Skip to main content

NMR-Based Metabolomics in Cancer Research

  • Chapter
  • First Online:
Cancer Metabolomics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1280))

Abstract

Nuclear magnetic resonance (NMR) spectroscopy offers reproducible quantitative analysis and structural identification of metabolites in various complex biological samples, such as biofluids (plasma, serum, and urine), cells, tissue extracts, and even intact organs. Therefore, NMR-based metabolomics, a mainstream metabolomic platform, has been extensively applied in many research fields, including pharmacology, toxicology, pathophysiology, nutritional intervention, disease diagnosis/prognosis, and microbiology. In particular, NMR-based metabolomics has been successfully used for cancer research to investigate cancer metabolism and identify biomarker and therapeutic targets. This chapter highlights the innovations and challenges of NMR-based metabolomics platform and its applications in cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Warburg, O. (1920). The reduction of salpeter acid in green cells. Naturwissenschaften, 8, 594–596.

    Article  Google Scholar 

  2. Fu, Y., Liu, S., Yin, S., et al. (2017). The reverse Warburg effect is likely to be an Achilles’ heel of cancer that can be exploited for cancer therapy. Oncotarget, 8(34), 57813.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barton, R. H., Nicholson, J. K., Elliott, P., et al. (2008). High-throughput 1H NMR-based metabolic analysis of human serum and urine for large-scale epidemiological studies: Validation study. International Journal of Epidemiology, 37(Suppl 1), i31–i40.

    Article  PubMed  Google Scholar 

  4. Fonville, J. M., Maher, A. D., Coen, M., et al. (2010). Evaluation of full-resolution J-resolved 1H NMR projections of biofluids for metabonomics information retrieval and biomarker identification. Analytical Chemistry, 82(5), 1811–1821.

    Article  CAS  PubMed  Google Scholar 

  5. Schicho, R., Nazyrova, A., Shaykhutdinov, R., et al. (2010). Quantitative metabolomic profiling of serum and urine in DSS-induced ulcerative colitis of mice by (1)H NMR spectroscopy. Journal of Proteome Research, 9(12), 6265–6273.

    Article  CAS  PubMed  Google Scholar 

  6. Beckonert, O., Coen, M., Keun, H. C., et al. (2010). High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nature Protocols, 5(6), 1019–1032.

    Article  CAS  PubMed  Google Scholar 

  7. Cheng, L. L., Burns, M. A., Taylor, J. L., et al. (2005). Metabolic characterization of human prostate cancer with tissue magnetic resonance spectroscopy. Cancer Research, 65(8), 3030–3034.

    Article  CAS  PubMed  Google Scholar 

  8. Somashekar, B. S., Kamarajan, P., Danciu, T., et al. (2011). Magic angle spinning NMR-based metabolic profiling of head and neck squamous cell carcinoma tissues. Journal of Proteome Research, 10(11), 5232–5241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Want, E. J., Masson, P., Michopoulos, F., et al. (2013). Global metabolic profiling of animal and human tissues via UPLC-MS. Nature Protocols, 8(1), 17–32.

    Article  CAS  PubMed  Google Scholar 

  10. Ackerstaff, E., Pflug, B. R., Nelson, J. B., et al. (2001). Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Research, 61(9), 3599–3603.

    CAS  PubMed  Google Scholar 

  11. Martineau, E., Tea, I., Loaec, G., et al. (2011). Strategy for choosing extraction procedures for NMR-based metabolomic analysis of mammalian cells. Analytical and Bioanalytical Chemistry, 401(7), 2133–2142.

    Article  CAS  PubMed  Google Scholar 

  12. Sellick, C. A., Hansen, R., Stephens, G. M., et al. (2011). Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nature Protocols, 6(8), 1241–1249.

    Article  CAS  PubMed  Google Scholar 

  13. Gu, H. W., Pan, Z. Z., Xi, B. W., et al. (2009). H-1 NMR metabolomics study of age profiling in children. NMR in Biomedicine, 22(8), 826–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Assfalg, M., Bertini, I., Colangiuli, D., et al. (2008). Evidence of different metabolic phenotypes in humans. Proceedings of the National Academy of Sciences of the United States of America, 105(5), 1420–1424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lindon, J. C., Holmes, E., & Nicholson, J. K. (2004). Metabonomics and its role in drug development and disease diagnosis. Expert Review of Molecular Diagnostics, 4(2), 189–199.

    Article  CAS  PubMed  Google Scholar 

  16. Martin, F. P., Sprenger, N., Montoliu, I., et al. (2010). Dietary modulation of gut functional ecology studied by fecal metabonomics. Journal of Proteome Research, 9(10), 5284–5295.

    Article  CAS  PubMed  Google Scholar 

  17. Yap, I. K., Li, J. V., Saric, J., et al. (2008). Metabonomic and microbiological analysis of the dynamic effect of vancomycin-induced gut microbiota modification in the mouse. Journal of Proteome Research, 7(9), 3718–3728.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, L., Nicholson, J. K., Lu, A., et al. (2012). Targeting the human genome-microbiome axis for drug discovery: Inspirations from global systems biology and traditional Chinese medicine. Journal of Proteome Research, 11(7), 3509–3519.

    Article  CAS  PubMed  Google Scholar 

  19. Maria, R. M., Altei, W. F., Andricopulo, A. D., et al. (2015). Characterization of metabolic profile of intact non-tumor and tumor breast cells by high-resolution magic angle spinning nuclear magnetic resonance spectroscopy. Analytical Biochemistry, 488, 14–18.

    Article  CAS  PubMed  Google Scholar 

  20. Lin, Y., Ma, C. C., Liu, C. K., et al. (2016). NMR-based fecal metabolomics fingerprinting as predictors of earlier diagnosis in patients with colorectal cancer. Oncotarget, 7(20), 29454–29464.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hao, D., Sarfaraz, M. O., Farshidfar, F., et al. (2016). Temporal characterization of serum metabolite signatures in lung cancer patients undergoing treatment. Metabolomics: Official Journal of the Metabolomic Society, 12, 58.

    Article  CAS  Google Scholar 

  22. Capati, A., Ijare, O. B., & Bezabeh, T. (2017). Diagnostic applications of nuclear magnetic resonance-based urinary metabolomics. Magnetic Resonance Insights, 10. 1178623X17694346.

    Google Scholar 

  23. Markley, J. L., Bruschweiler, R., Edison, A. S., et al. (2017). The future of NMR-based metabolomics. Current Opinion in Biotechnology, 43, 34–40.

    Article  CAS  PubMed  Google Scholar 

  24. Fan, T. W. M., & Lane, A. N. (2016). Applications of NMR spectroscopy to systems biochemistry. Progress in Nuclear Magnetic Resonance Spectroscopy, 92–93, 18–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Nagana Gowda, G. A., & Raftery, D. (2015). Can NMR solve some significant challenges in metabolomics? Journal of Magnetic Resonance (San Diego, Calif: 1997), 260, 144–160.

    Article  CAS  Google Scholar 

  26. Jayaraman, A., Kumar, P., Marin, S., et al. (2018). Untargeted metabolomics reveals distinct metabolic reprogramming in endothelial cells co-cultured with CSC and non-CSC prostate cancer cell subpopulations. PLoS One, 13(2).

    Google Scholar 

  27. Yang, Y. X., Li, C. L., Nie, X., et al. (2007). Metabonomic studies of human hepatocellular carcinoma using high-resolution magic-angle spinning H-1 NMR spectroscopy in conjunction with multivariate data analysis. Journal of Proteome Research, 6(7), 2605–2614.

    Article  CAS  PubMed  Google Scholar 

  28. Mpanga, A. Y., Siluk, D., Jacyna, J., et al. (2018). Targeted metabolomics in bladder cancer: From analytical methods development and validation towards application to clinical samples. Analytica Chimica Acta, 1037, 188–199.

    Article  CAS  Google Scholar 

  29. Wang, W. C., Yang, J., Edin, M. L., et al. (2019). Targeted metabolomics identifies the cytochrome P450 monooxygenase eicosanoid pathway as a novel therapeutic target of Colon tumorigenesis. Cancer Research, 79(8), 1822–1830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tian, Y., Nie, X., Xu, S., et al. (2015). Integrative metabonomics as potential method for diagnosis of thyroid malignancy. Scientific Reports, 5.

    Google Scholar 

  31. Tian, Y., Xu, T. P., Huang, J., et al. (2016). Tissue metabonomic phenotyping for diagnosis and prognosis of human colorectal cancer. Scientific Reports, 6.

    Google Scholar 

  32. Wang, Z. N., Lin, Y., Liang, J. H., et al. (2017). NMR-based metabolomic techniques identify potential urinary biomarkers for early colorectal cancer detection. Oncotarget, 8(62), 105819–105831.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lecuyer, L., Bala, A. V., Deschasaux, M., et al. (2018). NMR metabolomic signatures reveal predictive plasma metabolites associated with long-term risk of developing breast cancer. International Journal of Epidemiology, 47(2), 484–494.

    Article  PubMed  Google Scholar 

  34. Ishikawa, S., Sugimoto, M., Kitabatake, K., et al. (2016). Identification of salivary metabolomic biomarkers for oral cancer screening. Scientific Reports, 6, 31520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Locasale, J. W., Melman, T., Song, S. S., et al. (2012). Metabolomics of human cerebrospinal fluid identifies signatures of malignant glioma. Molecular & Cellular Proteomics, 11(6).

    Google Scholar 

  36. Kline, E. E., Treat, E. G., Averna, T. A., et al. (2006). Citrate concentrations in human seminal fluid and expressed prostatic fluid determined via H-1 nuclear magnetic resonance spectroscopy outperform prostate specific antigen in prostate cancer detection. Journal of Urology, 176(5), 2274–2279.

    Article  CAS  PubMed  Google Scholar 

  37. Morelli, M. A. C., Iuliano, A., Schettini, S. C. A., et al. (2018). NMR metabolomics study of follicular fluid in women with cancer resorting to fertility preservation. Journal of Assisted Reproduction and Genetics, 35(11), 2063–2070.

    Article  Google Scholar 

  38. Hu, J. Z., Rommereim, D. N., Minard, K. R., et al. (2008). Metabolomics in lung inflammation: A high-resolution H-1 NMR study of mice exposed to silica dust. Toxicology Mechanisms and Methods, 18(5), 385–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Montuschi, P., Paris, D., Melck, D., et al. (2012). NMR spectroscopy metabolomic profiling of exhaled breath condensate in patients with stable and unstable cystic fibrosis. Thorax, 67(3), 222–228.

    Article  PubMed  Google Scholar 

  40. Anderson, J. R., Chokesuwattanaskul, S., Phelan, M. M., et al. (2018). H-1 NMR metabolomics identifies underlying inflammatory pathology in osteoarthritis and rheumatoid arthritis synovial joints. Journal of Proteome Research, 17(11), 3780–3790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, Z. G., Wang, L. M., Zhang, L. M., et al. (2016). Metabolic characteristics of 16HBE and A549 cells exposed to different surface modified gold Nanorods. Advanced Healthcare Materials, 5(18), 2363–2375.

    Article  CAS  PubMed  Google Scholar 

  42. Ruiz-Aracama, A., Peijnenburg, A., Kleinjans, J., et al. (2011). An untargeted multi-technique metabolomics approach to studying intracellular metabolites of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. BMC Genomics, 12, 251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, L. M., Wang, L. M., Hu, Y. L., et al. (2013). Selective metabolic effects of gold nanorods on normal and cancer cells and their application in anticancer drug screening. Biomaterials, 34(29), 7117–7126.

    Article  CAS  PubMed  Google Scholar 

  44. Kim, K., Aronov, P., Zakharkin, S. O., et al. (2009). Urine metabolomics analysis for kidney cancer detection and biomarker discovery. Molecular & Cellular Proteomics, 8(3), 558–570.

    Article  CAS  Google Scholar 

  45. Nishiumi, S., Kobayashi, T., Ikeda, A., et al. (2012). A novel serum metabolomics-based diagnostic approach for colorectal cancer. PLoS One, 7(7), e40459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Slupsky, C. M., Steed, H., Wells, T. H., et al. (2010). Urine metabolite analysis offers potential early diagnosis of ovarian and breast cancers. Clinical Cancer Research, 16(23), 5835–5841.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, X. Y., Wang, Y. L., Hao, F. H., et al. (2009). Human serum metabonomic analysis reveals progression axes for glucose intolerance and insulin resistance statuses. Journal of Proteome Research, 8(11), 5188–5195.

    Article  CAS  PubMed  Google Scholar 

  48. Tian, Y., Nichols, R. G., Cai, J. W., et al. (2018). Vitamin A deficiency in mice alters host and gut microbial metabolism leading to altered energy homeostasis. Journal of Nutritional Biochemistry, 54, 28–34.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, L. M., Ye, Y. F., An, Y. P., et al. (2011). Systems responses of rats to aflatoxin B1 exposure revealed with metabonomic changes in multiple biological matrices. Journal of Proteome Research, 10(2), 614–623.

    Article  CAS  PubMed  Google Scholar 

  50. Gowda, G. A. N., Gowda, Y. N., & Raftery, D. (2015). Expanding the limits of human blood metabolite quantitation using NMR spectroscopy. Analytical Chemistry, 87(1), 706–715.

    Article  PubMed  CAS  Google Scholar 

  51. Jiang, L. M., Huang, J., Wang, Y. L., et al. (2012). Eliminating the dication-induced intersample chemical-shift variations for NMR-based biofluid metabonomic analysis. Analyst, 137(18), 4209–4219.

    Article  CAS  PubMed  Google Scholar 

  52. Rocha, C. M., Barros, A. S., Goodfellow, B. J., et al. (2015). NMR metabolomics of human lung tumours reveals distinct metabolic signatures for adenocarcinoma and squamous cell carcinoma. Carcinogenesis, 36(1), 68–75.

    Article  CAS  PubMed  Google Scholar 

  53. Schmahl, M. J., Regan, D. P., Rivers, A. C., et al. (2018). NMR-based metabolic profiling of urine, serum, fecal, and pancreatic tissue samples from the Ptf1a-Cre; LSL-KrasG12D transgenic mouse model of pancreatic cancer. PLoS One, 13(7), e0200658.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wu, H. F., Southam, A. D., Hines, A., et al. (2008). High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Analytical Biochemistry, 372(2), 204–212.

    Article  CAS  PubMed  Google Scholar 

  55. Tian, Y., Zhang, L. M., Wang, Y. L., et al. (2012). Age-related topographical metabolic signatures for the rat gastrointestinal contents. Journal of Proteome Research, 11(2), 1397–1411.

    Article  CAS  PubMed  Google Scholar 

  56. Allen, J., Zhang, J. T., Quickel, M. D., et al. (2018). Ron receptor signaling ameliorates hepatic fibrosis in a diet-induced nonalcoholic steatohepatitis mouse model. Journal of Proteome Research, 17(9), 3268–3280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, L. M., Hatzakis, E., Nichols, R. G., et al. (2015). Metabolomics reveals that aryl hydrocarbon receptor activation by environmental chemicals induces systemic metabolic dysfunction in mice. Environmental Science & Technology, 49(13), 8067–8077.

    Article  CAS  Google Scholar 

  58. Wan, Q. F., Wang, Y. L., & Tang, H. R. (2017). Quantitative C-13 traces of glucose fate in hepatitis B virus -infected hepatocytes. Analytical Chemistry, 89(6), 3293–3299.

    Article  CAS  PubMed  Google Scholar 

  59. Blundell, C. D., DeAngelis, P. L., Day, A. J., et al. (2004). Use of N-15-NMR to resolve molecular details in isotopically-enriched carbohydrates: Sequence-specific observations in hyaluronan oligomers up to decasaccharides. Glycobiology, 14(11), 999–1009.

    Article  CAS  PubMed  Google Scholar 

  60. Merchant, T. E., Degraaf, P. W., Minsky, B. D., et al. (1993). Esophageal cancer phospholipid characterization by P-31 NMR. NMR in Biomedicine, 6(3), 187–193.

    Article  CAS  PubMed  Google Scholar 

  61. Dai, H., Xiao, C. N., Liu, H. B., et al. (2010a). Combined NMR and LC-DAD-MS analysis reveals comprehensive metabonomic variations for three phenotypic cultivars of Salvia miltiorrhiza Bunge. Journal of Proteome Research, 9(3), 1565–1578.

    Article  CAS  PubMed  Google Scholar 

  62. Dai, H., Xiao, C. N., Liu, H. B., et al. (2010b). Combined NMR and LC-MS analysis reveals the metabonomic changes in Salvia miltiorrhiza Bunge induced by water depletion. Journal of Proteome Research, 9(3), 1460–1475.

    Article  CAS  PubMed  Google Scholar 

  63. Wishart, D. S., Tzur, D., Knox, C., et al. (2007). HMDB: The human metabolome database. Nucleic Acids Research, 35, D521–D526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cui, Q., Lewis, I. A., Hegeman, A. D., et al. (2008). Metabolite identification via the madison metabolomics consortium database. Nature Biotechnology, 26(2), 162–164.

    Article  CAS  PubMed  Google Scholar 

  65. Ulrich, E. L., Akutsu, H., Doreleijers, J. F., et al. (2008). BioMagResBank. Nucleic Acids Research, 36, D402–D408.

    Article  CAS  PubMed  Google Scholar 

  66. Ludwig, C., Easton, J. M., Lodi, A., et al. (2012). Birmingham metabolite library: A publicly accessible database of 1-D H-1 and 2-D H-1 J-resolved NMR spectra of authentic metabolite standards (BML-NMR). Metabolomics: Official journal of the Metabolomic Society, 8(1), 8–18.

    Article  CAS  Google Scholar 

  67. Ellinger, J. J., Chylla, R. A., Ulrich, E. L., et al. (2013). Databases and software for NMR-based metabolomics. Current Metabolomics, 1, 28–40.

    CAS  Google Scholar 

  68. Brennan, L. (2014). NMR-based metabolomics: From sample preparation to applications in nutrition research. Progress in Nuclear Magnetic Resonance Spectroscopy, 83, 42–49.

    Article  CAS  PubMed  Google Scholar 

  69. Lever, J., Krzywinski, M., & Atman, N. (2017). Points of significance principal component analysis. Nature Methods, 14(7), 641–642.

    Article  CAS  Google Scholar 

  70. Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 16(3), 119–128.

    Article  CAS  Google Scholar 

  71. Duan, Y. X., An, Y. P., Li, N., et al. (2013). Multiple univariate data analysis reveals the inulin effects on the high-fat-diet induced metabolic alterations in rat myocardium and testicles in the preobesity state. Journal of Proteome Research, 12(7), 3480–3495.

    Article  CAS  PubMed  Google Scholar 

  72. Xu, S., Tian, Y., Hu, Y. L., et al. (2016). Tumor growth affects the metabonomic phenotypes of multiple mouse non-involved organs in an A549 lung cancer xenograft model. Scientific Reports, 6, 28057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rodriguez-Martinez, A., Posma, J. M., Ayala, R., et al. (2018). MWASTools: An R/bioconductor package for metabolome-wide association studies. Bioinformatics, 34(5), 890–892.

    Article  CAS  PubMed  Google Scholar 

  74. Chong, J., Soufan, O., Li, C., et al. (2018). MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Research, 46(W1), W486–W494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xia, J. G., & Wishart, D. S. (2011). Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nature Protocols, 6(6), 743–760.

    Article  CAS  PubMed  Google Scholar 

  76. Sun, L. C., Song, L. B., Wan, Q. F., et al. (2015). cMyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions. Cell Research, 25(4), 429–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Abrantes, A. M., Tavares, L. C., Pires, S., et al. (2014). Metabolic effects of hypoxia in colorectal cancer by C-13 NMR isotopomer analysis. BioMed Research International, 2014, 1–10.

    Article  Google Scholar 

  78. Harris, T., Degani, H., & Frydman, L. (2013). Hyperpolarized C-13 NMR studies of glucose metabolism in living breast cancer cell cultures. NMR in Biomedicine, 26(12), 1831–1843.

    Article  CAS  PubMed  Google Scholar 

  79. Pavlova, N. N., & Thompson, C. B. (2016). The emerging hallmarks of cancer metabolism. Cell Metabolism, 23(1), 27–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hu, J. M., & Sun, H. T. (2018). Serum proton NMR metabolomics analysis of human lung cancer following microwave ablation. Radiation Oncology, 13, 40.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Rocha, C. M., Carrola, J., Barros, A. S., et al. (2011). Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of blood plasma. Journal of Proteome Research, 10(9), 4314–4324.

    Article  CAS  PubMed  Google Scholar 

  82. Weljie, A. M., Newton, J., Mercier, P., et al. (2006). Targeted profiling: Quantitative analysis of H-1 NMR metabolomics data. Analytical Chemistry, 78(13), 4430–4442.

    Article  CAS  PubMed  Google Scholar 

  83. Farshidfar, F., Weljie, A. M., Kopciuk, K., et al. (2012). Serum metabolomic profile as a means to distinguish stage of colorectal cancer. Genome Medicine, 4, 42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gu, J. P., Xiao, Y. Q., Shu, D., et al. (2019). Metabolomics analysis in serum from patients with colorectal polyp and colorectal cancer by H-1-NMR spectrometry. Disease Markers.

    Google Scholar 

  85. Singh, A., Sharma, R. K., Chagtoo, M., et al. (2017). H-1 NMR metabolomics reveals association of high expression of inositol 1, 4, 5 trisphosphate receptor and metabolites in breast cancer patients. PLoS One, 12, 1.

    Google Scholar 

  86. Michalkova, L., Hornik, S., Sykora, J., et al. (2018). Diagnosis of pancreatic cancer via(1)H NMR metabolomics of human plasma. Analyst, 143(24), 5974–5978.

    Article  CAS  PubMed  Google Scholar 

  87. Wojtowicz, W., Zabek, A., Deja, S., et al. (2017). Serum and urine H-1 NMR-based metabolomics in the diagnosis of selected thyroid diseases. Scientific Reports, 7, 1–13.

    Article  CAS  Google Scholar 

  88. Gomez-Cebrian, N., Rojas-Benedicto, A., Albors-Vaquer, A., et al. (2019). Metabolomics contributions to the discovery of prostate cancer biomarkers. Metabolites, 9(3), 48.

    Article  CAS  PubMed Central  Google Scholar 

  89. Yonezawa, K., Nishiumii, S., Kitamoto-Matsuda, J., et al. (2013). Serum and tissue metabolomics of head and neck cancer. Cancer Genomics & Proteomics, 10(5), 233–238.

    CAS  Google Scholar 

  90. Fan, T. W. M., Lane, A. N., Higashi, R. M., et al. (2009). Altered regulation of metabolic pathways in human lung cancer discerned by C-13 stable isotope-resolved metabolomics (SIRM). Molecular Cancer, 8, 41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Ganti, S., & Weiss, R. H. (2011). Urine metabolomics for kidney cancer detection and biomarker discovery. Urologic Oncology-Seminars and Original Investigations, 29(5), 551–557.

    Article  CAS  Google Scholar 

  92. Lima, A. R., Bastos, M. D., Carvalho, M., et al. (2016). Biomarker discovery in human prostate cancer: An update in metabolomics studies. Translational Oncology, 9(4), 357–370.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cao, M., Zhao, L. C., Chen, H. G., et al. (2012). NMR-based metabolomic analysis of human bladder cancer. Analytical Sciences, 28(5), 451–456.

    Article  CAS  PubMed  Google Scholar 

  94. Cheng, X. M., Liu, X. Y., Liu, X., et al. (2018). Metabolomics of non-muscle invasive bladder cancer: Biomarkers for early detection of bladder cancer. Frontiers in Oncology, 8, 494.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Turkoglu, O., Zeb, A., Graham, S., et al. (2016). Metabolomics of biomarker discovery in ovarian cancer: A systematic review of the current literature. Metabolomics: Official journal of the Metabolomic Society, 12(4).

    Google Scholar 

  96. Cartlidge, C. R., Abellona, U. M. R., Alkhatib, A. M. A., et al. (2017). The utility of biomarkers in hepatocellular carcinoma: Review of urine-based H-1-NMR studies – What the clinician needs to know. International Journal of General Medicine, 10, 431–442.

    Google Scholar 

  97. Srivastava, S., Roy, R., Singh, S., et al. (2010). Taurine – a possible fingerprint biomarker in non-muscle invasive bladder cancer: A pilot study by H-1 NMR spectroscopy. Cancer Biomarkers, 6(1), 11–20.

    Google Scholar 

  98. Tian, Y., Cai, J. W., Gui, W., et al. (2019). Berberine directly affects the gut microbiota to promote intestinal farnesoid X receptor activation. Drug Metabolism and Disposition, 47(2), 86–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lee, S. H., An, J. H., Park, H. M., et al. (2012). Investigation of endogenous metabolic changes in the urine of pseudo germ-free rats using a metabolomic approach. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 887, 8–18.

    Article  PubMed  CAS  Google Scholar 

  100. Bezabeh, T., Somorjai, R., Dolenko, B., et al. (2009). Detecting colorectal cancer by H-1 magnetic resonance spectroscopy of fecal extracts. NMR in Biomedicine, 22(6), 593–600.

    Article  CAS  PubMed  Google Scholar 

  101. Weir, T. L., Manter, D. K., Sheflin, A. M., et al. (2013). Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS One, 8(8), e70803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Osman, M. A., Neoh, H. M., Ab Mutalib, N. S., et al. (2018). 16S rRNA gene sequencing for deciphering the colorectal cancer gut microbiome: Current protocols and workflows. Frontiers in Microbiology, 9, 767.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wang, Z., Zolnik, C. P., Qiu, Y. P., et al. (2018). Comparison of fecal collection methods for microbiome and metabolomics studies. Frontiers in Cellular and Infection Microbiology, 8, 301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Van Gulik, W. M., Canelas, A. B., Taymaz-Nikerel, H., et al. (2012). Fast sampling of the cellular metabolome. Methods in Molecular Biology (Clifton, NJ), 881, 279–306.

    Article  CAS  Google Scholar 

  105. Nittoli, A. C., Costantini, S., Sorice, A., et al. (2018). Effects of alpha-zearalenol on the metabolome of two breast cancer cell lines by 1H-NMR approach. Metabolomics: Official journal of the Metabolomic Society, 14(3), 33.

    Article  CAS  Google Scholar 

  106. Lauri, I., Savorani, F., Iaccarino, N., et al. (2016). Development of an optimized protocol for NMR metabolomics studies of human Colon Cancer Cell lines and first insight from testing of the protocol using DNA G-Quadruplex ligands as novel anti-cancer drugs. Metabolites, 6(1), 4.

    Article  PubMed Central  CAS  Google Scholar 

  107. Lima, A. R., Pinto, J., Bastos, M. D., et al. (2018). NMR-based metabolomics studies of human prostate cancer tissue. Metabolomics: Official Journal of the Metabolomic Society, 14(7), 88.

    Article  CAS  Google Scholar 

  108. Martinez-Lopez, F. J., Banuelos-Hernandez, A. E., Becerra-Martinez, E., et al. (2017). H-1 NMR metabolomic signatures related to giant cell tumor of the bone. RSC Advances, 7(72), 45385–45392.

    Article  CAS  Google Scholar 

  109. Wang, H. J., Zhang, H. L., Deng, P. C., et al. (2016). Tissue metabolic profiling of human gastric cancer assessed by H-1 NMR. BMC Cancer, 16, 371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hofmann, M., & Braumann, E. U. (2004). NMR microsample holder which allows safe and simple exchanges of the sample tube. Google Patents.

    Google Scholar 

  111. Martin, G. E. (2005). Small-volume and high-sensitivity NMR probes. In G. A. Webb (Ed.), Annual reports on NMR spectroscopy (Annual Reports on NMR Spectroscopy) (Vol. 56, pp. 1–96). San Diego: Elsevier Academic Press Inc. https://doi.org/10.1016/s0066-4103(05)56001-0.

    Chapter  Google Scholar 

  112. Hoult, D. I., & Richards, R. E. (1976). Signal-to-noise ratio of nuclear magnetic-resonance experiment. Journal of Magnetic Resonance, 24(1), 71–85.

    Google Scholar 

  113. Wu, N. A., Peck, T. L., Webb, A. G., et al. (1994). H-1-NMR spectroscopy on the nanoliter scale for static and online measurements. Analytical Chemistry, 66(22), 3849–3857.

    Article  CAS  Google Scholar 

  114. Webb, A. G. (1997). Radiofrequency microcoils in magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy, 31, 1–42.

    Article  CAS  Google Scholar 

  115. Lacey, M. E., Subramanian, R., Olson, D. L., et al. (1999). High-resolution NMR spectroscopy of sample volumes from 1 nL to 10 μL. Chemical Reviews, 99(10), 3133–3152.

    Article  CAS  PubMed  Google Scholar 

  116. Molinski, T. F. (2009). Nanomole-scale natural products discovery. Current Opinion in Drug Discovery & Development, 12(2), 197–206.

    CAS  Google Scholar 

  117. Anklin, C. (2016). Chapter 3 Small-volume NMR: Microprobes and cryoprobes. In Modern NMR approaches to the structure elucidation of natural products: Volume 1: Instrumentation and software (Vol. 1, pp. 38–57). The Royal Society of Chemistry. https://doi.org/10.1039/9781849735186-00038.

  118. Bayer, E., Albert, K., Nieder, M., et al. (1982). On-line coupling of liquid chromatography and high-field nuclear magnetic resonance spectrometry. Analytical Chemistry, 54(11), 1747–1750.

    Article  CAS  Google Scholar 

  119. Albert, K. (1999). Liquid chromatography-nuclear magnetic resonance spectroscopy. Journal of Chromatography A, 856(1–2), 199–211.

    Article  CAS  PubMed  Google Scholar 

  120. Spraul, M., Hofmann, M., Dvortsak, P., et al. (1993). High-performance liquid chromatography coupled to high-field proton nuclear magnetic resonance spectroscopy: Application to the urinary metabolites of ibuprofen. Analytical Chemistry, 65(4), 327–330.

    Article  CAS  PubMed  Google Scholar 

  121. Akira, K., Mitome, H., Imachi, M., et al. (2010). LC-NMR identification of a novel taurine-related metabolite observed in 1H NMR-based metabonomics of genetically hypertensive rats. Journal of Pharmaceutical and Biomedical Analysis, 51(5), 1091–1096.

    Article  CAS  PubMed  Google Scholar 

  122. Smith, C. A., Want, E. J., O’Maille, G., et al. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78(3), 779–787.

    Article  CAS  PubMed  Google Scholar 

  123. Xi, Y. X., & Rocke, D. M. (2008). Baseline correction for NMR spectroscopic metabolomics data analysis. BMC Bioinformatics, 9, 10.

    Article  CAS  Google Scholar 

  124. Zhang, Z. M., Chen, S., & Liang, Y. Z. (2010). Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst, 135(5), 1138–1146.

    Article  CAS  PubMed  Google Scholar 

  125. Alonso, A., Marsal, S., & Julia, A. (2015). Analytical methods in untargeted metabolomics: State of the art in 2015. Frontiers in Bioengineering and Biotechnology, 3, 23.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Jiang, B., Luo, F., Ding, Y., et al. (2013). NASR: An effective approach for simultaneous noise and artifact suppression in NMR spectroscopy. Analytical Chemistry, 85(4), 2523–2528.

    Article  CAS  PubMed  Google Scholar 

  127. Chaubey, Y. P. (2000). Resampling methods: A practical guide to data analysis. Technometrics, 42(3), 311–311.

    Article  Google Scholar 

  128. Puchades-Carrasco, L., Palomino-Schatzlein, M., Perez-Rambla, C., et al. (2016). Bioinformatics tools for the analysis of NMR metabolomics studies focused on the identification of clinically relevant biomarkers. Briefings in Bioinformatics, 17(3), 541–552.

    Article  PubMed  Google Scholar 

  129. Xia, J. G., Bjorndahl, T. C., Tang, P., et al. (2008). MetaboMiner – Semi-automated identification of metabolites from 2D NMR spectra of complex biofluids. BMC Bioinformatics, 9, 16.

    Google Scholar 

  130. Ludwig, C., & Gunther, U. L. (2011). MetaboLab–advanced NMR data processing and analysis for metabolomics. BMC Bioinformatics, 12, 366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tulpan, D., Leger, S., Belliveau, L., et al. (2011). MetaboHunter: An automatic approach for identification of metabolites from H-1-NMR spectra of complex mixtures. BMC Bioinformatics, 12, 22.

    Article  CAS  Google Scholar 

  132. Jiang, B., Jiang, X. W., Xiao, N., et al. (2010). Gridding and fast Fourier transformation on non-uniformly sparse sampled multidimensional NMR data. Journal of Magnetic Resonance, 204(1), 165–168.

    Article  CAS  PubMed  Google Scholar 

  133. Osullivan, J. D. (1985). A fast sinc function gridding algorithm for fourier inversion in computer-tomography. IEEE Transactions on Medical Imaging, 4(4), 200–207.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, R., Li, T., Yang, Y., Tian, Y., Zhang, L. (2021). NMR-Based Metabolomics in Cancer Research. In: Hu, S. (eds) Cancer Metabolomics. Advances in Experimental Medicine and Biology, vol 1280. Springer, Cham. https://doi.org/10.1007/978-3-030-51652-9_14

Download citation

Publish with us

Policies and ethics