Skip to main content
Log in

Debundling of multiwalled carbon nanotubes in N, N-dimethylacetamide by polymers

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Structure and properties of the dispersions of multiwalled carbon nanotubes (MWCNTs) in N,N-dimethylacetamide (DMAc) with different dispersing polymers: polyvinylpyrrolidone (PVP), poly(ethyleneoxide), triblock copolymers poly(ethyleneoxide)-b-poly(propyleneoxide)-b-poly(ethyleneoxide) (Pluronic F127 and Pluronic F108), ethylenediamine tetrakis(ethoxylate-b-propoxylate) tetrol, and ethylenediamine tetrakis(propoxylate-b-ethoxylate) tetrol (Tetronic) of different molecular weights were studied. All studied polymers were shown to be able to disperse MWCNT in DMAc, and MWCNT dispersions appear free of aggregates by visual inspection even after 3 months of keeping at room temperature. Dispersions were characterized by UV–VIS absorption spectroscopy and dynamic light scattering measurements. PVP was found to be the best dispersing polymer for MWCNT in DMAc. It was shown that the yield of the dispersed MWCNT and the average particle size of the MWCNT in DMAc depend on the chemical nature, molecular weight of the dispersing polymer, and solvent quality. The difference in dispersive capacity of the studied polymers is attributed to different dispersion mechanisms for PVP (“polymer wrapping” model) and for other studied dispersing polymers (“loose adsorption” model), which have different efficiencies in DMAc. It was revealed that an increase of dispersing polymer (PVP) concentration at the range of 4.7–37.6 g l−1 results in an average particle size enlargement and MWCNT final concentration reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mazov IN, Kuznetsov VL, Krasnikov DV, Rudina NA, Romanenko AI et al (2011) Structure and properties of multiwall carbon nanotubes/polystyrene composites prepared via coagulation precipitation technique. J Nanotechnol 2011:1–7. doi:10.1155/2011/648324

    Article  Google Scholar 

  2. Rahmat M, Hubert P (2011) Carbon nanotube–polymer interactions in nanocomposites: a review. Compos Sci Technol 72:72–84. doi:10.1016/j.compscitech.2011.10.002

    Article  CAS  Google Scholar 

  3. Kim SW, Kim T, Kim YS et al (2012) Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Сarbon 50:3–33. doi:10.1016/j.carbon.2011.08.011

    CAS  Google Scholar 

  4. Barkauskas J, Stankevičėienė I, Selskis A (2010) A novel purification method of carbon nanotubes by high-temperature treatment with tetrachloromethane. Sep Purif Technol 71:331–336. doi:10.1016/j.seppur.2009.12.019

    Article  CAS  Google Scholar 

  5. Shvartzman-Cohen R, Levi-Kalisman Y, Nativ-Roth E, Yerushalmi-Rozen R (2004) Generic approach for dispersing single-walled carbon nanotubes: the strength of a weak interaction. Langmuir 20:6085–6088. doi:10.1021/la049344j

    Article  CAS  Google Scholar 

  6. Ausman KD, Piner R, Lourie O, Ruoff RS, Korobov M (2000) Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes. J Phys Chem B 104:8911–8915. doi:10.1021/jp002555m

    Article  CAS  Google Scholar 

  7. Bahr JL, Mickelson ET, Bronikowski MJ, Smalley RE, Tour JM (2001) Dissolution of small diameter single-wall carbon nanotubes in organic solvents. Chem Commun. 193–194. doi:10.1039/b008042j

  8. Landi BJ, Ruf HJ, Worman JJ, Raffaelle RP (2004) Effects of alkyl amide solvents on the dispersion of single-wall carbon nanotubes. J Phys Chem B 108:17089–17095. doi:10.1021/jp047521j

    Article  CAS  Google Scholar 

  9. Debnath S, Cheng Q, Hedderman TG, Byrne HJ (2008) A study of the interaction between single-walled carbon nanotubes and polycyclic aromatic hydrocarbons: toward structure-property relationships. Phys Stat Sol B 245:1961–1963. doi:10.1002/pssb.200879561

    Article  CAS  Google Scholar 

  10. Cheng QH, Debnath S, Gregan E, Byrne HJ (2008) Effect of solvent solubility parameters on the dispersion of single-walled carbon nanotubes. J Phys Chem C 112:20154–20158. doi:10.1021/jp8067188

    Article  CAS  Google Scholar 

  11. Bergin SD, Nicolosi V, Streich PV, Giordani S et al (2008) Towards solutions of single-walled carbon nanotubes in common solvents. Adv Mater 20:1876–1881. doi:10.1002/adma.200702451

    Article  CAS  Google Scholar 

  12. Hughes JM, Aherne D, Bergin SD, O’Neill A, Streich PV, Hamilton JP, Coleman JN (2012) Using solution thermodynamics to describe the dispersion of rod-like solutes: application to dispersions of carbon nanotubes in organic solvents. Nanotechnology 23:265604–265611. doi:10.1088/0957-4484/23/26/265604

    Article  Google Scholar 

  13. Furtado CA, Kim UJ, Gutierrez HR, Pan L, Dickey EC, Eklund PC (2004) Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J Am Chem Soc 126:6095–6105. doi:10.1021/ja039588a

    Article  CAS  Google Scholar 

  14. Giordani S, Bergin SD, Nicolosi V, Lebedkin S et al (2006) Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions. J Phys Chem B 110:15708–15718. doi:10.1021/jp0626216

    Article  CAS  Google Scholar 

  15. Krupke R, Hennrich F, Hampe O, Kappes MM (2003) Near-infrared absorbance of single-walled carbon nanotubes dispersed in dimethylformamide. J Phys Chem B 107:5667–5669. doi:10.1021/jp034077w

    Article  CAS  Google Scholar 

  16. Nguyen TT, Nguyen SU, Phuong DT, Nguyen DC, Mai AT (2011) Dispersion of denatured carbon nanotubes by using a dimethylformamide solution. Adv Nat Sci: Nanosci Nanotechnol 2:35015–35019. doi:10.1088/2043-6262/2/3/035015

    Google Scholar 

  17. Bergin SD, Sun Z, Rickard D, Streich PV, Hamilton JP, Coleman JN (2009) Multicomponent solubility parameters for single-walled carbon nanotube-solvent mixtures. Am Chem Soc Nano 3:2340–2350. doi:10.1021/nn900493u

    CAS  Google Scholar 

  18. Brandão SDF, Andrada D, Mesquita AF, Santos AP, Gorgulho HF, Paniago R, Pimenta MA, Fantini C, Furtado CA (2010) The influence of oxygen-containing functional groups on the dispersion of single-walled carbon nanotubes in amide solvents. J Phys Condens Matter 22:334222–334230. doi:10.1088/0953-8984/22/33/334222

    Article  Google Scholar 

  19. Bergin SD, Sun Z, Streich P, Hamilton J, Coleman JN (2010) New solvents for nanotubes: approaching the dispersibility of surfactants. J Phys Chem C 114:231–237. doi:10.1021/jp908923m

    Article  CAS  Google Scholar 

  20. Usrey ML, Chaffee A, Jeng ES, Strano MS (2009) Application of polymer solubility theory to solution phase dispersion of single-walled carbon nanotubes. J Phys Chem C 113:9532–9540. doi:10.1021/jp810992u

    Article  CAS  Google Scholar 

  21. Maiti A, Wescott J, Kung P (2005) Polymer composites: insights from Flory–Huggins theory and mesoscale simulations. Mol Simul Nanotube 31:143–149. doi:10.1080/08927020412331308539

    Article  CAS  Google Scholar 

  22. Detriche S, Zorzini G, Colomer JF, Fonseca A, Nagy JB (2008) Application of the Hansen solubility parameters theory to carbon nanotubes. J Nanosci Nanotechnol 8:6082–6092. doi:10.1166/jnn.2008.SW16

    Article  CAS  Google Scholar 

  23. Meng L, Fu C, Lu Q (2009) Advanced technology for functionalization of carbon nanotubes. Prog Nat Sci 19:801–810. doi:10.1016/j.pnsc.2008.08.011

    Article  CAS  Google Scholar 

  24. Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface 128–130:37–46. doi:10.1016/j.cis.2006.11.007

    Article  Google Scholar 

  25. Liu P (2005) Modifications of carbon nanotubes with polymers. Eur Polym J 41:2693–2703. doi:10.1016/j.eurpolymj.2005.05.017

    Article  CAS  Google Scholar 

  26. Sun Z, Nicolosi V, Rickard D, Bergin SD, Aherne D, Coleman JN (2008) Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: dispersion quality and its correlation with zeta potential. J Phys Chem C 112:10692–10699. doi:10.1021/jp8021634

    Article  CAS  Google Scholar 

  27. Ham HT, Choi YS, Chung IJ (2005) An explanation of dispersion states of single-walled carbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. J Colloid Interface Sci 286:216–223. doi:10.1016/j.jcis.2005.01.002

    Article  CAS  Google Scholar 

  28. Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE (2003) Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett 3:1379–1382. doi:10.1021/nl034524j

    Article  CAS  Google Scholar 

  29. Granite M, Radulescu A, Cohen Y (2012) Small-angle neutron scattering from aqueous dispersions of single-walled carbon nanotubes with Pluronic F127 and poly(vinylpyrrolidone). Langmuir 28:11025–11031. doi:10.1021/la302307m

    Article  CAS  Google Scholar 

  30. Ntim SA, Sae-Khow O, Witzmann FA, Mitra S (2011) Effects of polymer wrapping and covalent functionalization on the stability of MWCNT in aqueous dispersions. J Colloid Interface Sci 355:383–388. doi:10.1016/j.jcis.2010.12.052

    Article  Google Scholar 

  31. O’Connel MJ, Boul P, Ericson LM, Huffman C, Wang Y, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE (2001) Reversible water-solubilization of single-walled carbon nanotube by polymer wrapping. Chem Phys Lett 342:265–271. doi:10.1016/S0009-2614(01)00490-0

    Article  Google Scholar 

  32. Gonzalez-Dominguez JM, Tesa-Serrate MA, Anson-Casaos A, Diez-Pascual AM, Gomez-Fatou MA, Martinez MT (2012) Wrapping of SWCNTs in polyethylenoxide-based amphiphilic diblock copolymers: an approach to purification, debundling, and integration into the epoxy matrix. J Phys Chem C 116:7399–7408. doi:10.1021/jp2116092

    Article  CAS  Google Scholar 

  33. Shin H, Min BG, Jeong W, Park C (2005) Amphiphilic block copolymer micelles: new dispersant for single wall carbon nanotubes. Macromol Rapid Commun 26:1451–1457. doi:10.1002/marc.200500290

    Article  CAS  Google Scholar 

  34. Crescenzo AD, Aschi M, Fontana A (2012) Toward a better understanding of steric stabilization when using block copolymers as stabilizers of single-walled carbon nanotubes (SWCNTs) aqueous dispersions. Macromolecules 45:8043–8050. doi:10.1021/ma301534k

    Article  Google Scholar 

  35. Hasan T, Scardaci V, Tan PH, Rozhin AG, Milne WI, Ferrari AC (2008) Dispersibility and stability improvement of unfunctionalized nanotubes in amide solvents by polymer wrapping. Phys E 40:2414–2418. doi:10.1016/j.physe.2007.09.161

    Article  CAS  Google Scholar 

  36. Hasan T, Scardaci V, Tan PH, Rozhin AG, Milne WI, Ferrari AC (2007) Stabilization and “debundling” of single-wall carbon nanotube dispersions in N-methyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP). J Phys Chem C 111:12594–12602. doi:10.1021/jp0723012

    Article  CAS  Google Scholar 

  37. Nativ-Roth E, Shvartzman-Cohen R, Bounioux C, Florent M, Zhang D, Szleifer I, Yerushalmi-Rozen R (2007) Physical adsorption of block copolymers to SWNT and MWNT: a nonwrapping mechanism. Macromolecules 40:3676–3685. doi:10.1021/ma0705366

    Article  CAS  Google Scholar 

  38. Shvartzman-Cohen R, Florent M, Goldfarb D, Szleifer I, Yerushalmi-Rozen R (2008) Aggregation and self-assembly of amphiphilic block copolymers in aqueous dispersions of carbon nanotubes. Langmuir 24:4625–4632. doi:10.1021/la703782g

    Article  CAS  Google Scholar 

  39. Shvartzman-Cohen R, Nativ-Roth R, Baskaran E, Levi-Kalisman Y (2004) Selective dispersion of single-walled carbon nanotubes in the presence of polymers: the role of molecular and colloidal length scales. J Am Chem Soc 126:14850–14857. doi:10.1021/ja046377c

    Article  CAS  Google Scholar 

  40. Szleifer I, Yerushalmi-Rozen R (2005) Polymers and carbon nanotubes—dimensionality, interactions and nanotechnology. Polymer 46:7803–7818. doi:10.1016/j.polymer.2005.05.104

    Article  CAS  Google Scholar 

  41. Monteiro-Riviere NA, Inman AO, Wang YY, Nemanich RJ (2005) Surfactant effects on carbon nanotube interactions with human keratinocytes. Nanomed Nanotechnol Biol Med 1:293–299. doi:10.1016/j.nano.2005.10.007

    Article  CAS  Google Scholar 

  42. Yerushalmi-Rozen R, Szleifer I (2006) Utilizing polymers for shaping the interfacial behavior of carbon nanotubes. Soft Matter 2:24–28. doi:10.1039/b513344k

    Article  CAS  Google Scholar 

  43. Alonso AM, Ehli C, Chen KH, Guldi DM, Prato M (2007) Dispersion of single-walled carbon nanotubes with an extended diazapentacene derivative. J Phys Chem A 111:12669–12673. doi:10.1021/jp0765648

    Article  Google Scholar 

  44. Toita S, Kang D, Kobayashi K, Kawamoto H, Kojima K, Tachibana M (2008) Atomic force microscopic study on DNA-wrapping for different diameter single-wall carbon nanotubes. Diam Relat Mater 17:1389–1393. doi:10.1016/j.diamond.2008.01.010

    Article  CAS  Google Scholar 

  45. Balvlavoine F, Schultz P, Richard C, Mallouh V, Ebbeson TW, Mioskowski C (1999) Crystallization of proteins on carbon nanotubes: a first step towards the development of new biosensors. Angew Chem Int Eng Ed 38:1912–1915. doi:10.1002/(sici)1521-3773(19990712)38:13/14<1912::aid-anie1912>3.0.co;2-2

    Article  Google Scholar 

  46. Huang YY, Terentjev EM (2012) Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers 4:275–295. doi:10.3390/polym4010275

    Article  Google Scholar 

  47. Dror Y, Pyckhout-Hintzen W, Cohen Y (2005) Conformation of polymers dispersing single-walled carbon nanotubes in water: a small-angle neutron scattering study. Macromolecules 38:7828–7836. doi:10.1021/ma0503615

    Article  CAS  Google Scholar 

  48. Antaris AL, Seo JWT, Green AA, Hersam MC (2010) Sorting single-walled carbon nanotubes by electronic type using nonionic, biocompatible block copolymers. ACS Nano 4:4725–4732. doi:10.1021/nn101363m

    Article  CAS  Google Scholar 

  49. Celik E, Park H, Choi H, Choi H (2011) Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res 45:274–282. doi:10.1016/j.watres.2010.07.060

    Article  CAS  Google Scholar 

  50. Rabinovich OS, Borodulya VA, Blinova AN, Kuznetsov VL, Delidovich AI, Krasnikov DV (2014) Simulation of transient processes of the catalytic synthesis of carbon nanotubes in a fluidized bed. Theor Found Chem Eng 48:1–12. doi:10.1134/S0040579514010114

    Article  CAS  Google Scholar 

  51. Usoltseva A, Kuznetsov V, Rudina N, Moroz E, Haluska M, Roth S (2007) Influence of catalysts’ activation on their activity and selectivity in carbon nanotubes synthesis. Phys Status Solidi 244:3920–3924. doi:10.1002/pssb.200776143

    Article  CAS  Google Scholar 

  52. Kuznetsov VL, Krasnikov DV, Shmakov AN, Elumeeva KV (2012) In situ and ex situ time resolved study of multi-component Fe–Co oxide catalyst activation during MWNT synthesis. Phys Status Solidi 249:2390–2394. doi:10.1002/pssb.201200120

    Article  CAS  Google Scholar 

  53. Vaisman L, Marom G, Wagner HD (2006) Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers. Adv Funct Mater 16:357–363. doi:10.1002/adfm.200500142

    Article  CAS  Google Scholar 

  54. Ivakhnenko V, Eremin Y (2006) Light scattering by needle-type and disk-type particles. Quant Spectrosc Radiat Transfer 100:165–172. doi:10.1016/j.jqsrt.2005.11.034

    Article  CAS  Google Scholar 

  55. Alexandridis P, Yang L (2000) Micellization of polyoxyalkylene block copolymers in formamide. Macromolecules 33:3382–3391. doi:10.1021/ma990862o

    Article  CAS  Google Scholar 

  56. Alexandridis P, Holzwarth JF, Hatton TA (1994) Micellization of poly(ethy1ene oxide)-poly(propyleneoxide)-poly(ethy1ene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27:2414–2425. doi:10.1021/ma00087a009

    Article  CAS  Google Scholar 

  57. Sarkar B, Ravi V, Alexandridis P (2013) Micellization of amphiphilic block copolymers in binary and ternary solvent mixtures. J Colloid Interface Sci 390:137–146. doi:10.1016/j.jcis.2012.09.028

    Article  CAS  Google Scholar 

  58. Alexandridis P, Andersson K (1997) Effect of solvent quality on reverse micelle formation and water solubilization by poly(ethylene oxide)-poly(propylene oxide) and poly(ethylene oxide)-poly(butylene oxide) block copolymers in xylene. J Colloid Interface Sci 194:166–173. doi:10.1006/jcis.1997.5084

    Article  CAS  Google Scholar 

  59. Alexandridis P (1998) Structural polymorphism of poly(ethylene oxide)-poly(propylene oxide) in nonaqueous polar solvents. Macromolecules 31:6935–6942. doi:10.1021/ma9807522

    Article  CAS  Google Scholar 

  60. Yang L, Alexandridis P (2000) Polyoxyalkylene block copolymers in formamide-water mixed solvents: micelle formation and structure studied by small-angle neutron scattering. Langmuir 16:4819–4829. doi:10.1021/la991262l

    Article  CAS  Google Scholar 

  61. Samii AA, Karlstrom G, Lindman B (1991) Phase Behavior of a nonionic block copolymer in a mixed-solvent system. J Phys Chem 95:7887–7891. doi:10.1021/j100173a061

    Article  CAS  Google Scholar 

  62. Samii AA, Karlstrom G, Lindman B (1991) Phase behavior of poly(ethylene oxide)-poly(propyleneoxide) block copolymers in nonaqueous solution. Langmuir 7:1067–1071. doi:10.1021/la00054a007

    Article  CAS  Google Scholar 

  63. Alexandridis P, Spontak RJ (1999) Solvent-regulated ordering in block copolymers. Curr Opin Colloid In 4:130–139. doi:10.1016/S1359-0294(99)00022-9

    Article  CAS  Google Scholar 

  64. Larrañeta E, Isasi JR (2013) Phase behavior of reverse poloxamers and poloxamines in water. Langmuir 29:1045–1053. doi:10.1021/la304245p

    Article  Google Scholar 

  65. Wu J, Xu Y, Dabros T, Hamza H (2005) Effect of EO and PO positions in nonionic surfactants on surfactant properties and demulsification performance. Colloid Surf A 252:79–85. doi:10.1016/j.colsurfa.2004.09.034

    Article  CAS  Google Scholar 

  66. Alvarez-Lorenzo C, Gonzalez-Lopez J, Fernandez-Tarrio M, Sandez-Macho I, Concheiro A (2007) Tetronic micellization, gelation and drug solubilization: Influence of pH and ionic strength. Eur J Pharm Biopharm 66:244–252. doi:10.1016/j.ejpb.2006.10.010

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana V. Plisko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plisko, T.V., Bildyukevich, A.V. Debundling of multiwalled carbon nanotubes in N, N-dimethylacetamide by polymers. Colloid Polym Sci 292, 2571–2580 (2014). https://doi.org/10.1007/s00396-014-3305-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3305-x

Keywords

Navigation