Skip to main content

Filtration Membranes Containing Nanoparticles of Hydrated Zirconium Oxide–Graphene Oxide

  • Conference paper
  • First Online:
Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications

Abstract

Composite materials based on polyacrylonitrile polymers were synthesized by modifying commercial membranes with the composite containing hydrated zirconium dioxide (HZD) and graphene oxide (GO, ≈2 mass%). The particles of the inorganic ion exchanger are covered with GO nanosheets. The composite forms a “secondary active layer” inside polymer membranes. Its thickness was estimated according to the Kozeny–Carman equation, these values are about 3–12% of the total membrane thickness. The effect of polymer matrix on ion transport and fouling with organic substances, particularly with OVA and BSA proteins, has been found. Large pores of polymer matrix evidently provoke the deposition of GO aggregates inside the membrane. This provided hydrophobicity of pore walls. As a result, the fouling mechanism involves adsorption of organic species on pore walls similar to pristine polymer membranes. Moreover, GO swelling causes acceleration of diffusion of alkaline metal ions. The modified membrane with smaller pores shows slow diffusion of monovalent ions. The mechanism of fouling is the cake formation: the precipitate can be easily removed from the outer surface of the membranes. In all the cases, HZD–GO composite provides rejection of hardness ions (10–14%) as well as BSA and OVA (95–98%).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roy S, Ragunath S (2018) Emerging membrane technologies for water and energy sustainability: future prospects, constrains and challenges. Energies 11:2997. https://doi.org/10.3390/en11112997

  2. Babenyshev SP, Nesterenko PG, Bratsikhin AA et al (2018) Hydrodynamics and mass transfer with gel formation in a roll type ultrafiltration membrane. Foods Raw Mater 6(2):350–357

    Article  Google Scholar 

  3. Macedo A, Monteiro J, Duarte E (2018) A contribution for the valorisation of sheep and goat cheese whey through nanofiltration. Membranes 8(4):114. https://doi.org/10.3390/membranes8040114

  4. Santibáñez L, Córdova A, Astudillo-Castro C et al (2019) Effect of the lactose hydrolysis on galacto-oligosaccharides mixtures subjected to nanofiltration: a detailed fractionation analysis. Sep Purif Technol 222:342–351

    Google Scholar 

  5. Lin J, Ye W, Zen H et al (2015) Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes. J Membr Sci 477:183–193

    Article  Google Scholar 

  6. Kamrani M, Akbari A (2018) Chitosan-modified acrylic nanofiltration membrane for efficient removal of pharmaceutical compounds. J Environ Chem Eng 6(1):583–587

    Article  Google Scholar 

  7. Mulder M (1996) Basic principle of membrane technology. Springer, Dordrecht

    Book  Google Scholar 

  8. Zahid M, Rashid A, Akram S et al (2018) A comprehensive review on polymeric nano-composite membranes for water treatment. J Membr Sci Technol 8:1–20

    Article  Google Scholar 

  9. Marbelia L, Mulier M, Vandamme D et al (2016) Polyacrylonitrile membranes for microalgae filtration: influence of porosity, surface charge and microalgae species on membrane fouling. Algal Res 19:128–137

    Article  Google Scholar 

  10. Chai X, Kobayashi T, Fujii N (1998) Ultrasound effect on cross-flow filtration of polyacrylonitrile ultrafiltration membranes. J Membr Sci 148(1):129–135

    Article  Google Scholar 

  11. Scharnag N, Buschatz H (2001) Polyacrylonitrile (PAN) membranes for ultra- and microfiltration. Desalination 139(1–3):191–198

    Article  Google Scholar 

  12. Chang IS, Lee CH (1998) Membrane filtration characteristics in membrane-coupled activated sludge system—the effect of physiological states of activated sludge on membrane fouling. Desalination 120(3):221–233

    Article  Google Scholar 

  13. Lee NH, Amy G, Croue JP et al (2004) Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM). Water Res 38(20):4511–4523

    Article  Google Scholar 

  14. Guo W, Ngo H-H, Li J (2012) A mini-review on membrane fouling. Bioresourse Technol 122:27–34

    Article  Google Scholar 

  15. Shi X, Tal G, Hankin NP et al (2014) Fouling and cleaning of ultrafiltration membranes: a review. J Water Proc Eng 1:121–138

    Article  Google Scholar 

  16. Herterich JC, Griffiths IM, Vella D (2019) Reproducing the pressure–time signature of membrane filtration: the interplay between fouling, caking, and elasticity. J Membr Sci 577:235–248

    Article  Google Scholar 

  17. Zondervan E, Roffel B (2007) Evaluation of different cleaning agents used for cleaning ultra filtration membranes fouled by surface water. J Membr Sci 304(1–2):40–49

    Article  Google Scholar 

  18. Tin MMM, Anioke G, Nakagoe O et al (2017) Membrane fouling, chemical cleaning and separation performance assessment of a chlorine-resistant nanofiltration membrane for water recycling applications. Separ Purif Technol 189:170–175

    Article  Google Scholar 

  19. Kimura K, Uchida H (2019) Intensive membrane cleaning for MBRs equipped with flat-sheet ceramic membranes: controlling negative effects of chemical reagents used for membrane cleaning. Water Res 150:21–28

    Article  Google Scholar 

  20. Kuzmenko D, Arkhangelsky E, Belfer S et al (2005) Chemical cleaning of UF membranes fouled by BSA. Desalination 179(1–3):323–333

    Article  Google Scholar 

  21. Jiang T, Kennedy MD, van der Meer WGJ et al (2003) The role of blocking and cake filtration in MBR fouling. Desalination 157:335–343

    Article  Google Scholar 

  22. Maximous N, Nakhla G, Wan W (2009) Comparative assessment of hydrophobic and hydrophilic membrane fouling in wastewater applications. J Membr Sci 339(1–2):93–99

    Article  Google Scholar 

  23. Qu F, Liang H, Zhou J et al (2014) Ultrafiltration membrane fouling caused by extracellular organic matter (EOM) from Microcystis aeruginosa: effects of membrane pore size and surface hydrophobicity. J Membr Sci 449:58–66

    Article  Google Scholar 

  24. Shen Y, Zhao W, Xiao K et al (2010) A systematic insight into fouling propensity of soluble microbial products in membrane bioreactors based on hydrophobic interaction and size exclusion. J Membr Sci 346(1):187–193

    Article  Google Scholar 

  25. Gray S, Tsuru T, Cohen Y et al (2018) Advanced materials for membrane fabrication and modification. CRC Press, Boca Raton

    Book  Google Scholar 

  26. Bildyukevich AV, Plisko TV, Liubimova AS et al (2017) Hydrophilization of polysulfone hollow fiber membranes via addition of polyvinylpyrrolidone to the bore fluid. J Membr Sci 524:537–549

    Article  Google Scholar 

  27. Ulbricht M, Belfort G (1996) Surface modification of ultrafiltration membranes by low temperature plasma II. Graft polymerization onto polyacrylonitrile and polysulfone. J Membr Sci 111(2):193–215

    Google Scholar 

  28. Qin Y, Yang H, Xu Z et al (2018) Surface modification of polyacrylonitrile membrane by chemical reaction and physical coating: comparison between static and pore-flowing procedures. ACS Omega 3(4):4231–4241

    Article  Google Scholar 

  29. Saki S, Uzal N, Ates N (2017) The size and concentration effects of Al2O3 nanoparticles on PSF membranes with enhanced structural stability and filtration performance. Desalination Water Treat 84:215–224

    Google Scholar 

  30. Pang R, Li X, Li J, Lu Z et al. (2014) Preparation and characterization of ZrO2/PES hybrid ultrafiltration membrane with uniform ZrO2 nanoparticles. Desalination 332:60–66

    Google Scholar 

  31. Myronchuk VG, Dzyazko YS, Zmievskii YG et al (2016) Organic-inorganic membranes for filtration of corn distillery. Acta Periodica Technologica 47:153–165

    Article  Google Scholar 

  32. Zmievskii Y, Rozhdestvenska L, Dzyazko Y et al (2017) Organic-inorganic materials for baromembrane separation. Springer Proc Phys 195:675–686

    Article  Google Scholar 

  33. Dzyaz’ko YS, Belyakov VN, Stefanyak NV et al (2006) Anion-exchange properties of composite ceramic membranes containing hydrated zirconium dioxide. Russ J Appl Chem 79(5):769–773

    Google Scholar 

  34. Dzyazko YS, Volfkovich YM, Sosenkin VE et al (2014) Composite inorganic membranes containing nanoparticles of hydrated zirconium dioxide for electrodialytic separation. Nanoscale Res Lett 9(1):271. https://doi.org/10.1186/1556-276X-9-27

    Article  ADS  Google Scholar 

  35. Dzyazko YS, Rozhdestvenska LM, Vasilyuk SL, Kudelko KO, Belyakov VN (2017) Composite membranes containing nanoparticles of inorganic ion exchangers for electrodialytic desalination of glycerol. Nanoscale Res Lett 12:438. https://doi.org/10.1186/s11671-017-2208-4

    Article  ADS  Google Scholar 

  36. Dzyazko YS, Rozhdestvenskaya LM, Zmievskii YG et al (2015) Organic-inorganic materials containing nanoparticles of zirconium hydrophosphate for baromembrane separation. Nanoscale Res Lett 10:64. https://doi.org/10.1186/s11671-015-0758-x

    Article  ADS  Google Scholar 

  37. Dzyazko YS, Ponomareva LN, Volfkovich YM et al (2012) Effect of the porous structure of polymer on the kinetics of Ni2+ exchange on hybrid inorganic-organic ionites. Russ J Phys Chem 86(6):913–919

    Article  Google Scholar 

  38. Dzyazko YS, Ponomaryova LN, Volfkovich YM et al (2014) Ion-exchange resin modified with aggregated nanoparticles of zirconium hydrophosphate. Morphology and functional properties. Microporous Mesoporous Mater 198:55–62

    Article  Google Scholar 

  39. Said NN, Hamzah F, Ramlee NA et al (2018) The effect of TiO2 particles addition on the characteristics of polysulfone membrane. Int J Adv Sci Eng Inform Technol 8(3):825–831

    Google Scholar 

  40. Tripathi BP, Dubey NC, Subair R (2016) Enhanced hydrophilic and antifouling polyacrylonitrile membrane with polydopamine modified silica nanoparticles. RSC Adv 6:4448–4457

    Article  Google Scholar 

  41. Arumugham T, Amimodu RG, Kaleekkal NJ et al (2019) Nano CuO/g-C3N4 sheets-based ultrafiltration membrane with enhanced interfacial affinity, antifouling and protein separation performances for water treatment application. J Environ Sci 82:57–69

    Article  Google Scholar 

  42. Kharaghani D, Kee JY, Qamar Khan Q et al (2018) Electrospun antibacterial polyacrylonitrile nanofiber membranes functionalized with silver nanoparticles by a facile wetting method. Eur Polym J 108:69–75

    Article  Google Scholar 

  43. Sianipar M, Kim SH, Khoiruddin et al (2017) Functionalized carbon nanotube (CNT) membrane: progress and challenges. RSC Adv 7:51175–51198

    Google Scholar 

  44. Plisko TV, Bildyukevich AV (2014) Debundling of multiwalled carbon nanotubes in N, N-dimethylacetamide by polymers. Colloid Polym Sci 292(10):2571–2580

    Article  Google Scholar 

  45. Plisko TV, Bildyukevich AV, Volkov VV et al (2015) Formation of hollow fiber membranes doped with multiwalled carbon nanotube dispersions. Pet Chem 55(4):318–332

    Article  Google Scholar 

  46. Irfan M, Idris A, Yusof NM et al (2014) Surface modification and performance enhancement of nano-hybrid f-MWCNT/PVP90/PES hemodialysis membranes. J Membr Sci 467:73–84

    Article  Google Scholar 

  47. Dreyer DR, Park S, Bielawski CW et al (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240

    Article  Google Scholar 

  48. Volfkovich YM, Filippov AN, Bagotsky VS (2014) Structural properties of different materials and powders used in different fields of science and technology. Springer, London

    Book  Google Scholar 

  49. Volfkovich YM, Sosenkin VE (2012) Porous structure and wetting of fuel cell components as the factors determining their electrochemical characteristics. Russ Chem Rev 81(10):936–959

    Article  Google Scholar 

  50. Volfkovich YM, Sakars AV, Volinsky AA (2005) Application of the standard porosimetry method for nanomaterials. Int J Nanotechnol 2(3):292–302

    Article  Google Scholar 

  51. Volfkovich YM, Rychagov AY, Sosenkin VE (2014) Measuring the specific surface area of carbon nanomaterials by different methods. Russ J Electrochem 50(11):1099–1101

    Article  Google Scholar 

  52. Volfkovich YM, Lobach AS, Spitsyna NG et al (2019) Hydrophilic and hydrophobic pores in reduced graphene oxide aerogel. J Porous Mat 26(4):1111–1119

    Article  Google Scholar 

  53. Shulga YM, Baskakov SA, Baskakova YV et al (2017) Hybrid porous carbon materials derived from composite of humic acid and graphene oxide. Microporous Mesoporous Mater 245:24–30

    Article  Google Scholar 

  54. Shulga YM, Baskakov SA, Baskakova YV et al (2018) Preparation of graphene oxide-humic acid composite-based ink for printing thin film electrodes for micro-supercapacitors. J Alloys Compd 730:88–95

    Article  Google Scholar 

  55. Abraham J, Vasu KS, Williams CD et al (2017) Tunable sieving of ions using graphene oxide membranes. Nat Nanotechnol 12:546–550

    Article  ADS  Google Scholar 

  56. Yeh CN, Raidongia K, Shao J et al (2015) On the origin of the stability of graphene oxide membranes in water. Nat Chem 7:166–170

    Article  Google Scholar 

  57. Wang W, Eftekhari E, Zhu G et al (2014) Graphene oxide membranes with tunable permeability due to embedded carbon dots. Chem Commun 50(86):13089–13092

    Article  Google Scholar 

  58. Xu C, Cui A, Xu Y et al (2013) Graphene oxide–TiO2 composite filtration membranes and their potential application for water purification. Carbon 62:465–471

    Article  Google Scholar 

  59. Zinadini S, Zinatizadeh A, Rahimi M et al (2014) Preparation of a novel antifouling mixed matrix PES membrane by embedding grapheme oxide nanoplates. J Membr Sci 453:292–301

    Article  Google Scholar 

  60. Abdel-Karim A, Leaper S, Alberto M et al (2018) High flux and fouling resistant flat sheet polyethersulfone membranes incorporated with graphene oxide for ultrafiltration applications. Chem Eng J 334:789–799

    Article  Google Scholar 

  61. Akbari A, Sheath P, Martin ST et al (2016) Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat Commun 7:10891. https://doi.org/10.1038/ncomms10891

    Article  ADS  Google Scholar 

  62. Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  Google Scholar 

  63. Dzyazko YS, Ogenko VM, Volfkovich YM et al (2018) Composite consisting of hydrated zirconium dioxide and grapheme oxide for removal of organic and inorganic components from water. Chem Phys Technol Surf 9(4):417–431

    Google Scholar 

  64. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  Google Scholar 

  65. Szabo T, Tombacz E, Illes E et al (2018) Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon 44:537–545

    Article  Google Scholar 

  66. Helfferich F (1995) Ion exchange. Dover, New York

    Google Scholar 

  67. McCabe WL, Smith JC, Harriot P (2005) Unit operations of chemical engineering, 7th edn. McGraw-Hill, New York

    Google Scholar 

  68. Erickson HP (2009) Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proced Online 11:32–51

    Article  Google Scholar 

  69. Hermia J (1982) Constant pressure blocking filtration laws-application to power-law non-Newtonian fluids. Chem Eng Res Des 60a:183–187

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Zakharov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rozhdestvenska, L. et al. (2021). Filtration Membranes Containing Nanoparticles of Hydrated Zirconium Oxide–Graphene Oxide. In: Fesenko, O., Yatsenko, L. (eds) Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications . Springer Proceedings in Physics, vol 246. Springer, Cham. https://doi.org/10.1007/978-3-030-51905-6_51

Download citation

Publish with us

Policies and ethics