Skip to main content

Regulation by Environmental Conditions of the Repair of Photosystem II in Cyanobacteria

  • Chapter
Photoprotection, Photoinhibition, Gene Regulation, and Environment

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 21))

Summary

The activity of photosystem II (PS II) is severely restricted by a variety of environmental factors and, under environmental stress, is determined by the balance between the rate of damage to PS II and the rate of the repair of damaged PS II. The effects of environmental stress on damage and repair can be examined separately and it appears that, while light can damage PS II directly, most types of environmental stress act primarily by inhibiting the repair of PS II. Studies in cyanobacteria have demonstrated that repair-inhibiting conditions include oxidative stress, salt stress, and low-temperatures stress, each of which suppresses the de novo synthesis of proteins, in particular the D1 protein, which is required for the repair of PS II. The synergistic effects of combinations of different types of environmental stress suggest that it is the repair process that determines the sensitivity of PS II to specific environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Summary

  • Adams WW III, Demmig-Adams B, Rosenstiel TN, Brightwell AK and Ebbert V (2002) Photosynthesis and photoprotection in overwintering plants. Plant Biol 4: 545–557

    Article  Google Scholar 

  • Adams WW III, Zarter CR, Ebbert V and Demmig-Adams B (2004) Photoprotective strategies of overwintering evergreens. Bioscience 54: 41–49

    Article  Google Scholar 

  • Adir N, Zer H, Shochat S and Ohad I (2003) Photoinhibition - a historical perspective. Photosynth Res 76: 343–370

    Article  PubMed  CAS  Google Scholar 

  • Alia, Kondo Y, Sakamoto A, Nonaka H, Hayashi H, Pardha Saradhi P, Chen THH and Murata N (1999) Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase. Plant Mol Biol 40: 279–288

    Google Scholar 

  • Allakhverdiev SI and Murata N (2004) Environmental stress inhibits the synthesis de novo of D1 protein in the photodamagerepair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1657: 23–32

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Setlikova E, Klimov VV and Setlik I (1987) In photoinhibited photosystem II particles pheophytin photoreduction remains unimpaired. FEBS Lett 226: 186–190

    Article  CAS  Google Scholar 

  • Allakhverdiev SI, Nishiyama Y, Suzuki I, Tasaka Y and Murata N (1999) Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc Natl Acad Sci USA 96: 5862–5867

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, NishiyamaY, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y and Murata N (2002) Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiol 130: 1443–1453

    Google Scholar 

  • Allakhverdiev SI, Mohanty P and Murata N (2003) Dissection of photodamage at low temperature and repair in darkness suggests the existence of an intermediate form of photodamaged photosystem II. Biochemistry 42: 14277–14283

    Article  PubMed  CAS  Google Scholar 

  • Ananyev G, Wydrzynski T, Renger G and Klimov V (1992) Transient peroxide formation by the manganese-containing, redox-active donor side of photosystem II upon inhibition of O2 evolution with lauroylcholine chloride. Biochim Biophys Acta 1100: 303–311

    Google Scholar 

  • Anbudurai PR, Mor TS, Ohad I, Shestakov SV and Pakrasi HB (1994) The ctpA gene encodes the C-terminal processing protease for the D1 protein of the photosystem II reaction center. Proc Natl Acad Sci USA 91: 8082–8086

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM (2001) Does functional photosystem II complex have an oxygen channel? FEBS Lett 488: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Andersson B and Aro E-M (2001) Photodamage and D1 protein turnover in photosystem II. In: AroE-Mand Andersson B(eds) Regulation of Photosynthesis, pp 377–393. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Aro E-M, Virgin I and Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143: 113–134

    Article  PubMed  CAS  Google Scholar 

  • Arntz B and Trebst A (1986) On the role of the QB protein of photosystem II in photoinhibition. FEBS Lett 194: 43–49

    Article  CAS  Google Scholar 

  • Asada K (1996) Radical production and scavenging in the chloroplasts. In: Baker NR (ed) Photosynthesis and the Environment, pp 123–150. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50: 601–639

    Article  PubMed  CAS  Google Scholar 

  • Ayala A, Parrado J, Bougria M and Machado A (1996) Effect of oxidative stress, produced by cumene hydroperoxide, on the various steps of protein synthesis. J Biol Chem 271: 23105– 23110

    Article  PubMed  CAS  Google Scholar 

  • Baffert C, Collomb MN, Deronzier A, Pecaut J, Limburg J, Crabtree RH and Brudvig GW (2002) Two new terpyridine dimanganese complexes: a manganese(III,III) complex with a single unsupported oxo bridge and a manganese (III,IV) complex with a dioxo bridge. Synthesis, structure, and redox properties. Inorganic Chem 41: 1404–1411

    Article  CAS  Google Scholar 

  • Berry J and Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Ann Rev Plant Physiol 31: 491–543

    Article  Google Scholar 

  • BjörkmannOand Powles SB (1984) Inhibition of photosynthetic reactions underwater stress: interaction with light level. Planta 161: 490–504

    Article  Google Scholar 

  • Booij-James IS, Swegle WM, Edelman M and Mattoo AK (2002) Phosphorylation of the D1 photosystem II reaction center protein is controlled by an endogenous circadian rhythm. Plant Physiol 130: 2069–2075

    Article  PubMed  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218: 443–448

    Article  PubMed  Google Scholar 

  • Boyer JS and Bowen BL (1970) Inhibition of oxygen evolution in chloroplasts isolated from leaves with low water potentials. Plant Physiol 45: 612–615

    PubMed  CAS  Google Scholar 

  • Callahan FE, Becker DW and Cheniae GM (1986) Studies on the photoinactivation of the water-oxidizing enzyme. II. Characterization of weak-light photoinhibition of PSII and its lightinduced recovery. Plant Physiol 82: 261–269

    PubMed  CAS  Google Scholar 

  • Carrell TG, Bourles E, Lin M and Dismukes GC (2003) Transition from hydrogen atom to hydride abstraction by Mn4O4 (O2PPh2)6 versus [Mn4O4(O2PPh2)6]+: O-H bond dissociation energies and the formation of Mn4O3(OH)(O2PPh2)6. Inorganic Chem 42: 2849–2858

    Article  CAS  Google Scholar 

  • Chen G-X, Kazimir J and Cheniae GM (1992) Photoinhibition of hydroxylamine-extracted photosystem II membranes: studies of the mechanism. Biochemistry 31: 11072–11083

    Article  PubMed  CAS  Google Scholar 

  • Chung SK and Jung J (1995) Inactivation of the acceptor side and degradation of the D1 protein of photosystem II by singlet oxygen photogenerated from the outside. Photochem Photobiol 61: 383–389

    Article  CAS  Google Scholar 

  • Cleland RE (1988) Molecular events of photoinhibitory inactivation in the reaction centre of photosystem II. Aus J Plant Physiol 15: 135–150

    Article  CAS  Google Scholar 

  • Demeter S, Neale PJ and Melis A (1987) Photoinhibition: Impairment of the primary charge separation between P680 and pheophytin in PSII of chloroplasts. FEBS Lett 214: 370–374

    Article  CAS  Google Scholar 

  • Demmig-Adams B and Adams WW III (1992) Photoprotection and other responses of plants to high-light stress. Annu Rev Plant Physiol Plant Mol Biol 43: 599–626

    Article  CAS  Google Scholar 

  • Dukan S and Nyström T (1999) Oxidative stress defense and deterioration of growth-arrested Escherichia coli cells. J Biol Chem 274: 26027–26032

    Article  PubMed  CAS  Google Scholar 

  • Gombos Z, Wada H and Murata N (1994) The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: a mechanism of chilling tolerance. Proc Natl Acad Sci USA 91: 8787–8791

    Article  PubMed  CAS  Google Scholar 

  • Greenberg BM, Gaba V, Canaani O, Malkin S, Mattoo AK and Edelman M (1989) Separate photosensitizers mediate degradation of the 32-kDa photosystem II reaction center protein in the visible and UV spectral regions. Proc Natl Acad Sci USA 86: 6617–6620

    Article  PubMed  CAS  Google Scholar 

  • Hagemann M and Erdmann N (1997) Environmental stresses. In: Rai AK (ed) Cyanobacterial Nitrogen Metabolism and Environmental Biotechnology, pp 156–221. Springer-Verlag, Heidelberg, Germany

    Google Scholar 

  • Halliwell B and Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186: 1–88

    Article  PubMed  CAS  Google Scholar 

  • Hertwig B, Streb P and Feierabend J (1992) Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions. Plant Physiol 100: 1547–1553

    PubMed  CAS  Google Scholar 

  • Hideg E, Spetea C and Vass I (1994) Singlet oxygen and free radical production during acceptor- and donor-side-induced photoinhibition. Studies with spin trapping EPR spectroscopy. Biochim Biophys Acta 1186: 143–152

    Article  CAS  Google Scholar 

  • Hideg E, K’alai T, Hideg K and Vass I (1998) Photoinhibition of photosynthesis in vivo results in singlet oxygen production: detection via nitroxide-induced fluorescence quenching in broad bean leaves. Biochemistry 37: 11405–11411

    Article  PubMed  CAS  Google Scholar 

  • Hihara Y, Kamei A, Kanehisa M, Kaplan A and Ikeuchi M (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13: 793–806

    Article  PubMed  CAS  Google Scholar 

  • Hirose T and Sugiura M (1996) Cis-acting elements and transacting factors for accurate translation of chloroplast psbA mRNAs: development of an in vitro translation system from tobacco chloroplasts. EMBO J 15: 1687–1695

    PubMed  CAS  Google Scholar 

  • Inagaki N, Yamamoto Y and Satoh K (2001) A sequential twostep proteolytic process in the carboxy-terminal truncation of precursor D1 protein in Synechocystis sp. PCC 6803. FEBS Lett 509: 197–201

    Article  PubMed  CAS  Google Scholar 

  • Jones HG (1973) Limiting factors in photosynthesis. New Phytol 72: 1089–1094

    Article  Google Scholar 

  • Jones LW and Kok B (1966a) Photoinhibition of chloroplast reactions. I. Kinetics and action spectra. Plant Physiol 41: 1037– 1043

    CAS  Google Scholar 

  • Jones LW and Kok B (1966b) Photoinhibition of chloroplast reactions. II. Multiple effects. Plant Physiol 41: 1044–1049

    CAS  Google Scholar 

  • Jung J and Kim HS (1990) The chromophores as endogenous sensitizers involved in the photogeneration of singlet oxygen in spinach thylakoids. Photochem Photobiol 52: 1003–1009

    Article  CAS  Google Scholar 

  • Kanervo E, Tasaka Y, Murata N and Aro E-M (1997) Membrane lipid unsaturation modulates processing of the photosystem II reaction-center protein D1 at low temperatures. Plant Physiol 114: 841–849

    Article  PubMed  CAS  Google Scholar 

  • Kanesaki Y, Suzuki I, Allakhverdiev SI, Mikami K and Murata N (2002) Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 290: 339–348

    Article  PubMed  CAS  Google Scholar 

  • Keck RW and Boyer JS (1974) Chloroplast response to low leaf water potential. III. Differing inhibition of electron transport and photophosphorylation. Plant Physiol 53: 474–479

    Article  PubMed  CAS  Google Scholar 

  • Keren N and Ohad I (1998) State transition and photoinhibition. In: Rochaix J-D, Goldschmidt-Clermont M and Merchant S (eds) The Molecular Biology of Chloroplast and Mitochondria in Chlamydomonas, Advances in Photosynthesis, Vol 7, pp 569–596. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Keren N, Berg A, van Kan PJM, Levanon H and Ohad I (1997) Mechanism of photosystem II photoinactivation and D1 protein degradation at low light: The role of back electron flow. Proc Natl Acad Sci USA 94: 1579–1584

    Article  PubMed  CAS  Google Scholar 

  • Klimov VV, Allakhverdiev SI, Demeter S and Krasnovsky AA (1979) Photoreduction of pheophytin in the photosystem II of chloroplasts depending on the oxidation-reduction potential of the medium. Dokl Acad Nauk USSR 249: 227–230

    CAS  Google Scholar 

  • Klimov VV, Shafiev MA and Allakhverdiev SI (1990) Photoinactivation of the reactivation capacity of photosystem II in pea subchloroplast particles after a complete removal of manganese. Photosynth Res 23: 59–65

    Article  CAS  Google Scholar 

  • Knox JP and Dodge AD (1985) Singlet oxygen and plants. Phytochemistry 24: 889–896

    Article  CAS  Google Scholar 

  • Kyle DJ, Ohad I and Arntzen CJ (1984) Membrane protein damage and repair: selective loss of quinone-protein function in chloroplast membranes. Proc Natl Acad Sci USA 181: 4070– 4074

    Article  Google Scholar 

  • Lee HY, Hong YN and Chow WS (2001) Photoinactivation of photosystem II complex and photoprotection by nonfunctional neighbours in Capsicum annuumL. leaves. Planta 212: 332–342

    Article  CAS  Google Scholar 

  • Lu C-M and Zhang J-H (1999) Effects of salt stress on PSII function and photoinhibition in the cyanobacterium Spirulina platensis. J Plant Physiol 155: 740–745

    CAS  Google Scholar 

  • Mattoo AK, Hoffman-Falk H, Marder JB and Edelman M (1984) Regulation of protein metabolism: Coupling of photosynthetic electron transport to in vivo degradation of the rapidly metabolized 32-kilodalton protein of the chloroplast membranes. Proc Natl Acad Sci USA 81: 1380–1384

    Article  PubMed  CAS  Google Scholar 

  • Mattoo AK, Marder JB and Edelman M (1989) Dynamics of the photosystem II reaction center. Cell 56: 241–246

    Article  PubMed  CAS  Google Scholar 

  • Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts:what modulates the rate of photodamage in vivo? Trends Plant Sci 4: 130–135

    Article  PubMed  Google Scholar 

  • Miyao M, Ikeuchi M, Yamamoto N and Ono T (1995) Specific degradation of the D1 protein of photosystem II by treatment with hydrogen peroxide in darkness: implication for the mechanism of degradation of the D1 protein under illumination. Biochemistry 34: 10019–10026

    Article  PubMed  CAS  Google Scholar 

  • Moon BY, Higashi S, Gombos Z and Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 92: 6219–6223

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y and Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356: 710–713

    Article  CAS  Google Scholar 

  • Neale PJ and Melis A (1989) Salinity-stress enhances photoinhibition of photosystem II in Chlamydomonas reinhardtii. J Plant Physiol 134: 619–622

    CAS  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Yamamoto H, Hayashi H and Murata N (2004) Singlet oxygen inhibits the repair of photosystem II by suppressing translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43: 11321– 11330

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A and Murata N (2001) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 20: 5587–5594

    Article  PubMed  CAS  Google Scholar 

  • Ohad I, Kyle DJ and Arntzen CJ (1984) Membrane protein damage and repair: removal and replacement of inactivated 32- kilodalton polypeptide in chloroplast membranes. J Cell Biol 99: 481–485

    Article  PubMed  CAS  Google Scholar 

  • Ohad I, Keren N, Zer H, Gong HS, Mor TS, Gal A, Tal S and Eisenberg-Domovich Y (1994) Light-induced degradation of the photochemical reaction center II-D1 protein in vivo: An integrative approach. In: Baker NR, and Bowyer JR (eds) Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field, pp 161–177. Bios Scientific Publishers, Oxford

    Google Scholar 

  • Okada K, Ikeuchi M, Yamamoto N, Ono T and Miyao M (1996) Selective and specific cleavage of the D1 and D2 proteins of photosystem II by exposure to singlet oxygen: factors responsible for the susceptibility to cleavage of the proteins. Biochim Biophys Acta 1274: 73–79

    Article  Google Scholar 

  • Öquist G and Huner NPA (1991) Effects of cold-acclimation on the susceptibility of photosynthesis to photoinhibition in Scots pine and in winter and spring cereals: A fluorescence analysis. Func Ecol 5: 91–100

    Article  Google Scholar 

  • Öquist G and Huner NPA (2003) Photosynthesis of overwintering evergreen plants. Annu Rev Plant Biol 54: 329–355

    Article  PubMed  CAS  Google Scholar 

  • Öquist G, Greer DH and Ogren E (1987) Light stress at low temperature. In: Kyle DJ, Osmond CB and Arntzen CJ (eds) Topics in Photosynthesis: Photoinhibition, pp 67–87. Elsevier Science Publishers BV, Amsterdam, The Netherlands

    Google Scholar 

  • Öquist G, Hurry VM and Huner NPA (1993) The temperature dependence of the redox state of QA and susceptibility of photosynthesis to photoinhibition. Plant Physiol Biochem 31: 683–691

    Google Scholar 

  • Rintamäki E, Kettunen R, Tyystjärvi E and Aro E-M (1995) Light-dependent phosphorylation of D1 reaction center protein of photosystem II: hypothesis for the functional role in vivo. Physiol Plant 93: 191–195

    Article  Google Scholar 

  • Park Y-I, Chow WS and Anderson JM (1995) Light inactivation of functional photosystem II in leaves of peas grown in moderate light depends on photon exposure. Planta 196: 401–411

    Article  CAS  Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35: 15–44

    Article  CAS  Google Scholar 

  • Pr’asil O, Adir N and Ohad I (1992) Dynamics of photosystem II: mechanism of photoinhibition and recovery processes. In: Barber J (ed) Topics in Photosynthesis, Vol 11, The Photosystems: Structure, Function and Molecular Biology, pp 295–348. Elsevier Science Publishers, Amsterdam, The Netherlands

    Google Scholar 

  • Setlik I, Allakhverdiev SI, Nedbal L, Setlikova E and Klimov VV (1990) Three types of photosystem II photoinactivation: I. Damaging processes on the acceptor side. Photosynth Res 23: 39–48

    Article  CAS  Google Scholar 

  • Sharma PK and Hall DO (1991) Interaction of salt stress and photoinhibition on photosynthesis in barley and sorghum. J Plant Physiol 138: 614–619

    CAS  Google Scholar 

  • Sopory SK, Greenberg BM, Mehta RA, Edelman M and Mattoo AK (1990) Free radical scavengers inhibit light-dependent degradation of the 32 kDa photosystem II reaction center protein. Z Naturforsch 45c: 412–417

    Google Scholar 

  • Tamarit J, Cabiscol E and Ros J (1998) Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress. J Biol Chem 273: 3027–3032

    Article  PubMed  CAS  Google Scholar 

  • Telfer A, Bishop SM, Phillips D and Barber J (1994) The isolated photosynthetic reaction center of PS II as a sensitiser for the formation of singlet oxygen; detection and quantum yield determination using a chemical trapping technique. J Biol Chem 269: 13244–13253

    PubMed  CAS  Google Scholar 

  • Theg SM, Filar LJ and Dilley RA (1986) Photoinactivation of chloroplasts already inhibited on the oxidizing side of photosystem II. Biochim Biophys Acta 849: 104–111

    Article  CAS  Google Scholar 

  • Trebitsh T and Danon A (2001) Translation of chloroplast psbA mRNA is regulated by signals initiated by both photosystems II and I. Proc Natl Acad Sci USA 21: 12289– 12294

    Article  Google Scholar 

  • Tyystjärvi E and Aro E-M (1996) The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc Natl Acad Sci USA 93: 2213–2218

    Article  PubMed  Google Scholar 

  • Tyystjärvi E, Kairavuo M, Pätsikkä E, Keränen M, Khriachtchev L, Tuominen I, Guiamet JJ and Tyystjärvi T (2001) The quantum yield of photoinhibition is the same in flash light and under continuous illumination: implication for the mechanism. In: Critchley C (ed) Proceedings of the 12th International Congress of Photosynthesis, S8-P032. CSIRO Publishing, Melbourne, Australia

    Google Scholar 

  • Tyystjärvi T, Tuominen I, Herranen M, Aro E-M and Tyystjärvi E (2002) Action spectrumof psbA gene transcription is similar to that of photoinhibition in Synechocystissp. PCC 6803. FEBS Lett 516: 167–171

    Article  PubMed  Google Scholar 

  • Vass I, Styring S, Hundal T, Koivuniemi A, Aro E-M and Andersson B (1992) The reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation. Proc Natl Acad Sci USA 89: 1408–1412

    Article  PubMed  CAS  Google Scholar 

  • Wada H, Gombos Z and Murata N (1990) Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347: 200–203

    Article  PubMed  CAS  Google Scholar 

  • Wada H, Gombos Z and Murata N (1994) Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. Proc Natl Acad Sci USA 91: 4273–4277

    Article  PubMed  CAS  Google Scholar 

  • Yohn CB, Cohen A, Danon A and Mayfield SP (1996) Altered mRNA binding activity and decreased translation initiation in a nuclear mutant lacking translation of the chloroplast psbA mRNA. Mol Cell Biol 16: 3560–3566

    PubMed  CAS  Google Scholar 

  • Zhang L, Paakkarinen V, van Wijk KJ and Aro E-M (2000) Biogenesis of the chloroplast-encoded D1 protein: regulation of translation elongation, insertion, and assembly into photosystem II. Plant Cell 12: 1769–1781

    Article  PubMed  CAS  Google Scholar 

  • Zolla L and Rinalducci S (2002) Involvement of active oxygen species in degradation of light-harvesting proteins under light stresses. Biochemistry 41: 14391–14402

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nishiyama, Y., Allakhverdiev, S.I., Murata, N. (2008). Regulation by Environmental Conditions of the Repair of Photosystem II in Cyanobacteria. In: Demmig-Adams, B., Adams, W.W., Mattoo, A.K. (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment. Advances in Photosynthesis and Respiration, vol 21. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3579-9_13

Download citation

Publish with us

Policies and ethics