Skip to main content

Metabolic Imaging

  • Chapter
  • First Online:
CyberKnife NeuroRadiosurgery
  • 672 Accesses

Abstract

Data obtained with positron emission tomography (PET) scanning can be integrated with CyberKnife treatment planning, enabling access to metabolic information with satisfactory spatial accuracy. Molecular imaging can play a role in reducing interobserver variability for the delineation of the target volume. Consequently, it allows the attainment of greater conformity between the boundaries of the target volume and the real boundaries of the tumor in the patient’s body. Positron emission tomography data can be successfully combined with magnetic resonance imaging data to provide specific information for defining the target volume for the radiosurgical treatment in patients with recurrent brain tumors, such as glioma, metastasis, meningiomas, and pituitary adenoma. We briefly review the potential and limitations of integration of metabolic imaging for radiosurgery treatment of diseases of the brain and spine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Suchorska B, Tonn JC, Jansen NL. PET imaging for brain tumor diagnostics. Curr Opin Neurol. 2014;27(6):683–8. https://doi.org/10.1097/WCO.0000000000000143. Review. PubMed PMID: 25333605.

    Article  CAS  PubMed  Google Scholar 

  2. Pirotte B, Goldman S, Massager N, David P, Wikler D, Vandesteene A, Salmon I, Brotchi J, Levivier M. Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med. 2004;45(8):1293–8. PubMed PMID: 15299051.

    CAS  PubMed  Google Scholar 

  3. Heiss P, Mayer S, Herz M, Wester HJ, Schwaiger M, Senekowitsch-Schmidtke R. Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med. 1999;40(8):1367–73. PubMed PMID: 10450690.

    CAS  PubMed  Google Scholar 

  4. Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, la Fougère C, Langen KJ, Lopci E, Lowe V, McConathy J, Quick HH, Sattler B, Schuster DM, Tonn JC, Weller M. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [(18)F]FDG:version 1.0. Eur J Nucl Med Mol Imaging. 2019;46(3):540–57. https://doi.org/10.1007/s00259-018-4207-9. Epub 2018 Dec 5. PubMed PMID: 30519867; PubMed Central PMCID: PMC6351513.

    Article  CAS  PubMed  Google Scholar 

  5. Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R, Smith GT, SNM. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010;51(11):1813–20. https://doi.org/10.2967/jnumed.110.082263. Erratum in: J Nucl Med. 2011;52(3):495. PubMed PMID: 21051652.

    Article  PubMed  Google Scholar 

  6. Vander Borght T, Asenbaum S, Bartenstein P, Halldin C, Kapucu O, Van Laere K, Varrone A, Tatsch K, European Association of Nuclear Medicine (EANM). EANM procedure guidelines for brain tumour imaging using labelled amino acid analogues. Eur J Nucl Med Mol Imaging. 2006;33(11):1374–80. PubMed PMID: 16932934.

    Article  CAS  PubMed  Google Scholar 

  7. Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, Townsend DW, Berland LL, Parker JA, Hubner K, Stabin MG, Zubal G, Kachelriess M, Cronin V, Holbrook S. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med. 2006;47(5):885–95. Erratum in: J Nucl Med. 2006 Jun;47(6):903. PubMed PMID: 16644760.

    PubMed  Google Scholar 

  8. Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, Oyen WJ, Kotzerke J, Hoekstra OS, Pruim J, Marsden PK, Tatsch K, Hoekstra CJ, Visser EP, Arends B, Verzijlbergen FJ, Zijlstra JM, Comans EF, Lammertsma AA, Paans AM, Willemsen AT, Beyer T, Bockisch A, Schaefer-Prokop C, Delbeke D, Baum RP, Chiti A, Krause BJ. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010;37(1):181–200. https://doi.org/10.1007/s00259-009-1297-4. PubMed PMID: 19915839; PubMed Central PMCID: PMC2791475.

    Article  PubMed  Google Scholar 

  9. Mantlik F, Hofmann M, Werner MK, Sauter A, Kupferschläger J, Schölkopf B, Pichler BJ, Beyer T. The effect of patient positioning aids on PET quantification in PET/MR imaging. Eur J Nucl Med Mol Imaging. 2011;38(5):920–9. https://doi.org/10.1007/s00259-010-1721-9. Epub 2011 Feb 10. PubMed PMID: 21308373.

    Article  PubMed  Google Scholar 

  10. Mutic S, Palta JR, Butker EK, Das IJ, Huq MS, Loo LN, Salter BJ, McCollough CH, Van Dyk J, AAPM Radiation Therapy Committee Task Group No. 66. Quality assurance for computed-tomography simulators and the computed-tomography-simulation process: report of the AAPM Radiation Therapy Committee Task Group No. 66. Med Phys. 2003;30(10):2762–92. PubMed PMID: 14596315.

    Article  PubMed  Google Scholar 

  11. Mawlawi O, Erasmus JJ, Munden RF, Pan T, Knight AE, Macapinlac HA, Podoloff DA, Chasen M. Quantifying the effect of IV contrast media on integrated PET/CT: clinical evaluation. AJR Am J Roentgenol. 2006;186(2):308–19. PubMed PMID: 16423932.

    Article  PubMed  Google Scholar 

  12. Paulus DH, Oehmigen M, GrĂ¼neisen J, Umutlu L, Quick HH. Whole-body hybrid imaging concept for the integration of PET/MR into radiation therapy treatment planning. Phys Med Biol. 2016;61(9):3504–20. https://doi.org/10.1088/0031-9155/61/9/3504. Epub 2016 Apr 7. PubMed PMID: 27055014.

    Article  CAS  PubMed  Google Scholar 

  13. Paulus DH, Thorwath D, Schmidt H, Quick HH. Towards integration of PET/MR hybrid imaging into radiation therapy treatment planning. Med Phys. 2014;41(7):072505. https://doi.org/10.1118/1.4881317. PubMed PMID: 24989408.

    Article  PubMed  Google Scholar 

  14. Hofmann M, Steinke F, Scheel V, Charpiat G, Farquhar J, Aschoff P, Brady M, Schölkopf B, Pichler BJ. MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med. 2008;49(11):1875–83. https://doi.org/10.2967/jnumed.107.049353. Epub 2008 Oct 16. PubMed PMID: 18927326.

    Article  PubMed  Google Scholar 

  15. Minn H, Zasadny KR, Quint LE, Wahl RL. Lung cancer: reproducibility of quantitative measurements for evaluating 2-[F-18]-fluoro-2-deoxy-D-glucose uptake at PET. Radiology. 1995;196(1):167–73. PubMed PMID: 7784562.

    Article  CAS  PubMed  Google Scholar 

  16. EANM Physics Committee, Busemann Sokole E, PÅ‚achcĂ­nska A, Britten A, EANM Working Group on Nuclear Medicine Instrumentation Quality Control, Lyra Georgosopoulou M, Tindale W, Klett R. Routine quality control recommendations for nuclear medicine instrumentation. Eur J Nucl Med Mol Imaging. 2010;37(3):662–71. https://doi.org/10.1007/s00259-009-1347-y. PubMed PMID: 20130859.

    Article  Google Scholar 

  17. Kumar R, Chauhan A, Zhuang H, Chandra P, Schnall M, Alavi A. Clinicopathologic factors associated with false negative FDG-PET in primary breast cancer. Breast Cancer Res Treat. 2006;98(3):267–74. Epub 2006 Mar 23. PubMed PMID: 16555126.

    Article  PubMed  Google Scholar 

  18. McCall KC, Barbee DL, Kissick MW, Jeraj R. PET imaging for the quantification of biologically heterogeneous tumours: measuring the effect of relative position on image-based quantification of dose-painting targets. Phys Med Biol. 2010;55(10):2789–806. https://doi.org/10.1088/0031-9155/55/10/001. Epub 2010 Apr 22. PubMed PMID: 20413832; PubMed Central PMCID: PMC2942022.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jaskowiak CJ, Bianco JA, Perlman SB, Fine JP. Influence of reconstruction iterations on 18F-FDG PET/CT standardized uptake values. J Nucl Med. 2005;46(3):424–8. PubMed PMID: 15750154.

    PubMed  Google Scholar 

  20. Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, Kapatoes JM, Low DA, Murphy MJ, Murray BR, Ramsey CR, Van Herk MB, Vedam SS, Wong JW, Yorke E. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys. 2006;33(10):3874–900. PubMed PMID: 17089851.

    Article  PubMed  Google Scholar 

  21. Van de Steene J, Linthout N, de Mey J, Vinh-Hung V, Claassens C, Noppen M, Bel A, Storme G. Definition of gross tumor volume in lung cancer: inter-observer variability. Radiother Oncol. 2002;62(1):37–49. PubMed PMID: 11830311.

    Article  PubMed  Google Scholar 

  22. Berson AM, Stein NF, Riegel AC, Destian S, Ng T, Tena LB, Mitnick RJ, Heiba S. Variability of gross tumor volume delineation in head-and-neck cancer using PET/CT fusion, Part II: the impact of a contouring protocol. Med Dosim. 2009;34(1):30–5. https://doi.org/10.1016/j.meddos.2007.08.003. Epub 2007 Sep 29. PubMed PMID: 19181253.

    Article  PubMed  Google Scholar 

  23. Schakel T, Hoogduin JM, Terhaard CH, Philippens ME. Diffusion weighted MRI in head-and-neck cancer: geometrical accuracy. Radiother Oncol. 2013;109(3):394–7. https://doi.org/10.1016/j.radonc.2013.10.004. Epub 2013 Oct 31. PubMed PMID: 24183864.

    Article  PubMed  Google Scholar 

  24. Wang D, Schultz CJ, Jursinic PA, Bialkowski M, Zhu XR, Brown WD, Rand SD, Michel MA, Campbell BH, Wong S, Li XA, Wilson JF. Initial experience of FDG-PET/CT guided IMRT of head-and-neck carcinoma. Int J Radiat Oncol Biol Phys. 2006;65(1):143–51. PubMed PMID: 16618577.

    Article  PubMed  Google Scholar 

  25. Shepherd T, Teras M, Beichel RR, Boellaard R, Bruynooghe M, Dicken V, Gooding MJ, Julyan PJ, Lee JA, Lefèvre S, Mix M, Naranjo V, Wu X, Zaidi H, Zeng Z, Minn H. Comparative study with new accuracy metrics for target volume contouring in PET image guided radiation therapy. IEEE Trans Med Imaging. 2012;31(11):2006–24. https://doi.org/10.1109/TMI.2012.2202322. Epub 2012 Jun 4. PubMed PMID: 22692898; PubMed Central PMCID: PMC5570440.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xing L, Siebers J, Keall P. Computational challenges for image-guided radiation therapy: framework and current research. Semin Radiat Oncol. 2007;17(4):245–57. Review. PubMed PMID: 17903702.

    Article  PubMed  Google Scholar 

  27. Kaul D, Badakhshi H, Gevaert T, Pasemann D, Budach V, Tuleasca C, Gruen A, Prasad V, Levivier M, Kufeld M. Dosimetric comparison of different treatment modalities for stereotactic radiosurgery of meningioma. Acta Neurochir (Wien). 2015;157(4):559–63. https://doi.org/10.1007/s00701-014-2272-9. discussion 563–4. . Epub 2014 Nov 21. Erratum in: Acta Neurochir (Wien). 2015;157(4):565. PubMed PMID:25413163.

    Article  Google Scholar 

  28. Gehler B, Paulsen F, OksĂ¼z MO, Hauser TK, Eschmann SM, Bares R, Pfannenberg C, Bamberg M, Bartenstein P, Belka C, Ganswindt U. [68Ga]-DOTATOC-PET/CT for meningioma IMRT treatment planning. Radiat Oncol. 2009;4:56. https://doi.org/10.1186/1748-717X-4-56. PubMed PMID: 19922642; PubMed Central PMCID: PMC2785827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Graf R, Nyuyki F, Steffen IG, Michel R, Fahdt D, Wust P, Brenner W, Budach V, Wurm R, Plotkin M. Contribution of 68Ga-DOTATOC PET/CT to target volume delineation of skull base meningiomas treated with stereotactic radiation therapy. Int J Radiat Oncol Biol Phys. 2013;85(1):68–73. https://doi.org/10.1016/j.ijrobp.2012.03.021. Epub 2012 May 9. PubMed PMID: 22575489.

    Article  PubMed  Google Scholar 

  30. Milker-Zabel S, Zabel-du Bois A, Henze M, Huber P, Schulz-Ertner D, Hoess A, Haberkorn U, Debus J. Improved target volume definition for fractionated stereotactic radiotherapy in patients with intracranial meningiomas by correlation of CT, MRI, and [68Ga]-DOTATOC-PET. Int J Radiat Oncol Biol Phys. 2006;65(1):222–7. Epub 2006 Feb 20. PubMed PMID: 16488553.

    Article  PubMed  Google Scholar 

  31. Rogers L, Barani I, Chamberlain M, Kaley TJ, McDermott M, Raizer J, Schiff D, Weber DC, Wen PY, Vogelbaum MA. Meningiomas: knowledge base, treatment outcomes, and uncertainties. A RANO review. J Neurosurg. 2015;122(1):4–23. https://doi.org/10.3171/2014.7.JNS131644. Review. PubMed PMID: 25343186; PubMed Central PMCID: PMC5062955.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Stade F, Dittmar JO, Jäkel O, Kratochwil C, Haberkorn U, Debus J, et al. Influence of 68Ga-DOTATOC on sparing of normal tissue for radiation therapy of skull base meningioma: differential impact of photon and proton radiotherapy. Radiat Oncol. 2018;13:58.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Thorwarth D, Henke G, MĂ¼ller AC, Reimold M, Beyer T, Boss A, Kolb A, Pichler B, Pfannenberg C. Simultaneous 68Ga-DOTATOC-PET/MRI for IMRT treatment planning for meningioma: first experience. Int J Radiat Oncol Biol Phys. 2011;81(1):277–83. https://doi.org/10.1016/j.ijrobp.2010.10.078. Epub 2011 Feb 6. PubMed PMID:21300465.

    Article  PubMed  Google Scholar 

  34. Acker G, Kluge A, Lukas M, Conti A, Pasemann D, Meinert F, Anh Nguyen PT, Jelgersma C, Loebel F, Budach V, Vajkoczy P, Furth C, Baur ADJ, Senger C. Impact of 68Ga-DOTATOC PET/MRI on robotic radiosurgery treatment planning in meningioma patients: first experiences in a single institution. Neurosurg Focus. 2019;46(6):E9. https://doi.org/10.3171/2019.3.FOCUS1925. PubMed PMID: 31153151.

    Article  PubMed  Google Scholar 

  35. Nyuyki F, Plotkin M, Graf R, Michel R, Steffen I, Denecke T, Geworski L, Fahdt D, Brenner W, Wurm R. Potential impact of (68)Ga-DOTATOC PET/CT on stereotactic radiotherapy planning of meningiomas. Eur J Nucl Med Mol Imaging. 2010;37(2):310–8. https://doi.org/10.1007/s00259-009-1270-2. Epub 2009 Sep 18. PubMed PMID: 19763565.

    Article  PubMed  Google Scholar 

  36. Oborski MJ, Laymon CM, Qian Y, Lieberman FS, Nelson AD, Mountz JM. Challenges and approaches to quantitative therapy response assessment in glioblastoma multiforme using the novel apoptosis positron emission tomography tracer F-18 ML-10. Transl Oncol. 2014;7(1):111–9. https://doi.org/10.1593/tlo.13868.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Oborski MJ, Laymon CM, Lieberman FS, Drappatz J, Hamilton RL, Mountz JM. First use of 18F-labeled ML-10 PET to assess apoptosis change in a newly diagnosed glioblastoma multiforme patient before and early after therapy. Brain Behav. 2014;4(2):312–5. https://doi.org/10.1002/brb3.217.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sun L, Zhou K, Wang W, Zhang X, Ju Z, Qu B, Zhang Z, Wang J, Ling Z, Yu X, Zhang J, Pan L. [18F]ML-10 imaging for assessment of apoptosis response of intracranial tumor early after radiosurgery by PET/CT. Contrast Media Mol Imaging. 2018;2018:9365174. https://doi.org/10.1155/2018/9365174. eCollection 2018. Erratum in: Contrast Media Mol Imaging. 2019;2019:4967404. PubMed PMID:29983648; PubMed Central PMCID: PMC6015719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Suchorska B, Albert NL, Tonn JC. Usefulness of PET imaging to guide treatment options in gliomas. Curr Treat Options Neurol. 2016;18:4. https://doi.org/10.1007/s11940-015-0384-z.

    Article  PubMed  Google Scholar 

  40. Galldiks N, Stoffels G, Filss CP, et al. Role of O-(2-(18)F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis. J Nucl Med. 2012;53:1367–74. https://doi.org/10.2967/jnumed.112.103325.

    Article  CAS  PubMed  Google Scholar 

  41. Romagna A, Unterrainer M, Schmid-Tannwald C, Brendel M, Tonn JC, Nachbichler SB, Muacevic A, Bartenstein P, Kreth FW, Albert NL. Suspected recurrence of brain metastases after focused high dose radiotherapy: can [(18)F]FET- PET overcome diagnostic uncertainties? Radiat Oncol. 2016;11(1):139. PubMed PMID: 27769279; PubMed Central PMCID: PMC5073742.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gwak HS, Youn SM, Chang U, Lee DH, Cheon GJ, Rhee CH, Kim K, Kim HJ. Usefulness of (18)F-fluorodeoxyglucose PET for radiosurgery planning and response monitoring in patients with recurrent spinal metastasis. Minim Invasive Neurosurg. 2006;49(3):127–34. PubMed PMID: 16921451.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea d’Amico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

d’Amico, A. (2020). Metabolic Imaging. In: Conti, A., Romanelli, P., Pantelis, E., Soltys, S., Cho, Y., Lim, M. (eds) CyberKnife NeuroRadiosurgery . Springer, Cham. https://doi.org/10.1007/978-3-030-50668-1_11

Download citation

Publish with us

Policies and ethics