Skip to main content

Immune-Mediated Drug-Induced Liver Injury

  • Chapter
  • First Online:
Liver Immunology

Abstract

Drug-induced liver injury (DILI) has previously been classified into an immunologic or metabolic idiosyncrasy. Metabolic idiosyncrasy implies that a subject developing adverse reaction metabolizes the drug in a different way in most individuals or lacks adequate protective mechanisms to neutralize reactive metabolites formed. An immunologic idiosyncrasy implies that the susceptible individual has an immune system that would more readily recognize the formed neoantigens. Alternatively, immune system through cytokines and chemokines may modulate the degree of hepatic inflammation secondary to toxic injury. However, this classification derived from clinical observations, such as latent period, presence or absence of manifestations attributable to hypersensitivity, and pattern of response to rechallenge, is too simplistic to be accurate. Increasingly, it is evident that the development of idiosyncratic DILI is a multistep process involving both metabolic and immunologic factors.

Superimposition of drug-metabolizing enzymes and the immune system within the liver which may act both as a lymphoid organ and a target for toxicity creates a setting suitable for interaction between variety of factors that influence the rate and extent of pathogenic process leading to liver injury. Liver is involved in 80% of cases of drug rash with eosinophilia and systemic symptoms (DRESS) syndrome, a severe form of idiosyncratic reaction involving multiple organ systems. This syndrome has been associated with drugs, such as phenobarbital, carbamazepine, phenytoin, lamotrigine, minocycline, sulfonamides, allopurinol, modafinil, and dapsone. In patients with DRESS syndrome, drug-reactive T cells are in a pre-activated state and, therefore, may have a lower threshold for activation by drugs. Evidence for the involvement of immune system in the pathogenesis of idiosyncratic DILI have existed for decades; family studies performed over 30 years ago have revealed that the lymphocytes from first-degree relatives of patients with amineptine-induced liver injury demonstrated increased sensitivity to the drug metabolites. Consistent with this, several candidate gene and genome-wide association studies involving well characterized patient cohorts conducted in the past decade have indicated that immune mechanisms may underlie the pathogenesis of a range of clinically diverse DILI secondary to therapeutically and structurally unrelated compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen YC, Chiu HC, Chu CY. Drug reaction with eosinophilia and systemic symptoms: a retrospective study of 60 cases. Arch Dermatol. 2010;146(12):1373–9.

    Article  Google Scholar 

  2. Walsh SA, Creamer D. Drug reaction with eosinophilia and systemic symptoms (DRESS): a clinical update and review of current thinking. Clin Exp Dermatol. 2011;36:6–11.

    Article  CAS  Google Scholar 

  3. Daubner B, Groux-Keller M, Hausmann OV, Kawabata T, Naisbitt DJ, Park BK, et al. Multiple drug hypersensitivity: normal Treg cell function but enhanced in vivo activation of drug-specific T cells. Allergy. 2012;67:58–66.

    Article  CAS  Google Scholar 

  4. Larrey D, Berson A, Habersetzer F, Tinel M, Castot A, Babany G, et al. Role in hepatitis caused by amineptine, a tricyclic antidepressant. Hepatology. 1989;10:168–73.

    Article  CAS  Google Scholar 

  5. Zimmerman HJ. Drug-induced liver disease. In: Sciff ER, Sorrell MF, Maddrey WC, editors. Schiff’s diseases of the liver. 8th ed. Philadelphia: Lippincott-Raven Publishers; 1999. p. 973–1064.

    Google Scholar 

  6. Liu ZX, Kaplowitz N. Immune-mediated drug-induced liver disease. Clin Liver Dis. 2002;6:755–74.

    Article  Google Scholar 

  7. Uetrecht JP. New concepts in immunology relevant to idiosyncratic drug reactions: the “danger hypothesis” and innate immune system. Chem Res Toxicol. 1999;12:387–95.

    Article  CAS  Google Scholar 

  8. Uetrecht J. Idiosyncratic drug reactions: current understanding. Annu Rev Pharmacol Toxicol. 2007;47:513–39.

    Article  CAS  Google Scholar 

  9. Ibanez L, Perez E, Vidal X, Laporte JR. Prospective surveillance of acute serious liver disease unrelated to infectious, obstructive, or metabolic diseases: epidemiological and clinical features, and exposure to drugs. J Hepatol. 2002;37:592–600.

    Article  Google Scholar 

  10. Andrade RJ, Lucena MI, Fernández MC, Pelaez G, Pachkoria K, García-Ruiz E, et al. Drug-induced liver injury: an analysis of 461 incidences submitted to the Spanish registry over a 10-year period. Gastroenterology. 2005;129:512–21.

    Article  Google Scholar 

  11. Björnsson E, Kalaitzakis E, Olsson R. The impact of eosinophila and hepatic necrosis on prognosis in patients with drug-induced liver injury. Aliment Pharmacol Ther. 2007;25:1411–21.

    Article  Google Scholar 

  12. Björnsson E, Nordlinder H, Olsson R. Clinical characteristics and prognostic markers in Disulfiram-induced liver injury. J Hepatol. 2006;44:791–7.

    Article  CAS  Google Scholar 

  13. Devarbhavi H, Karanth D, Prasanna KS, Adarsh CK, Patil M. Drug-Induced liver injury with hypersensitivity features has a better outcome: a single-center experience of 39 children and adolescents. Hepatology. 2011;54:1344–50.

    Article  CAS  Google Scholar 

  14. Lampinen M, Rönnblom A, Amin K, Kristjansson G, Rorsman F, Sangfelt P, et al. Eosinophil granulocytes are activated during the remission phase of ulcerative colitis. Gut. 2005;54:1714–20.

    Article  CAS  Google Scholar 

  15. Kleiner DE. The pathology of drug-induced liver injury. Semin Liver Dis. 2009;29:364–72.

    Article  Google Scholar 

  16. Kleiner D, Chalasani N, Conjeevaram HS, et al. Relationship of biochemical to histologic findings and the pathological pattern of injury among cases identified in the NIH Drug-induced Liver Injury Network. Gastroenterology. 2007;132:A773.

    Google Scholar 

  17. Aithal GP. Hepatotoxicity related to antirheumatic drugs. Nat Rev Rheumatol. 2011;7:139–50.

    Article  CAS  Google Scholar 

  18. Andrews E, Armstrong M, Tugwood J, Swan D, Glaves P, Pirmohamed M, et al. A role for the pregnane X receptor in flucloxacillin-induced liver injury. Hepatology. 2010;51:1656–64.

    Article  CAS  Google Scholar 

  19. Park BK, Laverty H, Srivastava A, Antoine DJ, Naisbitt D, Williams DP. Drug bioactivation and protein adduct formation in the pathogenesis of drug-induced toxicity. Chem Biol Interact. 2011;192(1-2):30–6.

    Article  CAS  Google Scholar 

  20. Aithal GP, Day CP. Nonsteroidal anti-inflammatory drug-induced hepatotoxicity. Clin Liver Dis. 2007;11:563–75.

    Article  Google Scholar 

  21. Aithal GP, Ramsay L, Daly AK, Sonchit N, Leathart JB, Alexander G, et al. Hepatic adducts, circulating antibodies, and cytokine polymorphisms in patients with diclofenac hepatotoxicity. Hepatology. 2004;39:1430–40.

    Article  CAS  Google Scholar 

  22. Elsheikh A, Lavergne SN, Castrejon JL, Farrell J, Wang H, Sathish J, et al. Drug antigenicity, immunogenicity, and costimulatory signaling: evidence for formation of a functional antigen through immune cell metabolism. J Immunol. 2010;185:6448–60.

    Article  CAS  Google Scholar 

  23. Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe’er I, Floratos A, DILIGEN Study; International SAE Consortium, et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet. 2009;41:816–9.

    Article  CAS  Google Scholar 

  24. Nicoletti P, Aithal GP, Chamberlain TC, Coulthard S, Alshabeeb M, Grove JI, International Drug-Induced Liver Injury Consortium (iDILIC), et al. Drug-induced liver injury due to flucloxacillin: relevance of multiple human leukocyte antigen alleles. Clin Pharmacol Ther. 2019;106(1):245–53.

    Article  CAS  Google Scholar 

  25. Monshi M, Faulkner L, Gibson A, Jenkins RE, Farrell J, Earnshaw CJ, et al. HLA-B*57:01-restricted activation of drug-specific T-cells provides the immunological basis for flucloxacillin-induced liver injury. Hepatology. 2013;57(2):727–39.

    Article  CAS  Google Scholar 

  26. Nicoletti P, Barrett S, McEvoy L, Daly AK, Aithal G, Lucena MI, et al. Shared genetic risk factors across carbamazepine-induced hypersensitivity reactions. Clin Pharmacol Ther. 2019;106(5):1028–36.

    Article  CAS  Google Scholar 

  27. Kindmark A, Jawaid A, Harbron CG, Barratt BJ, Bengtsson OF, Andersson TB, et al. Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J. 2008;8:186–95.

    Article  CAS  Google Scholar 

  28. Donaldson PT, Daly AK, Henderson J, Graham J, Pirmohamed M, Bernal W, et al. Human leucocyte antigen class II genotype in susceptibility and resistance to co-amoxiclav-induced liver injury. J Hepatol. 2010;53:1049–53.

    Article  CAS  Google Scholar 

  29. Kaliyaperumal K, Grove JI, Delahay RM, Griffiths WJH, Duckworth A, Aithal GP. Pharmacogenomics of drug-induced liver injury (DILI): molecular biology to clinical applications. J Hepatol. 2018;69(4):948–57.

    Article  CAS  Google Scholar 

  30. Kelly BD, Heneghan MA, Bennani F, Connolly CE, O’Gorman TA. Nitrofurantoin-induced hepatotoxicity mediated by CD8+ T cells. Am J Gastroenterol. 1998;93:819–21.

    CAS  Google Scholar 

  31. Cirulli ET, Nicoletti P, Abramson K, Andrade RJ, Bjornsson ES, Chalasani N, Drug-Induced Liver Injury Network (DILIN) investigators; International DILI consortium (iDILIC), et al. A missense variant in PTPN22 is a risk factor for drug-induced liver injury. Gastroenterology. 2019;156(6):1707–16. e2.

    Article  CAS  Google Scholar 

  32. Stanford SM, Bottini N. PTPN22: the archetypal non-HLA autoimmunity gene. Nat Rec Rheumatol. 2014;10:602–11.

    Article  CAS  Google Scholar 

  33. Aithal GP. Of potions, poisons, polygonum, and pre-emptive polymorphism. Hepatology. 2019;70(1):8–10.

    Article  Google Scholar 

  34. Matzinger P. Tolerance, danger, and the extended family. Annu Rev lmmunol. 1994;12:991–1045.

    Article  CAS  Google Scholar 

  35. Barker RN, Erwig L, Pearce WP, Devine A, Rees AJ. Differential effects of necrotic or apoptotic cell uptake on antigen presentation by macrophages. Pathobiology. 1999;67(5-6):302–5.

    Article  CAS  Google Scholar 

  36. Aithal GP. Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicity. Expert Opin Drug Saf. 2004;3:519–23.

    Article  CAS  Google Scholar 

  37. Gallucci S, Matzinger P. Danger signals: SOS to the immune system. Curr Opin Immunol. 2001;13:114–9.

    Article  CAS  Google Scholar 

  38. Matzinger P. An innate sense of danger. Semin Immunol. 1998;10:399–415.

    Article  CAS  Google Scholar 

  39. Shaw PJ, Ganey PE, Roth RA. Idiosyncratic drug-induced liver injury and the role of inflammatory stress with an emphasis on an animal model of trovafloxacin hepatotoxicity. Toxicol Sci. 2010;118:7–18.

    Article  CAS  Google Scholar 

  40. Lavergne SN, Wang H, Callan HE, Park BK, Naisbitt DJ. “Danger” conditions increase sulfamethoxazole-protein adduct formation in human antigen-presenting cells. J Pharmacol Exp Ther. 2009;331:372–81.

    Article  CAS  Google Scholar 

  41. Wang JY, Liu CH, Hu FC, Chang HC, Liu JL, Chen JM, et al. Risk factors of hepatitis during anti-tuberculous treatment and implications of hepatitis virus load. J Infect. 2011;62:448–55.

    Article  Google Scholar 

  42. Ungo JR, Jones D, Ashkin D, Hollender ES, Bernstein D, Albanese AP, et al. Antituberculosis drug-induced hepatotoxicity. The role of hepatitis C virus and the human immunodeficiency virus. Am J Respir Crit Care Med. 1998;157:1871–6.

    Article  CAS  Google Scholar 

  43. Dworkin MS, Adams MR, Cohn DL, Davidson AJ, Buskin S, Horwitch C, et al. Factors that complicate the treatment of tuberculosis in HIV-infected patients. J Acquir Immune Defic Syndr. 2005;39:464–70.

    Article  CAS  Google Scholar 

  44. You Q, Cheng L, Reilly TP, Wegmann D, Ju C. Role of neutrophils in a mouse model of halothane-induced liver injury. Hepatology. 2006;44:1421–31.

    Article  CAS  Google Scholar 

  45. Cheng L, You Q, Yin H, Holt MP, Ju C. Involvement of natural killer T cells in halothane-induced liver injury in mice. Biochem Pharmacol. 2010;80(2):255–61.

    Article  CAS  Google Scholar 

  46. Urban TJ, Shen Y, Stolz A, Chalasani N, Fontana RJ, Rochon J, et al. Limited contribution of common genetic variants to risk for liver injury due to a variety of drugs. Pharmacogenet Genomics. 2012;22(11):784–95.

    Article  CAS  Google Scholar 

  47. Björnsson E. Hepatotoxicity associated with antiepileptic drugs. Acta Neurol Scand. 2008;118:281–90.

    Article  CAS  Google Scholar 

  48. Björnsson E, Olsson R, Remotti H. Norfloxacin-induced eosinophilic necrotizing granulomatous hepatitis. Am J Gastroenterol. 2000;95:3662–4.

    Article  Google Scholar 

  49. Won JH, Kim MJ, Kim BM, Ji H, Chung JJ, Yoo HS, et al. Focal eosinophilic infiltration of the liver: a mimick of hepatic metastasis. Abdom Imaging. 1999;24:369–72.

    Article  CAS  Google Scholar 

  50. Gassert DJ, Garcia H, Tanaka K, Reinus JF. Corticosteroid-responsive cryptogenic chronic hepatitis: evidence for seronegative autoimmune hepatitis. Dig Dis Sci. 2007;52:2433–7.

    Article  CAS  Google Scholar 

  51. Suzuki A, Brunt EM, Kleiner DE, Miquel R, Smyrk TC, Andrade RJ, et al. The use of liver biopsy evaluation in discrimination of idiopathic autoimmune hepatitis vs. drug-induced liver injury. Hepatology. 2011;54(3):931–9.

    Article  Google Scholar 

  52. Hennes EM, Zeniya M, Czaja AJ, Pares A, Dalekos GN, Krawitt EL, et al. Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology. 2008;48:169–76.

    Article  Google Scholar 

  53. Stricker BH, Blok AP, Claas FH, Van Parys GE, Desmet VJ. Hepatic injury associated with the use of nitrofurans: a clinicopathological study of 52 reported cases. Hepatology. 1988;8:599–606.

    Article  CAS  Google Scholar 

  54. Czaja AJ. Drug-induced autoimmune-like hepatitis. Dig Dis Sci. 2011;56:958–76.

    Article  CAS  Google Scholar 

  55. Siegmund W, Franke G, Biebler KE, Donner I, Kallwellis R, Kairies M, et al. The influence of the acetylator phenotype for the clinical use of dihydralazine. Int J Clin Pharmacol Ther Toxicol. 1985;23(Suppl 1):S74–8.

    Google Scholar 

  56. Bourdi M, Tinel M, Beaune PH, Pessayre D. Interactions of dihydralazine with cytochromes P4501A: a possible explanation for the appearance of anti-cytochrome P4501A2 autoantibodies. Mol Pharmacol. 1994;45:1287–95.

    CAS  Google Scholar 

  57. Lawrenson RA, Seaman HE, Sundström A, Williams TJ, Farmer RD. Liver damage associated with minocycline use in acne: a systematic review of the published literature and pharmacovigilance data. Drug Saf. 2000;23:333–49.

    Article  CAS  Google Scholar 

  58. Pelli N, Setti M, Ceppa P, Toncini C, Indiveri F. Autoimmune hepatitis revealed by atorvastatin. Eur J Gastroenterol Hepatol. 2003;15:921–4.

    Article  Google Scholar 

  59. Wolters LM, Van Buuren HR. Rosuvastatin-associated hepatitis with autoimmune features. Eur J Gastroenterol Hepatol. 2005;17:589–90.

    Article  CAS  Google Scholar 

  60. Alla V, Abraham J, Siddiqui J, Raina D, Wu GY, Chalasani NP, et al. Autoimmune hepatitis triggered by statins. J Clin Gastroenterol. 2006;40:757–61.

    Article  CAS  Google Scholar 

  61. Lucena MI, Kaplowitz N, Hallal H, Castiella A, García-Bengoechea M, Otazua P, et al. Recurrent drug-induced liver injury (DILI) with different drugs in the Spanish Registry: the dilemma of the relationship to autoimmune hepatitis. J Hepatol. 2011;55:820–7.

    Article  CAS  Google Scholar 

  62. Russo MW, Scobey M, Bonkovsky HL. Drug-induced liver injury associated with statins. Semin Liver Dis. 2009;29:412–22.

    Article  CAS  Google Scholar 

  63. Germano V, Picchianti Diamanti A, Baccano G, Natale E, Onetti Muda A, Priori R, et al. Autoimmune hepatitis associated with infliximab in a patient with psoriatic arthritis. Ann Rheum Dis. 2005;64:1519–20.

    Article  CAS  Google Scholar 

  64. Adar T, Mizrahi M, Pappo O, Scheiman-Elazary A, Shibolet O. Adalimumab-induced autoimmune hepatitis. J Clin Gastroenterol. 2010;44:20–2.

    Article  Google Scholar 

  65. Efe C, Purnak T, Ozaslan E, Wahlin S. Drug-induced autoimmune hepatitis caused by anti-tumor necrosis factor α agents. Hepatology. 2010;52:2246–7.

    Article  Google Scholar 

  66. Bjornsson E, Olsson R. Outcome and prognostic markers in severe drug-induced liver disease. Hepatology. 2005;42:481–9.

    Article  CAS  Google Scholar 

  67. Chalasani N, Fontana RJ, Bonkovsky HL, Watkins PB, Davern T, Serrano J, et al. Causes, clinical features, and outcomes from a prospective study of drug-induced liver injury in the United States. Gastroenterology. 2008;135:1924–34, 34 e1-4.

    Article  Google Scholar 

  68. Björnsson E, Talwalkar J, Treeprasertsuk S, Neuhauser M, Lindor K. Drug-induced autoimmune hepatitis: clinical characteristics and prognosis. Hepatology. 2010;51:2040–8.

    Article  Google Scholar 

  69. Castiella A, Lucena MI, Zapata EM, Otazua P, Andrade RJ. Drug-induced autoimmune-like hepatitis: a diagnostic challenge. Dig Dis Sci. 2011;56:2501–2.

    Article  Google Scholar 

  70. Björnsson ES, Gunnarsson BI, Gröndal G, Jonasson JG, Einarsdottir R, Ludviksson BR, et al. The risk of drug-induced liver injury from Tumor Necrosis Factor (TNF)-alpha-antagonists. Clin Gastroenterol Hepatol. 2015;13:602–8.

    Article  CAS  Google Scholar 

  71. de Boer YS, Kosinski AS, Urban TJ, Zhao Z, Long N, Chalasani N, et al. Features of autoimmune hepatitis in patients with drug-induced liver injury. Clin Gastroenterol Hepatol. 2017;15:103–12.

    Article  Google Scholar 

  72. Björnsson E, Bergmann O, Jonasson JG, Grondal G, Gudbjornsson B, Olafsson S. Drug-induced autoimmune hepatitis: response to corticosteroids and lack of relapse after cessation of steroids. Clin Gastroenterol Hepatol. 2017;15:1635–6.

    Article  Google Scholar 

  73. Castiella A, Zapata E, Lucena MI, Andrade RJ. Drug-induced autoimmune liver disease: a diagnostic dilemma of an increasingly reported disease. World J Hepatol. 2014;6:160–8.

    Article  Google Scholar 

  74. Appleyard S, Saraswati R, Gorard DA. Autoimmune hepatitis triggered by nitrofurantoin: a case series. J Med Case Rep. 2010;4:311.

    Article  Google Scholar 

  75. Bjornsson E, Davidsdottir L. The long-term follow-up after idiosyncratic drug-induced liver injury with jaundice. J Hepatol. 2009;50:511–7.

    Article  Google Scholar 

  76. Ohmoto K, Yamamoto S. Drug-induced liver injury associated with antinuclear antibodies. Scand J Gastroenterol. 2002;37:1345–6.

    Article  CAS  Google Scholar 

  77. Sugimoto K, Ito T, Yamamoto N, Shiraki K. Seven cases of autoimmune hepatitis that developed after drug-induced liver injury. Hepatology. 2011;54:1892–3.

    Article  Google Scholar 

  78. Sharp JR, Ishak KG, Zimmerman HJ. Chronic active hepatitis and severe hepatic necrosis associated with nitrofurantoin. Ann Intern Med. 1980;92:14–9.

    Article  CAS  Google Scholar 

  79. Gough A, Chapman S, Wagstaff K, Emery P, Elias E. Minocycline induced autoimmune hepatitis and systemic lupus erythematosus-like syndrome. BMJ. 1996;312:169–72.

    Article  CAS  Google Scholar 

  80. Bhat G, Jordan J Jr, Sokalski S, Bajaj V, Marshall R, Berkelhammer C. Minocycline-induced hepatitis with autoimmune features and neutropenia. J Clin Gastroenterol. 1998;27:74–5.

    Article  CAS  Google Scholar 

  81. Hergue-Berlot A, Bernard-Chapert B, Diebold MD, Thiefin G. Drug-induced autoimmune-like hepatitis. A case of chronic course after drug withdrawal. Dig Dis Sci. 2011;56:2504–5.

    Article  Google Scholar 

  82. Kuhn A, Weiler-Normann C, Schramm C, Kluge S, Behne MJ, Lohse AW, et al. Acute liver failure following minocycline treatment – a case report and review of the literature. Z Gastroenterol. 2012;50:771–5.

    Article  CAS  Google Scholar 

  83. Losanoff JE, Holder-Murray JM, Ahmed EB, Cochrane AB, Testa G, Millis JM. Minocycline toxicity requiring liver transplant. Dig Dis Sci. 2007;52:3242–4.

    Article  Google Scholar 

  84. Bernal W, Ma Y, Smith HM, Portmann B, Wendon J, Vergani D. The significance of autoantibodies and immunoglobulins in acute liver failure: a cohort study. J Hepatol. 2007;47:664–70.

    Article  CAS  Google Scholar 

  85. Björnsson E, Jacobsen EI, Kalaitzakis E. Hepatotoxicity associated with statins: reports of idiosyncratic liver injury post-marketing. J Hepatol. 2012;56:374–80.

    Article  CAS  Google Scholar 

  86. Jiménez-Alonso J, Osorio JM, Gutiérrez-Cabello F, López de la Osa A, León L, Mediavilla García JD. Atorvastatin-induced cholestatic hepatitis in a young woman with systemic lupus erythematosus. Grupo Lupus Virgen de las Nieves. Arch Intern Med. 1999;23(159):1811–2.

    Article  Google Scholar 

  87. Graziadei IW, Obermoser GE, Sepp NT, Erhart KH, Vogel W. Drug-induced lupus-like syndrome associated with severe autoimmune hepatitis. Lupus. 2003;12:409–12.

    Article  CAS  Google Scholar 

  88. van Heyningen C. Drug-induced acute autoimmune hepatitis during combination therapy with atorvastatin and ezetimibe. Ann Clin Biochem. 2005;42:402–4.

    Article  Google Scholar 

  89. Nakayama S, Murashima N. Overlap syndrome of autoimmune hepatitis and primary biliary cirrhosis triggered by fluvastatin. Indian J Gastroenterol. 2011;30:97–9.

    Article  Google Scholar 

  90. Perger L, Kohler M, Fattinger K, Flury R, Meier PJ, Pauli-Magnus C. Fatal liver failure with atorvastatin. J Hepatol. 2003;39:1095–7.

    Article  Google Scholar 

  91. Björnsson ES, Hoofnagle JH. Categorization of drugs implicated in causing liver injury: critical assessment based upon published case reports. Hepatology. 2016;63:590–603.

    Article  Google Scholar 

  92. Mancini S, Amorotti E, Vecchio S, Ponz de Leon M, Roncucci L. Infliximab-related hepatitis: discussion of a case and review of the literature. Intern Emerg Med. 2010;5:193–200.

    Article  Google Scholar 

  93. Carlsen KM, Riis L, Madsen OR. Toxic hepatitis induced by infliximab in a patient with rheumatoid arthritis with no relapse after switching to etanercept. Clin Rheumatol. 2009;28:1001–3.

    Article  CAS  Google Scholar 

  94. Cravo M, Silva R, Serrano M. Autoimmune hepatitis induced by infliximab in a patient with Crohn’s disease with no relapse after switching to adalimumab. BioDrugs. 2010;24(Suppl 1):25–7.

    Article  Google Scholar 

  95. Parth S, Larson B, Wishingrad M, Nissen N, Bjornsson E, Sundaram V. Now You See It, Now You Don’t: A case report of Infliximab-induced vanishing bile duct syndrome. ACG Case Rep. 2019;6(7):e00134. https://doi.org/10.14309/crj.0000000000000134.

    Article  Google Scholar 

  96. Pardoll D. Cancer and the immune system: basic concepts and targets for intervention. Semin Oncol. 2015;42:523–38.

    Article  CAS  Google Scholar 

  97. Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-Vinay S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer. 2016;54:139–48.

    Article  CAS  Google Scholar 

  98. Weber J. Ipilimumab: controversies in its development, utility and autoimmune adverse events. Cancer Immunol Immunother. 2009;58:823–30.

    Article  CAS  Google Scholar 

  99. Johncilia M, Misdraji J, Pratt DS, Agoston AT, Lauwers GY, Srivastava A, et al. Ipilimumab-associated hepatitis: clinicopathologic characterization in a series of 11 cases. Am J Surg Pathol. 2015;39(8):1075–84.

    Article  Google Scholar 

  100. O’Day SJ, Maio M, Chiarion-Sileni V, Gajewski TF, Pehamberger H, Bondarenko IN, et al. Efficacy and safety of ipilimumab monotherapy in patients with pretreated advanced melanoma: a multicenter single-arm phase II study. Ann Oncol. 2010;21:1712–7.

    Article  Google Scholar 

  101. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.

    Article  CAS  Google Scholar 

  102. Doherty GJ, Duckworth AM, Davies SE, Mells GF, Brais R, Harden SV, et al. Severe steroid-resistant anti-PD1 T-cell checkpoint inhibitor-induced hepatotoxicity driven by biliary injury. ESMO. 2017;2:e000268.

    Article  Google Scholar 

  103. Wu Z, Lai L, Li M, Zhang L, Zhang W. Acute liver failure caused by pembrolizumab in a patient with pulmonary metastatic liver cancer. Medicine (Baltimore). 2017;96(51):e9431.

    Article  Google Scholar 

  104. Zen Y, Yeh MM. Hepatotoxicity of immune checkpoint inhibitors: a histology study of seven cases in comparison with autoimmune hepatitis and idiosyncratic drug-induced liver injury. Mod Pathol. 2018;31(6):965–73.

    Article  Google Scholar 

  105. Matsubara T, Nishida T, Higaki Y, Tomita R, Shimakoshi H, Shimoda A, et al. Nivolumab induces sustained liver injury in a patient with malignant melanoma. Intern Med. 2018;57(12):1789–92.

    Article  Google Scholar 

  106. De Martin E, Michot JM, Papouin B, Champiat S, Mateus C, Lambotte O, et al. Characterization of liver injury induced by cancer immunotherapy using immune checkpoint inhibitors. J Hepatol. 2018;68:1181–90.

    Article  CAS  Google Scholar 

  107. Parlati L, Vallet-Pichard A, Batista R, Hernvann A, Sogni P, Pol S, et al. Incidence of grade 3-4 liver injury under immune checkpoints inhibitors: a retrospective study. J Hepatol. 2018;69:1396–401.

    Article  Google Scholar 

  108. Gauci ML, Baroudjian B, Zeboulon C, Pages C, Poté N, Roux O, et al. Immune-related hepatitis with immunotherapy: are corticosteroids always needed? J Hepatol. 2018;69:548–50.

    Article  Google Scholar 

  109. Ziemer M, Koukoulioti E, Beyer S, Simon JC, Berg T. Managing immune checkpoint-inhibitor-induced severe autoimmune-like hepatitis by liver-directed topical steroids. J Hepatol. 2017;66(3):657–9.

    Article  Google Scholar 

  110. Aithal GP, Watkins PB, Andrade RJ, Larrey D, Molokhia M, Takikawa H, et al. Case definition and phenotype standardization in drug-induced liver injury. Clin Pharmacol Ther. 2011;89:806–15.

    Article  CAS  Google Scholar 

  111. Shoenfeld Y, Vilner Y, Reshef T, Klajman A, Skibin A, Kooperman O, et al. Increased presence of common systemic lupus erythematosus (SLE) anti-DNA idiotypes (16/6 Id, 32/15 Id) is induced by procainamide. Clin Immunol. 1987;7:410–9.

    Article  CAS  Google Scholar 

  112. De Rycke L, Baeten D, Kruithof E, Van den Bosch F, Veys EM, De Keyser F. Infliximab, but not etanercept, induces IgM anti-double-stranded DNA autoantibodies as main antinuclear reactivity: biologic and clinical implications in autoimmune arthritis. Arthritis Rheum. 2005;52:2192–201.

    Article  CAS  Google Scholar 

  113. Yazdani-Biuki B, Stadlmaier E, Mulabecirovic A, Brezinschek R, Tilz G, Demel U, et al. Blockade of tumour necrosis factor {alpha} significantly alters the serum level of IgG- and IgA-rheumatoid factor in patients with rheumatoid arthritis. Ann Rheum Dis. 2005;64:1224–6.

    Article  CAS  Google Scholar 

  114. Danan G, Benichou C. Causality assessment of adverse reactions to drugs-I. A novel method based on the conclusions of international consensus meetings: application to drug-induced liver injuries. J Clin Epidemiol. 1993;46:1323–30.

    Article  CAS  Google Scholar 

  115. Ramakrishna J, Johnson AR, Banner BF. Long-term minocycline use for acne in healthy adolescents can cause severe autoimmune hepatitis. J Clin Gastroenterol. 2009;43:787–90.

    Article  Google Scholar 

  116. Aithal GP, Daly AK. Preempting and preventing drug-induced liver injury. Nat Genet. 2010;42:650–1.

    Article  CAS  Google Scholar 

  117. Alfirevic A, Gonzalez-Galarza F, Bell C, Martinsson K, Platt V, Bretland G, et al. In silico analysis of HLA associations with drug-induced liver injury: use of a HLA-genotyped DNA archive from healthy volunteers. Genome Med. 2012;4:51.

    Article  CAS  Google Scholar 

  118. Singer JB, Lewitzky S, Leroy E, Yang F, Zhao X, Klickstein L, et al. A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat Genet. 2010;42:711–4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Einar S. Björnsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Björnsson, E.S., Aithal, G.P. (2020). Immune-Mediated Drug-Induced Liver Injury. In: Gershwin, M.E., M. Vierling, J., Tanaka, A., P. Manns, M. (eds) Liver Immunology . Springer, Cham. https://doi.org/10.1007/978-3-030-51709-0_30

Download citation

Publish with us

Policies and ethics