Skip to main content

The Diversity of the Giant Clams and Their Associated Symbiodiniaceae Algae in the Red Sea

  • Chapter
  • First Online:
The Arabian Seas: Biodiversity, Environmental Challenges and Conservation Measures

Abstract

The Red Sea is host to one of the world’s largest reef systems where invertebrates make up the majority of the diversity. Of those marine invertebrates, those that host microscopic algae or zooxanthellae are of the utmost importance in climate change research. Giant clams are photosymbiotic organisms and are protected under Appendix II of CITES. However, overfishing, habitat destruction, and climate change threaten their populations. The Red Sea is home to 3 of the 12 species of giant clams, Tridacna maxima, Tridacna squamosa, and Tridacna squamosina. Tridacna squamosina has the smallest geographical range, limited to the northern Red Sea, and is only present in low abundance. Overfishing in the past and present has been the main contributor to the loss of species in the Red Sea and globally. Climate change also threatens this symbiotic relationship between the giant clam and zooxanthellae in the family Symbiodiniaceae. Giant clams in the Red Sea have only been found to harbor Symbiodinium type A1 as their dominant type. However, as genetic techniques improve, the classification system of Symbiodiniaceae will improve and allow for better detection of diverse species within a host, which will allow for better understanding of the future of these organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addessi L (2001) Giant clam bleaching in the lagoon of Takapoto atoll (French Polynesia). Coral Reefs 19(3):220–220

    Article  Google Scholar 

  • Ashworth JS, Ormond RF, Sturrock HT (2004) Effects of reef-top gathering and fishing on invertebrate abundance across take and no-take zones. J Exp Mar Biol Ecol 303(2):221–242

    Article  Google Scholar 

  • Ayala FJ, Hedgecock D, Zumwalt GS, Valentine JW (1973) Genetic variation in Tridacna maxima, an ecological analog of some unsuccessful evolutionary lineages. Evolution 27(2):177–191

    PubMed  Google Scholar 

  • Baillie B, Belda-Baillie C, Silvestre V, Sison M, Gomez A, Gomez E, Monje V (2000) Genetic variation in Symbiodiniaceae isolates from giant clams based on random-amplified-polymorphic DNA (RAPD) patterns. Mar Biol 136(5):829–836

    Article  CAS  Google Scholar 

  • Baker AC (2001) Reef corals bleach to survive change. Nature 411(6839):765–766

    Google Scholar 

  • Baker AC, Romanski AM (2007) Multiple symbiotic partnerships are common in scleractinian corals, but not in octocorals: comment on Goulet (2006). Mar Ecol Prog Ser 335:237–242

    Article  Google Scholar 

  • Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Coral reefs: corals’ adaptive response to climate change. Nature 430(7001):741

    Article  CAS  PubMed  Google Scholar 

  • Baums IB, Devlin-Durante MK, LaJeunesse TC (2014) New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol Ecol 23(17):4203–4215

    Article  PubMed  Google Scholar 

  • Benzie JA, Williams ST (1997) Genetic structure of giant clam (tridacna maxima) populations in the West Pacific is not consistent with dispersal by present-day ocean currents. Evolution 51(3):768–783

    PubMed  Google Scholar 

  • Berumen ML, Hoey A, Bass WH, Bouwmeester J, Catania D, Cochran JE, Khalil MT, Miyake S, Mughal M, Spät JL (2013) The status of coral reef ecology research in the Red Sea. Coral Reefs 32(3):737–748

    Article  Google Scholar 

  • bin Othman AS, Goh GH, Todd PA (2010) The distribution and status of giant clams (family Tridacnidae)-a short review. Raffles Bull Zool 58(1):103–111

    Google Scholar 

  • Bodoy A (1984) Assessment of human impact on giant clams, Tridacna maxima, near Jeddah, Saudi Arabia. In: Symposium on coral reefs environment of the Red Sea

    Google Scholar 

  • Borsa P, Fauvelot C, Andréfouët S, Chai T-T, Kubo H, Liu L-L (2015a) On the validity of Noah’s giant clam Tridacna noae (Röding, 1798) and its synonymy with Ningaloo giant clam Tridacna ningaloo Penny & Willan, 2014. Raffles Bulletin of Zoology 63:484–489

    Google Scholar 

  • Borsa P, Fauvelot C, Tiavouane J, Grulois D, Wabnitz C, Naguit MA, Andrefouet S (2015b) Distribution of Noah’s giant clam, Tridacna noae. Mar Biodivers 45(2):339–344

    Google Scholar 

  • Carlos AA, Baillie BK, Kawachi M, Maruyama T (1999) Phylogenetic position of Symbiodiniaceae (Dinophyceae) isolates from tridacnids (Bivalvia), cardiids (Bivalvia), a sponge (Porifera), a soft coral (Anthozoa), and a free-living strain. J Phycol 35(5):1054–1062

    Article  CAS  Google Scholar 

  • Chaidez V, Dreano D, Agusti S, Duarte CM, Hoteit I (2017) Decadal trends in Red Sea maximum surface temperature. Sci Rep 7(1):8144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CITES (2017) Appendix II of CITES. Version 04.10.17

    Google Scholar 

  • Copland JW, Lucas JS (1988) Australian Centre for International Agricultural Research Canberra. In: Giant clams in Asia and the Pacific, vol 9

    Google Scholar 

  • Davies SW, Ries JB, Marchetti A, Granzotti R, Castillo KD (2017) Symbiodiniaceae functional diversity and clade specificity under global change stressors. bioRxiv:190413

    Google Scholar 

  • de Lamarck JBDM (1822) Histoire naturelle des animaux sans vertébres. Verdiére

    Google Scholar 

  • DeBoer TS, Baker AC, Erdmann MV, Ambariyanto JPR, Barber PH (2012) Patterns of Symbiodiniaceae distribution in three giant clam species across the biodiverse Bird’s Head region of Indonesia. Mar Ecol Prog Ser 444:117–132

    Article  CAS  Google Scholar 

  • DiBattista JD, Howard Choat J, Gaither MR, Hobbs JPA, Lozano-Cortés DF, Myers RF, Paulay G, Rocha LA, Toonen RJ, Westneat MW (2016) On the origin of endemic species in the Red Sea. J Biogeogr 43(1):13–30

    Article  Google Scholar 

  • ESA (2017) Candidate species petition under NOAA and NMFS. 82 FR 28946

    Google Scholar 

  • Finney JC, Pettay DT, Sampayo EM, Warner ME, Oxenford HA, LaJeunesse TC (2010) The relative significance of host–habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodiniaceae. Microb Ecol 60(1):250–263

    Article  PubMed  Google Scholar 

  • Fitt WK, Fisher CR, Trench RK (1986) Contribution of the symbiotic dinoflagellate Symbiodiniaceae microadriaticum to the nutrition, growth and survival of larval and juvenile tridacnid clams. Aquaculture 55(1):5–22

    Article  Google Scholar 

  • Fromont J, Garson M (1999) Sponge bleaching on the West and East coasts of Australia. Coral Reefs 18(4):340–340

    Article  Google Scholar 

  • Gladstone W (2000) The ecological and social basis for management of a Red Sea marine-protected area. Ocean Coast Manag 43(12):1015–1032

    Google Scholar 

  • Glynn PW, Maté JL, Baker AC, Calderón MO (2001) Coral bleaching and mortality in Panama and Ecuador during the 1997–1998 El Niþo–Southern Oscillation event: spatial/temporal patterns and comparisons with the 1982–1983 event. Bull Mar Sci 69(1):79–109

    Google Scholar 

  • Heslinga G (1996) Clams to cash: how to make and sell giant clam shell products, vol 125. Center for Tropical and Subtropical Aquaculture, Waimanalo, Hawaii

    Google Scholar 

  • Holt AL, Vahidinia S, Gagnon YL, Morse DE, Sweeney AM (2014) Photosymbiotic giant clams are transformers of solar flux. J R Soc Interface 11(101):20140678

    Article  PubMed  PubMed Central  Google Scholar 

  • Huber M, Eschner A (2010) Tridacna (Chametrachea) costata ROA-QUIAOIT, KOCHZIUS, JANTZEN, AL-ZIBDAH & RICHTER from the Red Sea, a junior synonym of Tridacna squamosina STURANY, 1899 (Bivalvia, Tridacnidae). Annalen des Naturhistorischen Museums in Wien. Serie B für Botanik und Zoologie:153–162

    Google Scholar 

  • Huelsken T, Keyse J, Liggins L, Penny S, Treml EA, Riginos C (2013) A novel widespread cryptic species and phylogeographic patterns within several giant clam species (Cardiidae: Tridacna) from the Indo-Pacific Ocean. PLoS One 8(11):e80858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R (2017) Global warming and recurrent mass bleaching of corals. Nature 543(7645):373

    Article  CAS  PubMed  Google Scholar 

  • Hui M, Nuryanto A, Kochzius M (2017) Concordance of microsatellite and mitochondrial DNA markers in detecting genetic population structure in the boring giant clam Tridacna crocea across the Indo-Malay Archipelago. Mar Ecol 38(1)

    Google Scholar 

  • Hume BC, D'Angelo C, Smith EG, Stevens JR, Burt J, Wiedenmann J (2015) Symbiodiniaceae thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world's hottest sea, the Persian/Arabian Gulf. Sci Rep 5:8562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda S, Yamashita H, Kondo SN, Inoue K, Morishima SY, Koike K (2017) Zooxanthellal genetic varieties in giant clams are partially determined by species-intrinsic and growth-related characteristics. PLoS One 12(2):0172285

    Google Scholar 

  • IUCN (2017) The IUCN Red List of Threatened Species. Version 2017–3

    Google Scholar 

  • Johnson SB, Warén A, Tunnicliffe V, Dover CV, Wheat CG, Schultz TF, Vrijenhoek RC (2015) Molecular taxonomy and naming of five cryptic species of Alviniconcha snails (Gastropoda: Abyssochrysoidea) from hydrothermal vents. Syst Biodivers 13(3):278–295

    Article  Google Scholar 

  • Jones AM, Berkelmans R, van Oppen MJ, Mieog JC, Sinclair W (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc R Soc Lond B Biol Sci 275(1641):1359–1365

    CAS  Google Scholar 

  • Kemp DW, Hernandez-Pech X, Iglesias-Prieto R, Fitt WK, Schmidt GW (2014) Community dynamics and physiology of Symbiodiniaceae spp. before, during, and after a coral bleaching event. Limnol Oceanogr 59(3):788–797

    Article  CAS  Google Scholar 

  • Klumpp D, Bayne B, Hawkins A (1992) Nutrition of the giant clam Tridacna gigas (L.) I. Contribution of filter feeding and photosynthates to respiration and growth. J Exp Mar Biol Ecol 155(1):105–122

    Article  Google Scholar 

  • Klumpp D, Lucas J (1994) Nutritional ecology of the giant clams Tridacna tevoroa and Tridacna derasa from Tonga: influence of light on filter-feeding and photosynthesis. Mar Ecol Prog Ser:147–156

    Google Scholar 

  • Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. In: Marine genetics. Springer, pp, pp 73–90

    Chapter  Google Scholar 

  • Kochzius M, Nuryanto A (2008) Strong genetic population structure in the boring giant clam, Tridacna crocea, across the Indo-Malay Archipelago: implications related to evolutionary processes and connectivity. Mol Ecol 17(17):3775–3787

    Article  CAS  PubMed  Google Scholar 

  • Ladd HS (1934) Geology of Viti Levu, Fiji. Bernice P. Bishop Museum Bulletin 119

    Google Scholar 

  • LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J Phys 37(5):866–880

    Google Scholar 

  • LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141(2):387–400

    Google Scholar 

  • LaJeunesse TC, Loh WK, Van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48(5):2046–2054

    Google Scholar 

  • LaJeunesse TC, Lee SY, Gil-Agudelo DL, Knowlton N, Jeong HJ (2015) Symbiodiniaceae necroappetens sp. nov. (Dinophyceae): an opportunist ‘zooxanthella’ found in bleached and diseased tissues of Caribbean reef corals. Eur J Phycol 50(2):223–238

    Google Scholar 

  • LaJeunesse TC, Pettay DT, Sampayo EM, Phongsuwan N, Brown B, Obura DO, Hoegh-Guldberg O, Fitt WK (2010) Long-standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodiniaceae. J Biogeogr 37(5):785–800

    Article  Google Scholar 

  • LaJeunesse TC, Wham DC, Pettay DT, Parkinson JE, Keshavmurthy S, Chen CA (2014) Ecologically differentiated stress-tolerant endosymbionts in the dinoflagellate genus Symbiodinium (Dinophyceae) Clade D are different species. Phycologia 53(4):305–319

    Google Scholar 

  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28(16):2570–2580

    Google Scholar 

  • Larson C (2016) Shell trade pushes giant clams to the brink. American Association for the Advancement of Science 351(6271):323–324

    Article  CAS  Google Scholar 

  • Lee SY, Jeong HJ, Kang NS, Jang TY, Jang SH, Lajeunesse TC (2015) Symbiodiniaceae tridacnidorum sp. nov., a dinoflagellate common to Indo-Pacific giant clams, and a revised morphological description of Symbiodiniaceae microadriaticum Freudenthal, emended Trench & Blank. Eur J Phycol 50(2):155–172

    Article  Google Scholar 

  • Leggat W, Buck BH, Grice A, Yellowlees D (2003) The impact of bleaching on the metabolic contribution of dinoflagellate symbionts to their giant clam host. Plant Cell Environ 26(12):1951–1961

    Article  CAS  Google Scholar 

  • Lewis A, Adams T, Ledua E (1988) Fiji's giant clam stocks- A review of their distribution, abundance, exploitation and management. ACIAR Monograph Series 98:66–72

    Google Scholar 

  • Linnaeus C (1758) Systema Naturae per Regna tria Naturae, secundum Classes, Ordines, Genera Species, cum Characteribus, Differentiis, Synonymis, Locis. Tomus I. Editio decima. Holmiae: Laur. Salvius:824

    Google Scholar 

  • Lucas JS (1994) The biology, exploitation, and mariculture of giant clams (Tridacnidae). Rev Fish Sci 2(3):181–223

    Article  Google Scholar 

  • Mansour K (1946) Communication between the dorsal edge of the mantle and the stomach of Tridacna. Nature 157(3999):844

    Article  CAS  PubMed  Google Scholar 

  • McGill CJ, Pomory CM (2008) Effects of bleaching and nutrient supplementation on wet weight in the jellyfish Cassiopea xamachana (Bigelow)(Cnidaria: Scyphozoa). Mar Freshw Behav Physiol 41(3):179–189

    Article  Google Scholar 

  • Mekawy MS, Madkour HA (2012) Studies on the Indo-Pacific Tridacnidae (Tridacna maxima) from the Northern Red Sea, Egypt. Int J Geosci 3(05):1089

    Article  Google Scholar 

  • Mies M (2019) Evolution, diversity, distribution and the endangered future of the giant clam–Symbiodiniaceae association. Coral Reefs 38(6):1067–1084

    Google Scholar 

  • Monsecour K (2016) A new species of giant clam (Bivalvia: Cardiidae) from the Western Indian Ocean. Conchylia 46:1–4

    Google Scholar 

  • Naguit MRA (2009) CHARACTERIZATION OF THE SIPHONAL MANTLE OF TRIDACNA CROCEA. Threshold 4

    Google Scholar 

  • Neo ML, Wabnitz CC, Braley RD, Heslinga GA, Favoulet C, Van Wynsberge S, Andréfouët S, Waters C, Tan ASH (2017) Giant clams (Bivalvia: Cardiidae: Tridacninae): a comprehensive update of species and their distribution, current threats and conservation status. Oceanogr Mar Biol Annu Rev 55:87–288

    Google Scholar 

  • Ngugi DK, Antunes A, Brune A, Stingl U (2012) Biogeography of pelagic bacterioplankton across an antagonistic temperature–salinity gradient in the Red Sea. Mol Ecol 21(2):388–405

    Article  CAS  PubMed  Google Scholar 

  • Nijman V, Spaan D, Nekaris KA-I (2015) Large-scale trade in legally protected marine mollusc shells from Java and Bali, Indonesia. PLoS One 10(12):e0140593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishi E (2001) Fine structure and distribution of iridophores in the photo-symbiotic bivalve subfamily Fraginae (Cardioidea). Veliger 44(1):54–65

    Google Scholar 

  • Norton JH, Jones GW (1992) The giant clam: an anatomical and histological atlas. The giant clam: an anatomical and histological atlas

    Google Scholar 

  • Norton J, Prior H, Baillie B, Yellowlees D (1995) Atrophy of the zooxanthellal tubular system in bleached giant clams Tridacna gigas. J Invertebr Pathol 66(3):307–310

    Article  Google Scholar 

  • Osman EO, Smith DJ, Ziegler M, Kürten B, Conrad C, El-Haddad KM, Voolstra CR, Suggett DJ (2018) Thermal refugia against coral bleaching throughout the northern Red Sea. Glob Chang Biol 24(2)

    Google Scholar 

  • Palumbi S (1997) Molecular biogeography of the Pacific. Coral Reefs 16(1):S47–S52

    Article  Google Scholar 

  • Pappas MK, He S, Hardenstine RS, Kanee H, Berumen ML (2017) Genetic diversity of giant clams (Tridacna spp.) and their associated Symbiodiniaceae in the central Red Sea. Mar Biodivers 47(4):1209–1222

    Article  Google Scholar 

  • Penny SS, Willan RC (2014) Description of a new species of giant clam (Bivalvia: Tridacnidae) from Ningaloo Reef, Western Australia. Molluscan Research 34(3):201–211

    Article  Google Scholar 

  • Perez SF, Cook CB, Brooks WR (2001) The role of symbiotic dinoflagellates in the temperature-induced bleaching response of the subtropical sea anemone Aiptasia pallida. J Exp Mar Biol Ecol 256(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol phylogenet Evol 56(1):492–497

    Google Scholar 

  • Pochon X, Pawlowski J, Zaninetti L, Rowan R (2001) High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar Biol 139(6):1069–1078

    Google Scholar 

  • Raitsos DE, Pradhan Y, Brewin RJ, Stenchikov G, Hoteit I (2013) Remote sensing the phytoplankton seasonal succession of the Red Sea. PLoS One 8(6):e64909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter C, Roa-Quiaoit H, Jantzen C, Al-Zibdah M, Kochzius M (2008) Collapse of a new living species of giant clam in the Red Sea. Curr Biol 18(17):1349–1354

    Article  CAS  PubMed  Google Scholar 

  • Roa-Quiaoit HAF (2005) In: Red Sea. PhD, Universitat Bremen (ed) The ecology and culture of giant clams (Tridacnidae) in the Jordanian sector of the Gulf of Aqaba

    Google Scholar 

  • Rowan R, Powers DA (1992) Ribosomal RNA sequences and the diversity of symbiotic dinoflagellates (zooxanthellae). Proc Natl Acad Sci 89(8):3639–3643

    Article  CAS  PubMed  Google Scholar 

  • Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388(6639):265–269

    Google Scholar 

  • Sirenko BI, Scarlato OA (1991) Tridacna rosewateri sp. n., a new species of giant clam from the Indian Ocean. La Conchiglia 22(261):4–9

    Google Scholar 

  • Stat M, Gates RD (2011) Clade D Symbiodiniaceae in scleractinian corals: a “nugget” of hope, a selfish opportunist, an ominous sign, or all of the above? Journal of Marine Biology 2011

    Google Scholar 

  • Stern RF, Andersen RA, Jameson I, Küpper FC, Coffroth MA, Vaulot D, Kasai F (2012) Evaluating the ribosomal internal transcribed spacer (ITS) as a candidate dinoflagellate barcode marker. PLoS One 7(8):e42780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern RF, Horak A, Andrew RL, Coffroth MA, Andersen RA, Küpper FC, Brand J (2010) Environmental barcoding reveals massive dinoflagellate diversity in marine environments. PLoS One 5(11):e13991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Su Y, Hung J-H, Kubo H, Liu L-L (2014) Tridacna noae (Röding, 1798)–a valid giant clam species separated from Tridacna maxima (Röding, 1798) by morphological and genetic data. Raffles Bulletin of Zoology 62

    Google Scholar 

  • Sweeney A, Holt A, Gagnon Y, Morse D (2012) Giant clam iridocytes optimize photosynthetic symbiosis. In: Annual Meeting of the Society-for-Integrative-and-Comparative-Biology (SICB). OXFORD UNIV PRESS INC, pp E171–E171

    Google Scholar 

  • Toller WW, Rowan R, Knowlton N (2001) Zooxanthellae of the Montastraea annularis species complex: patterns of distribution of four taxa of Symbiodiniaceae on different reefs and across depths. Biol Bull 201(3):348–359

    Article  CAS  PubMed  Google Scholar 

  • van Oppen MJ, Palstra FP, Piquet AMT, Miller DJ (2001) Patterns of coral–dinoflagellate associations in Acropora: significance of local availability and physiology of Symbiodinium strains and host–symbiont selectivity. Proc R Soc London, Ser B Biol Sci 268(1478):1759–1767

    Google Scholar 

  • Van Wynsberge S, Andréfouët S, Gaertner-Mazouni N, Wabnitz CC, Gilbert A, Remoissenet G, Payri C, Fauvelot C (2016) Drivers of density for the exploited giant clam Tridacna maxima: a meta-analysis. Fish Fish 17(3):567–584

    Article  Google Scholar 

  • Venkatesan V (2010) Marine ornamental molluscs. National Training Programme on Marine Ornamental Fish Culture, pp 27–32

    Google Scholar 

  • Venn A, Loram J, Douglas A (2008) Photosynthetic symbioses in animals. J Exp Bot 59(5):1069–1080

    Article  CAS  PubMed  Google Scholar 

  • Voolstra CR, Miller DJ, Ragan MA, Hoffmann A, Hoegh-Guldberg O, Bourne D, Ball E, Ying H, Foret S, Takahashi S (2015) The ReFuGe 2020 Consortium—using “omics” approaches to explore the adaptability and resilience of coral holobionts to environmental change. Front Mar Sci 2:68

    Google Scholar 

  • Warner PA, Oppen MJ, Willis BL (2015) Unexpected cryptic species diversity in the widespread coral Seriatopora hystrix masks spatial-genetic patterns of connectivity. Mol Ecol 24(12):2993–3008

    Article  PubMed  Google Scholar 

  • Yonge C (1975) Giant clams. Sci Am 232(4):96–105

    Article  CAS  PubMed  Google Scholar 

  • Ziegler M, FitzPatrick SK, Burghardt I, Liberatore KL, Leffler AJ, Takacs-Vesbach C, Shepherd U (2014) Thermal stress response in a dinoflagellate-bearing nudibranch and the octocoral on which it feeds. Coral Reefs 33(4):1085–1099

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa Pappas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pappas, M. (2021). The Diversity of the Giant Clams and Their Associated Symbiodiniaceae Algae in the Red Sea. In: Jawad, L.A. (eds) The Arabian Seas: Biodiversity, Environmental Challenges and Conservation Measures. Springer, Cham. https://doi.org/10.1007/978-3-030-51506-5_16

Download citation

Publish with us

Policies and ethics