirdas JT, Greene T, Kusek JW, et al. Effect of dialysis dose and membrane flux in maintenance hemodialysis. N Engl J Med. 2002;347(25):2010–9.

    Article  PubMed  Google Scholar 

  82. Port FK, Ashby VB, Dhingra RK, Roys EC, Wolfe RA. Dialysis dose and body mass index are strongly associated with survival in hemodialysis patients. J Am Soc Nephrol. 2002;13(4):1061–6.

    Article  PubMed  Google Scholar 

  83. Saran R, Bragg-Gresham JL, Levin NW, Twardowski ZJ, Wizemann V, Saito A, et al. Longer treatment time and slower ultrafiltration in hemodialysis: associations with reduced mortality in the DOPPS. Kidney Int. 2006;69(7):1222–8.

    Article  CAS  PubMed  Google Scholar 

  84. Marshall MR, Byrne BG, Kerr PG, McDonald SP. Associations of hemodialysis dose and session length with mortality risk in Australian and New Zealand patients. Kidney Int. 2006;69(7):1229–36.

    Article  CAS  PubMed  Google Scholar 

  85. Movilli E, Gaggia P, Zubani R, Camerini C, Vizzardi V, Parrinello G, et al. Association between high ultrafiltration rates and mortality in uraemic patients on regular haemodialysis. A 5-year prospective observational multicentre study. Nephrol Dial Transplant. 2007;22(12):3547–52.

    Article  PubMed  Google Scholar 

  86. Tisler A, Akocsi K, Borbas B, Fazakas L, Ferenczi S, Gorogh S, et al. The effect of frequent or occasional dialysis-associated hypotension on survival of patients on maintenance haemodialysis. Nephrol Dial Transplant. 2003;18(12):2601–5.

    Article  PubMed  Google Scholar 

  87. Culleton BF, Walsh M, Klarenbach SW, Mortis G, Scott-Douglas N, Quinn RR, et al. Effect of frequent nocturnal hemodialysis vs conventional hemodialysis on left ventricular mass and quality of life: a randomized controlled trial. JAMA. 2007;298(11):1291–9.

    Article  CAS  PubMed  Google Scholar 

  88. Rocco MV, Lockridge RS Jr, Beck GJ, Eggers PW, Gassman JJ, Greene T, et al. The effects of frequent nocturnal home hemodialysis: the frequent hemodialysis network nocturnal trial. Kidney Int. 2011;80(10):1080–91.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Pauly RP, Gill JS, Rose CL, Asad RA, Chery A, Pierratos A, et al. Survival among nocturnal home haemodialysis patients compared to kidney transplant recipients. Nephrol Dial Transplant. 2009;24(9):2915–9.

    Article  PubMed  Google Scholar 

  90. Fong E, Bargman JM, Chan CT. Cross-sectional comparison of quality of life and illness intrusiveness in patients who are treated with nocturnal home hemodialysis versus peritoneal dialysis. Clin J Am Soc Nephrol. 2007;2(6):1195–200.

    Article  PubMed  Google Scholar 

  91. Piccoli GB, Minelli F, Versino E, Cabiddu G, Attini R, Vigotti FN, et al. Pregnancy in dialysis patients in the new millennium: a systematic review and meta-regression analysis correlating dialysis schedules and pregnancy outcomes. Nephrol Dial Transplant. 2016;31(11):1915–34.

    Article  PubMed  Google Scholar 

  92. Tom A, McCauley L, Bell L, Rodd C, Espinosa P, Yu G, et al. Growth during maintenance hemodialysis: impact of enhanced nutrition and clearance. J Pediatr. 1999;134(4):464–71.

    Article  CAS  PubMed  Google Scholar 

  93. Simonsen O. Slow nocturnal dialysis as a rescue treatment for children and young patients with end-stage renal failure. J Am Soc Nephrol. 2000;11:327A.

    Google Scholar 

  94. Geary DF, Piva E, Gajaria M, Tyrrel J, Picone G, Harvey E. Development of a nocturnal home hemodialysis (NHHD) program for children. Semin Dial. 2004;17(2):115–7.

    Article  PubMed  Google Scholar 

  95. Hothi DK, Harvey E, Piva E, Keating L, Secker D, Geary DF. Calcium and phosphate balance in adolescents on home nocturnal haemodialysis. Pediatr Nephrol. 2006;21(6):835–41.

    Article  PubMed  Google Scholar 

  96. Melhem NZ, Yadav P, Stronach L, Hothi DK. Intensified home haemodialysis for managing severe cardiac failure. Pediatr Nephrol. 2015;30(3):533–6.

    Article  PubMed  Google Scholar 

  97. Andrulli S, Colzani S, Mascia F, Lucchi L, Stipo L, Bigi MC, et al. The role of blood volume reduction in the genesis of intradialytic hypotension. Am J Kidney Dis. 2002;40(6):1244–54.

    Article  PubMed  Google Scholar 

  98. Beige J, Sone J, Sharma AM, Rudwaleit M, Offermann G, Distler A, et al. Computational analysis of blood volume curves and risk of intradialytic morbid events in hemodialysis. Kidney Int. 2000;58(4):1805–9.

    Article  CAS  PubMed  Google Scholar 

  99. Mitra S, Chamney P, Greenwood R, Farrington K. Linear decay of relative blood volume during ultrafiltration predicts hemodynamic instability. Am J Kidney Dis. 2002;40(3):556–65.

    Article  PubMed  Google Scholar 

  100. Foley RN, Parfrey PS, Harnett JD, Kent GM, Murray DC, Barre PE. Impact of hypertension on cardiomyopathy, morbidity and mortality in end-stage renal disease. Kidney Int. 1996;49(5):1379–85.

    Article  CAS  PubMed  Google Scholar 

  101. Zager PG, Nikolic J, Brown RH, Campbell MA, Hunt WC, Peterson D, et al. “U” curve association of blood pressure and mortality in hemodialysis patients. Medical Directors of Dialysis Clinic, Inc. Kidney Int. 1998;54(2):561–9.

    Article  CAS  PubMed  Google Scholar 

  102. Hothi DK, Rees L, Marek J, Burton J, McIntyre CW. Pediatric myocardial stunning underscores the cardiac toxicity of conventional hemodialysis treatments. Clin J Am Soc Nephrol. 2009;4(4):790–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hothi DK, Harvey E, Goia CM, Geary DF. Evaluating methods for improving ultrafiltration in pediatric hemodialysis. Pediatr Nephrol. 2008;23(4):631–8.

    Article  PubMed  Google Scholar 

  104. Zepeda-Orozco D, Quigley R. Dialysis disequilibrium syndrome. Pediatr Nephrol. 2012;27(12):2205–11.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Silver SM, DeSimone JA Jr, Smith DA, Sterns RH. Dialysis disequilibrium syndrome (DDS) in the rat: role of the “reverse urea effect”. Kidney Int. 1992;42(1):161–6.

    Article  CAS  PubMed  Google Scholar 

  106. Allon M. Dialysis catheter-related bacteremia: treatment and prophylaxis. Am J Kidney Dis. 2004;44(5):779–91.

    Article  PubMed  Google Scholar 

  107. Sarnak MJ, Jaber BL. Mortality caused by sepsis in patients with end-stage renal disease compared with the general population. Kidney Int. 2000;58(4):1758–64.

    Article  CAS  PubMed  Google Scholar 

  108. Stevenson KB, Hannah EL, Lowder CA, Adcox MJ, Davidson RL, Mallea MC, et al. Epidemiology of hemodialysis vascular access infections from longitudinal infection surveillance data: predicting the impact of NKF-DOQI clinical practice guidelines for vascular access. Am J Kidney Dis. 2002;39(3):549–55.

    Article  PubMed  Google Scholar 

  109. Saad TF. Bacteremia associated with tunneled, cuffed hemodialysis catheters. Am J Kidney Dis. 1999;34(6):1114–24.

    Article  CAS  PubMed  Google Scholar 

  110. Bylsma LC, Gage SM, Reichert H, Dahl SLM, Lawson JH. Arteriovenous fistulae for haemodialysis: a systematic review and meta-analysis of efficacy and safety outcomes. Eur J Vasc Endovasc Surg. 2017;54(4):513–22.

    Article  CAS  PubMed  Google Scholar 

  111. Lok CE, Huber TS, Lee T, Shenoy S, Yevzlin AS, Abreo K, et al. KDOQI clinical practice guideline for vascular access: 2019 update. Am J Kidney Dis. 2020;75(4 Suppl 2):S1–S164.

    Article  PubMed  Google Scholar 

  112. Agarwal R, Flynn J, Pogue V, Rahman M, Reisin E, Weir MR. Assessment and management of hypertension in patients on dialysis. J Am Soc Nephrol. 2014;25(8):1630–46.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Saha M, Allon M. Diagnosis, treatment, and prevention of hemodialysis emergencies. Clin J Am Soc Nephrol. 2017;12(2):357–69.

    Article  CAS  PubMed  Google Scholar 

  114. Perez-Garcia R, Rodriguez-Benitez P. Chloramine, a sneaky contaminant of dialysate. Nephrol Dial Transplant. 1999;14(11):2579–82.

    Article  CAS  PubMed  Google Scholar 

  115. Sadowski RH, Allred EN, Jabs K. Sodium modeling ameliorates intradialytic and interdialytic symptoms in young hemodialysis patients. J Am Soc Nephrol. 1993;4(5):1192–8.

    Article  CAS  PubMed  Google Scholar 

  116. Flythe JE, Mc Causland FR. Dialysate sodium: rationale for evolution over time. Semin Dial. 2017;30(2):99–111.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Munoz Mendoza J, Arramreddy R, Schiller B. Dialysate sodium: choosing the optimal hemodialysis bath. Am J Kidney Dis. 2015;66(4):710–20.

    Article  CAS  PubMed  Google Scholar 

  118. Mitsnefes MM, Laskin BL, Dahhou M, Zhang X, Foster BJ. Mortality risk among children initially treated with dialysis for end-stage kidney disease, 1990–2010. JAMA. 2013;309(18):1921–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Querfeld U, Schaefer F. Cardiovascular risk factors in children on dialysis: an update. Pediatr Nephrol. 2020;35(1):41–57.

    Article  PubMed  Google Scholar 

  120. Ulinski T, Genty J, Viau C, Tillous-Borde I, Deschenes G. Reduction of left ventricular hypertrophy in children undergoing hemodialysis. Pediatr Nephrol. 2006;21(8):1171–8.

    Article  PubMed  Google Scholar 

  121. Mitsnefes MM, Kimball TR, Kartal J, Witt SA, Glascock BJ, Khoury PR, et al. Progression of left ventricular hypertrophy in children with early chronic kidney disease: 2-year follow-up study. J Pediatr. 2006;149(5):671–5.

    Article  PubMed  Google Scholar 

  122. Shroff R, Long DA, Shanahan C. Mechanistic insights into vascular calcification in CKD. J Am Soc Nephrol. 2013;24(2):179–89.

    Article  CAS  PubMed  Google Scholar 

  123. Oh J, Wunsch R, Turzer M, Bahner M, Raggi P, Querfeld U, et al. Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation. 2002;106(1):100–5.

    Article  PubMed  Google Scholar 

  124. Shroff RC, Donald AE, Hiorns MP, Watson A, Feather S, Milford D, et al. Mineral metabolism and vascular damage in children on dialysis. J Am Soc Nephrol. 2007;18(11):2996–3003.

    Article  CAS  PubMed  Google Scholar 

  125. Litwin M, Wuhl E, Jourdan C, Trelewicz J, Niemirska A, Fahr K, et al. Altered morphologic properties of large arteries in children with chronic renal failure and after renal transplantation. J Am Soc Nephrol. 2005;16(5):1494–500.

    Article  PubMed  Google Scholar 

  126. Hothi DK, Stronach L, Sinnott K. Home hemodialysis in children. Hemodial Int. 2016;20(3):349–57.

    Article  PubMed  Google Scholar 

  127. Srivaths PR, Wong C, Goldstein SL. Nutrition aspects in children receiving maintenance hemodialysis: impact on outcome. Pediatr Nephrol. 2009;24(5):951–7.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Franke D, Winkel S, Gellermann J, Querfeld U, Pape L, Ehrich JH, et al. Growth and maturation improvement in children on renal replacement therapy over the past 20 years. Pediatr Nephrol. 2013;28(10):2043–51.

    Article  PubMed  Google Scholar 

  129. Grupe WE, Harmon WE, Spinozzi NS. Protein and energy requirements in children receiving chronic hemodialysis. Kidney Int Suppl. 1983;15:S6–10.

    CAS  PubMed  Google Scholar 

  130. Van Hoeck KJ, Lilien MR, Brinkman DC, Schroeder CH. Comparing a urea kinetic monitor with Daugirdas formula and dietary records in children. Pediatr Nephrol. 2000;14(4):280–3.

    Article  PubMed  Google Scholar 

  131. Gerson AC, Butler R, Moxey-Mims M, Wentz A, Shinnar S, Lande MB, et al. Neurocognitive outcomes in children with chronic kidney disease: current findings and contemporary endeavors. Ment Retard Dev Disabil Res Rev. 2006;12(3):208–15.

    Article  PubMed  Google Scholar 

  132. Tong A, Samuel S, Zappitelli M, Dart A, Furth S, Eddy A, et al. Standardised outcomes in nephrology-children and adolescents (SONG-Kids): a protocol for establishing a core outcome set for children with chronic kidney disease. Trials. 2016;17:401.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Brownbridge G, Fielding DM. Psychosocial adjustment to end-stage renal failure: comparing haemodialysis, continuous ambulatory peritoneal dialysis and transplantation. Pediatr Nephrol. 1991;5(5):612–6.

    Article  CAS  PubMed  Google Scholar 

  134. Goldstein SL, Gerson AC, Goldman CW, Furth S. Quality of life for children with chronic kidney disease. Semin Nephrol. 2006;26(2):114–7.

    Article  PubMed  Google Scholar 

  135. Gerson AC, Wentz A, Abraham AG, Mendley SR, Hooper SR, Butler RW, et al. Health-related quality of life of children with mild to moderate chronic kidney disease. Pediatrics. 2010;125(2):e349–57.

    Article  PubMed  Google Scholar 

  136. Tjaden LA, Maurice-Stam H, Grootenhuis MA, Jager KJ, Groothoff JW. Impact of renal replacement therapy in childhood on long-term socioprofessional outcomes: a 30-year follow-up study. J Pediatr. 2016;171:189–95 e1–2.

    Google Scholar 

  137. Hanson CS, Craig JC, Logeman C, Sinha A, Dart A, Eddy AA, et al. Establishing core outcome domains in pediatric kidney disease: report of the standardized outcomes in nephrology-children and adolescents (SONG-KIDS) consensus workshops. Kidney Int. 2020;98(3):553–65.

    Article  PubMed  Google Scholar 

  138. Evans A. Dialysis-related carnitine disorder and levocarnitine pharmacology. Am J Kidney Dis. 2003;41(4 Suppl 4):S13–26.

    Article  CAS  PubMed  Google Scholar 

  139. Miller B, Ahmad S. A review of the impact of L-carnitine therapy on patient functionality in maintenance hemodialysis. Am J Kidney Dis. 2003;41(4 Suppl 4):S44–8.

    Article  CAS  PubMed  Google Scholar 

  140. Eknoyan G, Latos DL, Lindberg J. National Kidney Foundation carnitine consensus C. practice recommendations for the use of L-carnitine in dialysis-related carnitine disorder. National Kidney Foundation carnitine consensus conference. Am J Kidney Dis. 2003;41(4):868–76.

    Article  PubMed  Google Scholar 

  141. Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ. 2002;325(7374):1202.

    Article  PubMed  PubMed Central  Google Scholar 

  142. van Guldener C. Why is homocysteine elevated in renal failure and what can be expected from homocysteine-lowering? Nephrol Dial Transplant. 2006;21(5):1161–6.

    Article  PubMed  Google Scholar 

  143. Scholze A, Rinder C, Beige J, Riezler R, Zidek W, Tepel M. Acetylcysteine reduces plasma homocysteine concentration and improves pulse pressure and endothelial function in patients with end-stage renal failure. Circulation. 2004;109(3):369–74.

    Article  CAS  PubMed  Google Scholar 

  144. House AA, Wells GA, Donnelly JG, Nadler SP, Hebert PC. Randomized trial of high-flux vs low-flux haemodialysis: effects on homocysteine and lipids. Nephrol Dial Transplant. 2000;15(7):1029–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rukshana Shroff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shroff, R., Hothi, D., Symons, J. (2022). Chronic Hemodialysis in Children. In: Emma, F., Goldstein, S.L., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-030-52719-8_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52719-8_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52718-1

  • Online ISBN: 978-3-030-52719-8

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics