Skip to main content

COX-2 Signaling in the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1277))

Abstract

Tumorigenesis is a multistep, complicated process, and many studies have been completed over the last few decades to elucidate this process. Increasingly, many studies have shifted focus toward the critical role of the tumor microenvironment (TME), which consists of cellular players, cell–cell communications, and extracellular matrix (ECM). In the TME, cyclooxygenase-2 (COX-2) has been found to be a key molecule mediating the microenvironment changes. COX-2 is an inducible form of the enzyme that converts arachidonic acid into the signal transduction molecules (thromboxanes and prostaglandins). COX-2 is frequently expressed in many types of cancers and has been closely linked to its occurrence, progression, and prognosis. For example, COX-2 has been shown to (1) regulate tumor cell growth, (2) promote tissue invasion and metastasis, (3) inhibit apoptosis, (4) suppress antitumor immunity, and (5) promote sustainable angiogenesis. In this chapter, we summarize recent advances of studies that have evaluated COX-2 signaling in TME.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  Google Scholar 

  3. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y et al (2017) Role of tumor microenvironment in tumorigenesis. J Cancer 8(5):761–773

    Article  CAS  Google Scholar 

  4. Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y et al (2015) New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med 13:45

    Article  CAS  Google Scholar 

  5. Mroue R, Bissell MJ (2013) Three-dimensional cultures of mouse mammary epithelial cells. Methods Mol Biol 945:221–250

    Article  CAS  Google Scholar 

  6. Cirri P, Chiarugi P (2011) Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res 1(4):482–497

    CAS  Google Scholar 

  7. Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK et al (2013) Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153(1):139–152

    Article  CAS  Google Scholar 

  8. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268

    Article  CAS  Google Scholar 

  9. Pang LY, Hurst EA, Argyle DJ (2016) Cyclooxygenase-2: a role in cancer stem cell survival and repopulation of cancer cells during therapy. Stem Cells Int 2016:2048731

    Article  CAS  Google Scholar 

  10. Claria J (2003) Cyclooxygenase-2 biology. Curr Pharm Des 9(27):2177–2190

    Article  CAS  Google Scholar 

  11. Soh JW, Weinstein IB (2003) Role of COX-independent targets of NSAIDs and related compounds in cancer prevention and treatment. Prog Exp Tumor Res 37:261–285

    Article  CAS  Google Scholar 

  12. Sarkar FH, Adsule S, Li Y, Padhye S (2007) Back to the future: COX-2 inhibitors for chemoprevention and cancer therapy. Mini Rev Med Chem 7(6):599–608

    Article  CAS  Google Scholar 

  13. Kis B, Snipes JA, Isse T, Nagy K, Busija DW (2003) Putative cyclooxygenase-3 expression in rat brain cells. J Cereb Blood Flow Metab 23(11):1287–1292

    Article  CAS  Google Scholar 

  14. Gurram B, Zhang S, Li M, Li H, Xie Y, Cui H et al (2018) Celecoxib conjugated fluorescent probe for identification and discrimination of Cyclooxygenase-2 enzyme in cancer cells. Anal Chem 90(8):5187–5193

    Article  CAS  Google Scholar 

  15. Su CW, Zhang Y, Zhu YT (2016) Stromal COX-2 signaling are correlated with colorectal cancer: a review. Crit Rev Oncol Hematol 107:33–38

    Article  Google Scholar 

  16. Obermoser V, Baecker D, Schuster C, Braun V, Kircher B, Gust R (2018) Chlorinated cobalt alkyne complexes derived from acetylsalicylic acid as new specific antitumor agents. Dalton Trans 47(12):4341–4351

    Article  CAS  Google Scholar 

  17. Raj V, Bhadauria AS, Singh AK, Kumar U, Rai A, Keshari AK et al (2018) Novel 1,3,4-thiadiazoles inhibit colorectal cancer via blockade of IL-6/COX-2 mediated JAK2/STAT3 signals as evidenced through data-based mathematical modeling. Cytokine 118:144

    Article  CAS  Google Scholar 

  18. Mortezaee K (2018) Human hepatocellular carcinoma: protection by melatonin. J Cell Physiol 233(10):6486–6508

    Article  CAS  Google Scholar 

  19. Dannenberg AJ, Lippman SM, Mann JR, Subbaramaiah K, DuBois RN (2005) Cyclooxygenase-2 and epidermal growth factor receptor: pharmacologic targets for chemoprevention. J Clin Oncol 23(2):254–266

    Article  CAS  Google Scholar 

  20. Xu W, Huang Y, Zhang T, Zhao L, Fan J, Li L (2018) Cyclooxygenase-2 gene polymorphisms and susceptibility to hepatocellular carcinoma: a meta-analysis based on 10 case-control studies. J Cancer Res Ther 14(Supplement):S105–SS13

    CAS  Google Scholar 

  21. Xiao G, Chen W, Kulmacz RJ (1998) Comparison of structural stabilities of prostaglandin H synthase-1 and -2. J Biol Chem 273(12):6801–6811

    Article  CAS  Google Scholar 

  22. Picot D, Loll PJ, Garavito RM (1994) The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature 367(6460):243–249

    Article  CAS  Google Scholar 

  23. Luong C, Miller A, Barnett J, Chow J, Ramesha C, Browner MF (1996) Flexibility of the NSAID binding site in the structure of human cyclooxygenase-2. Nat Struct Biol 3(11):927–933

    Article  CAS  Google Scholar 

  24. Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY et al (1996) Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 384(6610):644–648

    Article  CAS  Google Scholar 

  25. Smith WL, DeWitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. AnnuRevBiochem 69:145–182

    CAS  Google Scholar 

  26. Rouzer CA, Marnett LJ (2003) Mechanism of free radical oxygenation of polyunsaturated fatty acids by cyclooxygenases. Chem Rev 103(6):2239–2304

    Article  CAS  Google Scholar 

  27. Mbonye UR, Yuan C, Harris CE, Sidhu RS, Song I, Arakawa T et al (2008) Two distinct pathways for cyclooxygenase-2 protein degradation. J Biol Chem 283(13):8611–8623

    Article  CAS  Google Scholar 

  28. Garavito RM, Malkowski MG, DeWitt DL (2002) The structures of prostaglandin endoperoxide H synthases-1 and -2. Prostaglandins Other Lipid Mediat 68-69:129–152

    Article  Google Scholar 

  29. Garavito RM, Mulichak AM (2003) The structure of mammalian cyclooxygenases. AnnuRevBiophysBiomolStruct 32:183–206

    CAS  Google Scholar 

  30. Kulmacz RJ, van der Donk WA, Tsai AL (2003) Comparison of the properties of prostaglandin H synthase-1 and -2. Prog Lipid Res 42(5):377–404

    Article  CAS  Google Scholar 

  31. Liu J, Seibold SA, Rieke CJ, Song I, Cukier RI, Smith WL (2007) Prostaglandin endoperoxide H synthases: peroxidase hydroperoxide specificity and cyclooxygenase activation. J Biol Chem 282(25):18233–18244

    Article  CAS  Google Scholar 

  32. van der Donk WA, Tsai AL, Kulmacz RJ (2002) The cyclooxygenase reaction mechanism. Biochemistry 41(52):15451–15458

    Article  CAS  Google Scholar 

  33. Smith WL, DeWitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69:145–182

    Article  CAS  Google Scholar 

  34. Howe LR (2007) Inflammation and breast cancer. Cyclooxygenase/prostaglandin signaling and breast cancer. Breast Cancer Res 9(4):210

    Article  CAS  Google Scholar 

  35. Singh-Ranger G, Salhab M, Mokbel K (2008) The role of cyclooxygenase-2 in breast cancer: review. Breast Cancer Res Treat 109(2):189–198

    Article  CAS  Google Scholar 

  36. Ohtsuka J, Oshima H, Ezawa I, Abe R, Oshima M, Ohki R (2018) Functional loss of p53 cooperates with the in vivo microenvironment to promote malignant progression of gastric cancers. Sci Rep 8(1):2291

    Article  CAS  Google Scholar 

  37. Liu Y, Borchert GL, Surazynski A, Phang JM (2008) Proline oxidase, a p53-induced gene, targets COX-2/PGE2 signaling to induce apoptosis and inhibit tumor growth in colorectal cancers. Oncogene 27(53):6729–6737

    Article  CAS  Google Scholar 

  38. Yue X, Nguyen TD, Zellmer V, Zhang S, Zorlutuna P (2018) Stromal cell-laden 3D hydrogel microwell arrays as tumor microenvironment model for studying stiffness dependent stromal cell-cancer interactions. Biomaterials 170:37–48

    Article  CAS  Google Scholar 

  39. Gallo O, Masini E, Bianchi B, Bruschini L, Paglierani M, Franchi A (2002) Prognostic significance of cyclooxygenase-2 pathway and angiogenesis in head and neck squamous cell carcinoma. Hum Pathol 33(7):708–714

    Article  CAS  Google Scholar 

  40. Jiao G, Ren T, Lu Q, Sun Y, Lou Z, Peng X et al (2013) Prognostic significance of cyclooxygenase-2 in osteosarcoma: a meta-analysis. Tumour Biol: the journal of the International Society for Oncodevelopmental Biology and Medicine 34(5):2489–2495

    Article  CAS  Google Scholar 

  41. Sicking I, Rommens K, Battista MJ, Bohm D, Gebhard S, Lebrecht A et al (2014) Prognostic influence of cyclooxygenase-2 protein and mRNA expression in node-negative breast cancer patients. BMC Cancer 14:952

    Article  CAS  Google Scholar 

  42. Roelofs HM, Te Morsche RH, van Heumen BW, Nagengast FM, Peters WH (2014) Over-expression of COX-2 mRNA in colorectal cancer. BMC Gastroenterol 14:1

    Article  CAS  Google Scholar 

  43. Liu Y, Sun H, Hu M, Zhang Y, Chen S, Tighe S et al (2017) The role of Cyclooxygenase-2 in colorectal carcinogenesis. Clin Colorectal Cancer 16(3):165–172

    Article  Google Scholar 

  44. Liu B, Qu L, Yan S (2015) Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int 15:106

    Article  CAS  Google Scholar 

  45. Zhu Y, Hua P, Lance P (2003) Cyclooxygenase-2 expression and prostanoid biogenesis reflect clinical phenotype in human colorectal fibroblast strains. Cancer Res 63(2):522–526

    CAS  Google Scholar 

  46. Prescott SM, Fitzpatrick FA (2000) Cyclooxygenase-2 and carcinogenesis. BiochimBiophysActa 1470(2):M69–M78

    CAS  Google Scholar 

  47. Fujino H (2016) The roles of EP4 prostanoid receptors in cancer malignancy signaling. Biol Pharm Bull 39(2):149–155

    Article  CAS  Google Scholar 

  48. Fujino H, Seira N, Kurata N, Araki Y, Nakamura H, Regan JW et al (2015) Prostaglandin E2-stimulated prostanoid EP4 receptors induce prolonged de novo prostaglandin E2 synthesis through biphasic phosphorylation of extracellular signal-regulated kinases mediated by activation of protein kinase A in HCA-7 human colon cancer cells. Eur J Pharmacol 768:149–159

    Article  CAS  Google Scholar 

  49. Thomas SS, Makar KW, Li L, Zheng Y, Yang P, Levy L et al (2015) Tissue-specific patterns of gene expression in the epithelium and stroma of normal colon in healthy individuals in an aspirin intervention trial. Genom Data 6:154–158

    Article  Google Scholar 

  50. Lin MC, Chen SY, He PL, Herschman H, Li HJ (2018) PGE2 /EP4 antagonism enhances tumor chemosensitivity by inducing extracellular vesicle-mediated clearance of cancer stem cells. Int J Cancer 143:1440

    Article  CAS  Google Scholar 

  51. Lala PK, Nandi P, Majumder M (2018) Roles of prostaglandins in tumor-associated lymphangiogenesis with special reference to breast cancer. Cancer Metastasis Rev 37:369

    Article  CAS  Google Scholar 

  52. Crowley-Weber CL, Payne CM, Gleason-Guzman M, Watts GS, Futscher B, Waltmire CN et al (2002) Development and molecular characterization of HCT-116 cell lines resistant to the tumor promoter and multiple stress-inducer, deoxycholate. Carcinogenesis 23(12):2063–2080

    Article  CAS  Google Scholar 

  53. Nishihara H, Kizaka-Kondoh S, Insel PA, Eckmann L (2003) Inhibition of apoptosis in normal and transformed intestinal epithelial cells by cAMP through induction of inhibitor of apoptosis protein (IAP)-2. Proc Natl Acad Sci U S A 100(15):8921–8926

    Article  CAS  Google Scholar 

  54. Zhu Y, Zhu M, Lance P (2012) IL1beta-mediated Stromal COX-2 signaling mediates proliferation and invasiveness of colonic epithelial cancer cells. Exp Cell Res 318(19):2520–2530

    Article  CAS  Google Scholar 

  55. Zhu Y, Zhu M, Lance P (2012) iNOS signaling interacts with COX-2 pathway in colonic fibroblasts. Exp Cell Res. 318(16):2116–2127

    Article  CAS  Google Scholar 

  56. Zhu Y, Zhu M, Lance P (2012) Stromal COX-2 signaling activated by deoxycholic acid mediates proliferation and invasiveness of colorectal epithelial cancer cells. Biochem Biophys Res Commun 425(3):607–612

    Article  CAS  Google Scholar 

  57. Wang HS, Cao HJ, Winn VD, Rezanka LJ, Frobert Y, Evans CH et al (1996) Leukoregulin induction of prostaglandin-endoperoxide H synthase-2 in human orbital fibroblasts. An in vitro model for connective tissue inflammation. J Biol Chem 271(37):22718–22728

    Article  CAS  Google Scholar 

  58. Kim EC, Zhu Y, Andersen V, Sciaky D, Cao HJ, Meekins H et al (1998) Cytokine-mediated PGE2 expression in human colonic fibroblasts. AmJPhysiol 275(4 Pt 1):C988–CC94

    CAS  Google Scholar 

  59. Zhu M, Zhu Y, Lance P (2013) TNFalpha-activated stromal COX-2 signalling promotes proliferative and invasive potential of colon cancer epithelial cells. Cell Prolif 46(4):374–381

    Article  CAS  Google Scholar 

  60. Dixon DA, Tolley ND, King PH, Nabors LB, McIntyre TM, Zimmerman GA et al (2001) Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. J Clin Invest 108(11):1657–1665

    Article  CAS  Google Scholar 

  61. Charalambous MP, Maihofner C, Bhambra U, Lightfoot T, Gooderham NJ (2003) Colorectal Cancer Study G. Upregulation of cyclooxygenase-2 is accompanied by increased expression of nuclear factor-kappa B and I kappa B kinase-alpha in human colorectal cancer epithelial cells. Br J Cancer 88(10):1598–1604

    Article  CAS  Google Scholar 

  62. Mortezaee K, Khanlarkhani N (2018) Melatonin application in targeting oxidative-induced liver injuries: A review. J Cell Physiol 233(5):4015–4032

    Article  CAS  Google Scholar 

  63. Mortezaee K, Khanlarkhani N, Beyer C, Zendedel A (2018) Inflammasome: its role in traumatic brain and spinal cord injury. J Cell Physiol 233(7):5160–5169

    Article  CAS  Google Scholar 

  64. Cai TT, Ye SB, Liu YN, He J, Chen QY, Mai HQ et al (2017) LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma. PLoS Pathog 13(7):e1006503

    Article  CAS  Google Scholar 

  65. Hao J, Xu H, Luo M, Yu W, Chen M, Liao Y et al (2018) The tumor-promoting role of TRIP4 in melanoma progression and its involvement in response to BRAF-targeted therapy. J Invest Dermatol 138(1):159–170

    Article  CAS  Google Scholar 

  66. Baek HS, Park N, Kwon YJ, Ye DJ, Shin S, Chun YJ (2017) Annexin A5 suppresses cyclooxygenase-2 expression by downregulating the protein kinase C-zeta-nuclear factor-kappaB signaling pathway in prostate cancer cells. Oncotarget 8(43):74263–74275

    Article  Google Scholar 

  67. Wong JH, Ho KH, Nam S, Hsu WL, Lin CH, Chang CM et al (2017) Store-operated Ca(2+) entry facilitates the lipopolysaccharide-induced cyclooxygenase-2 expression in gastric cancer cells. Sci Rep 7(1):12813

    Article  CAS  Google Scholar 

  68. Feng X, Yu Y, He S, Cheng J, Gong Y, Zhang Z et al (2017) Dying glioma cells establish a proangiogenic microenvironment through a caspase 3 dependent mechanism. Cancer Lett 385:12–20

    Article  CAS  Google Scholar 

  69. Hung JH, Su IJ, Lei HY, Wang HC, Lin WC, Chang WT et al (2004) Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-kappaB and pp38 mitogen-activated protein kinase. J Biol Chem 279(45):46384–46392

    Article  CAS  Google Scholar 

  70. Liu X, Li S, Li Y, Cheng B, Tan B, Wang G (2018) Puerarin inhibits proliferation and induces apoptosis by upregulation of miR-16 in bladder cancer cell line T24. Oncol Res 26(8):1227–1234

    Article  Google Scholar 

  71. Liu W, Reinmuth N, Stoeltzing O, Parikh AA, Tellez C, Williams S et al (2003) Cyclooxygenase-2 is up-regulated by interleukin-1 beta in human colorectal cancer cells via multiple signaling pathways. Cancer Res 63(13):3632–3636

    CAS  Google Scholar 

  72. Chou WY, Chuang KH, Sun D, Lee YH, Kao PH, Lin YY et al (2015) Inhibition of PKC-induced COX-2 and IL-8 expression in human breast cancer cells by glucosamine. J Cell Physiol 230(9):2240–2251

    Article  CAS  Google Scholar 

  73. Zhou P, Qin J, Li Y, Li G, Wang Y, Zhang N et al (2017) Combination therapy of PKCzeta and COX-2 inhibitors synergistically suppress melanoma metastasis. J Exp Clin Cancer Res 36(1):115

    Article  CAS  Google Scholar 

  74. Hu H, Han T, Zhuo M, Wu LL, Yuan C, Wu L et al (2017) Elevated COX-2 expression promotes angiogenesis through EGFR/p38-MAPK/Sp1-dependent signalling in pancreatic cancer. Sci Rep 7(1):470

    Article  CAS  Google Scholar 

  75. Maturu P, Jones D, Ruteshouser EC, Hu Q, Reynolds JM, Hicks J et al (2017) Role of cyclooxygenase-2 pathway in creating an immunosuppressive microenvironment and in initiation and progression of Wilms’ tumor. Neoplasia 19(3):237–249

    Article  CAS  Google Scholar 

  76. Semaan J, Pinon A, Rioux B, Hassan L, Limami Y, Pouget C et al (2016) Resistance to 3-HTMC-induced apoptosis through activation of PI3K/Akt, MEK/ERK, and p38/COX-2/PGE2 pathways in human HT-29 and HCT116 colorectal cancer cells. J Cell Biochem 117(12):2875–2885

    Article  CAS  Google Scholar 

  77. Ramu A, Kathiresan S, Ramadoss H, Nallu A, Kaliyan R, Azamuthu T (2018) Gramine attenuates EGFR-mediated inflammation and cell proliferation in oral carcinogenesis via regulation of NF-kappaB and STAT3 signaling. Biomed Pharmacother 98:523–530

    Article  CAS  Google Scholar 

  78. Tong D, Liu Q, Liu G, Xu J, Lan W, Jiang Y et al (2017) Metformin inhibits castration-induced EMT in prostate cancer by repressing COX2/PGE2/STAT3 axis. Cancer Lett 389:23–32

    Article  CAS  Google Scholar 

  79. Zheng N, Chen J, Li T, Liu W, Liu J, Chen H et al (2017) Abortifacient metapristone (RU486 derivative) interrupts CXCL12/CXCR4 axis for ovarian metastatic chemoprevention. Mol Carcinog 56(8):1896–1908

    Article  CAS  Google Scholar 

  80. Zheng N, Chen J, Liu W, Liu J, Li T, Chen H et al (2017) Mifepristone inhibits ovarian cancer metastasis by intervening in SDF-1/CXCR4 chemokine axis. Oncotarget 8(35):59123–59135

    Article  Google Scholar 

  81. Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3(1):11–22

    Article  CAS  Google Scholar 

  82. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501

    Article  CAS  Google Scholar 

  83. Raj V, Bhadauria AS, Singh AK, Kumar U, Rai A, Keshari AK et al (2019) Novel 1,3,4-thiadiazoles inhibit colorectal cancer via blockade of IL-6/COX-2 mediated JAK2/STAT3 signals as evidenced through data-based mathematical modeling. Cytokine 118:144–159

    Article  CAS  Google Scholar 

  84. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10(8):789–799

    Article  CAS  Google Scholar 

  85. Wang D, Buchanan FG, Wang H, Dey SK, DuBois RN (2005) Prostaglandin E2 enhances intestinal adenoma growth via activation of the Ras-mitogen-activated protein kinase cascade. Cancer Res 65(5):1822–1829

    Article  CAS  Google Scholar 

  86. Kaidi A, Qualtrough D, Williams AC, Paraskeva C (2006) Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Res 66(13):6683–6691

    Article  CAS  Google Scholar 

  87. Hattar K, Franz K, Ludwig M, Sibelius U, Wilhelm J, Lohmeyer J et al (2014) Interactions between neutrophils and non-small cell lung cancer cells: enhancement of tumor proliferation and inflammatory mediator synthesis. Cancer Immunol Immunother 63(12):1297–1306

    Article  CAS  Google Scholar 

  88. Hull MA, Cuthbert RJ, Ko CWS, Scott DJ, Cartwright EJ, Hawcroft G et al (2017) Paracrine cyclooxygenase-2 activity by macrophages drives colorectal adenoma progression in the Apc (Min/+) mouse model of intestinal tumorigenesis. Sci Rep 7(1):6074

    Article  CAS  Google Scholar 

  89. Esbona K, Yi Y, Saha S, Yu M, Van Doorn RR, Conklin MW et al (2018) The presence of cyclooxygenase 2, tumor-associated macrophages, and collagen alignment as prognostic markers for invasive breast carcinoma patients. Am J Pathol 188(3):559–573

    Article  CAS  Google Scholar 

  90. Harris RE, Beebe-Donk J, Alshafie GA (2007) Cancer chemoprevention by cyclooxygenase 2 (COX-2) blockade: results of case control studies. Subcell Biochem 42:193–212

    Article  Google Scholar 

  91. Massague J (2008) TGFbeta in cancer. Cell 134(2):215–230

    Article  CAS  Google Scholar 

  92. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J et al (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268(5215):1336–1338

    Article  CAS  Google Scholar 

  93. Tsujii M, DuBois RN (1995) Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 83(3):493–501

    Article  CAS  Google Scholar 

  94. van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A et al (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111(2):241–250

    Article  Google Scholar 

  95. Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS (2005) Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 310(5753):1504–1510

    Article  CAS  Google Scholar 

  96. Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ et al (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 19(4):379–383

    Article  CAS  Google Scholar 

  97. Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C et al (2009) The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30(3):377–386

    Article  CAS  Google Scholar 

  98. Soto MS, O'Brien ER, Andreou K, Scrace SF, Zakaria R, Jenkinson MD et al (2016) Disruption of tumour-host communication by downregulation of LFA-1 reduces COX-2 and e-NOS expression and inhibits brain metastasis growth. Oncotarget 7(32):52375–52391

    Article  Google Scholar 

  99. Singh B, Berry JA, Shoher A, Lucci A (2006) COX-2 induces IL-11 production in human breast cancer cells. J Surg Res 131(2):267–275

    Article  CAS  Google Scholar 

  100. Hoing B, Kanaan O, Altenhoff P, Petri R, Thangavelu K, Schluter A et al (2018) Stromal versus tumoral inflammation differentially contribute to metastasis and poor survival in laryngeal squamous cell carcinoma. Oncotarget 9(9):8415–8426

    Article  Google Scholar 

  101. Sorski L, Melamed R, Matzner P, Lavon H, Shaashua L, Rosenne E et al (2016) Reducing liver metastases of colon cancer in the context of extensive and minor surgeries through beta-adrenoceptors blockade and COX2 inhibition. Brain Behav Immun 58:91–98

    Article  CAS  Google Scholar 

  102. Weinberg RA (2008) Mechanisms of malignant progression. Carcinogenesis 29(6):1092–1095

    Article  CAS  Google Scholar 

  103. Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C et al (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446(7137):765–770

    Article  CAS  Google Scholar 

  104. He TC, Chan TA, Vogelstein B, Kinzler KW (1999) PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 99(3):335–345

    Article  CAS  Google Scholar 

  105. Sheng H, Shao J, Washington MK, DuBois RN (2001) Prostaglandin E2 increases growth and motility of colorectal carcinoma cells. J Biol Chem 276(21):18075–18081

    Article  CAS  Google Scholar 

  106. Tsujii M, Kawano S, DuBois RN (1997) Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci U S A 94(7):3336–3340

    Article  CAS  Google Scholar 

  107. Fenwick SW, Toogood GJ, Lodge JP, Hull MA (2003) The effect of the selective cyclooxygenase-2 inhibitor rofecoxib on human colorectal cancer liver metastases. Gastroenterology 125(3):716–729

    Article  CAS  Google Scholar 

  108. Yao M, Kargman S, Lam EC, Kelly CR, Zheng Y, Luk P et al (2003) Inhibition of cyclooxygenase-2 by rofecoxib attenuates the growth and metastatic potential of colorectal carcinoma in mice. Cancer Res 63(3):586–592

    CAS  Google Scholar 

  109. Pai R, Nakamura T, Moon WS, Tarnawski AS (2003) Prostaglandins promote colon cancer cell invasion; signaling by cross-talk between two distinct growth factor receptors. FASEB J 17(12):1640–1647

    Article  CAS  Google Scholar 

  110. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4(12):915–925

    Article  CAS  Google Scholar 

  111. Pan J, Yang Q, Shao J, Zhang L, Ma J, Wang Y et al (2016) Cyclooxygenase-2 induced beta1-integrin expression in NSCLC and promoted cell invasion via the EP1/MAPK/E2F-1/FoxC2 signal pathway. Sci Rep 6:33823

    Article  CAS  Google Scholar 

  112. Ko CJ, Lan SW, Lu YC, Cheng TS, Lai PF, Tsai CH et al (2017) Inhibition of cyclooxygenase-2-mediated matriptase activation contributes to the suppression of prostate cancer cell motility and metastasis. Oncogene 36(32):4597–4609

    Article  CAS  Google Scholar 

  113. Majumder M, Landman E, Liu L, Hess D, Lala PK (2015) COX-2 elevates oncogenic miR-526b in breast cancer by EP4 activation. Mol Cancer Res 13(6):1022–1033

    Article  CAS  Google Scholar 

  114. Xian X, Huang L, Zhang B, Wu C, Cui J, Wang Z (2016) WIN 55,212-2 inhibits the epithelial mesenchymal transition of gastric cancer cells via COX-2 signals. Cell Physiol Biochem 39(6):2149–2157

    Article  CAS  Google Scholar 

  115. Williams CS, Tsujii M, Reese J, Dey SK, DuBois RN (2000) Host cyclooxygenase-2 modulates carcinoma growth. J Clin Invest 105(11):1589–1594

    Article  CAS  Google Scholar 

  116. Hull MA, Faluyi OO, Ko CW, Holwell S, Scott DJ, Cuthbert RJ et al (2006) Regulation of stromal cell cyclooxygenase-2 in the ApcMin/+ mouse model of intestinal tumorigenesis. Carcinogenesis 27(3):382–391

    Article  CAS  Google Scholar 

  117. Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  Google Scholar 

  118. Adams JM (2003) Ways of dying: multiple pathways to apoptosis. Genes Dev 17(20):2481–2495

    Article  CAS  Google Scholar 

  119. Green DR (1998) Apoptotic pathways: the roads to ruin. Cell 94(6):695–698

    Article  CAS  Google Scholar 

  120. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  CAS  Google Scholar 

  121. Green DR, Evan GI (2002) A matter of life and death. Cancer Cell 1(1):19–30

    Article  CAS  Google Scholar 

  122. Pelengaris S, Khan M, Evan GI (2002) Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 109(3):321–334

    Article  CAS  Google Scholar 

  123. Gungor H, Ilhan N, Eroksuz H (2018) The effectiveness of cyclooxygenase-2 inhibitors and evaluation of angiogenesis in the model of experimental colorectal cancer. Biomed Pharmacother 102:221–229

    Article  CAS  Google Scholar 

  124. Hosseini F, Mahdian-Shakib A, Jadidi-Niaragh F, Enderami SE, Mohammadi H, Hemmatzadeh M et al (2018) Anti-inflammatory and anti-tumor effects of alpha-l-guluronic acid (G2013) on cancer-related inflammation in a murine breast cancer model. Biomed Pharmacother 98:793–800

    Article  CAS  Google Scholar 

  125. Todoric J, Antonucci L, Karin M (2016) Targeting inflammation in cancer prevention and therapy. Cancer Prev Res (Phila) 9(12):895–905

    Article  CAS  Google Scholar 

  126. Chen W, Bai L, Wang X, Xu S, Belinsky SA, Lin Y (2010) Acquired activation of the Akt/cyclooxygenase-2/Mcl-1 pathway renders lung cancer cells resistant to apoptosis. Mol Pharmacol 77(3):416–423

    Article  CAS  Google Scholar 

  127. Krysan K, Dalwadi H, Sharma S, Pold M, Dubinett S (2004) Cyclooxygenase 2-dependent expression of survivin is critical for apoptosis resistance in non-small cell lung cancer. Cancer Res 64(18):6359–6362

    Article  CAS  Google Scholar 

  128. Janakiraman H, House RP, Talwar S, Courtney SM, Hazard ES, Hardiman G et al (2017) Repression of caspase-3 and RNA-binding protein HuR cleavage by cyclooxygenase-2 promotes drug resistance in oral squamous cell carcinoma. Oncogene 36(22):3137–3148

    Article  CAS  Google Scholar 

  129. Sheng H, Shao J, Morrow JD, Beauchamp RD, DuBois RN (1998) Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res 58(2):362–366

    CAS  Google Scholar 

  130. Pozzi A, Yan X, Macias-Perez I, Wei S, Hata AN, Breyer RM et al (2004) Colon carcinoma cell growth is associated with prostaglandin E2/EP4 receptor-evoked ERK activation. J Biol Chem 279(28):29797–29804

    Article  CAS  Google Scholar 

  131. Tessner TG, Muhale F, Riehl TE, Anant S, Stenson WF (2004) Prostaglandin E2 reduces radiation-induced epithelial apoptosis through a mechanism involving AKT activation and bax translocation. J Clin Invest 114(11):1676–1685

    Article  CAS  Google Scholar 

  132. Pai R, Soreghan B, Szabo IL, Pavelka M, Baatar D, Tarnawski AS (2002) Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med 8(3):289–293

    Article  CAS  Google Scholar 

  133. Buchanan FG, Wang D, Bargiacchi F, DuBois RN (2003) Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J Biol Chem 278(37):35451–35457

    Article  CAS  Google Scholar 

  134. Leone V, di Palma A, Ricchi P, Acquaviva F, Giannouli M, Di Prisco AM et al (2007) PGE2 inhibits apoptosis in human adenocarcinoma Caco-2 cell line through Ras-PI3K association and cAMP-dependent kinase A activation. Am J Physiol Gastrointest Liver Physiol 293(4):G673–G681

    Article  CAS  Google Scholar 

  135. Chin YT, Wei PL, Ho Y, Nana AW, Changou CA, Chen YR et al (2018) Thyroxine inhibits resveratrol-caused apoptosis by PD-L1 in ovarian cancer cells. Endocr Relat Cancer 25(5):533–545

    Article  CAS  Google Scholar 

  136. Lang S, Picu A, Hofmann T, Andratschke M, Mack B, Moosmann A et al (2006) COX-inhibitors relieve the immunosuppressive effect of tumor cells and improve functions of immune effectors. Int J Immunopathol Pharmacol 19(2):409–419

    Article  CAS  Google Scholar 

  137. Miao J, Lu X, Hu Y, Piao C, Wu X, Liu X et al (2017) Prostaglandin E2 and PD-1 mediated inhibition of antitumor CTL responses in the human tumor microenvironment. Oncotarget 8(52):89802–89810

    Article  Google Scholar 

  138. Li Q, Liu L, Zhang Q, Liu S, Ge D, You Z (2014) Interleukin-17 indirectly promotes M2 macrophage differentiation through stimulation of COX-2/PGE2 pathway in the cancer cells. Cancer Res Treat 46(3):297–306

    Article  CAS  Google Scholar 

  139. Dubey P, Shrivastava R, Tripathi C, Jain NK, Tewari BN, Lone MU et al (2014) Cyclooxygenase-2 inhibition attenuates hypoxic cancer cells induced m2-polarization of macrophages. Cell Mol Biol (Noisy-le-Grand) 60(3):10–15

    CAS  Google Scholar 

  140. Holt D, Ma X, Kundu N, Fulton A (2011) Prostaglandin E(2) (PGE (2)) suppresses natural killer cell function primarily through the PGE(2) receptor EP4. Cancer Immunol Immunother 60(11):1577–1586

    Article  CAS  Google Scholar 

  141. Gobel C, Breitenbuecher F, Kalkavan H, Hahnel PS, Kasper S, Hoffarth S et al (2014) Functional expression cloning identifies COX-2 as a suppressor of antigen-specific cancer immunity. Cell Death Dis 5:e1568

    Article  CAS  Google Scholar 

  142. Okano M, Sugata Y, Fujiwara T, Matsumoto R, Nishibori M, Shimizu K et al (2006) E prostanoid 2 (EP2)/EP4-mediated suppression of antigen-specific human T-cell responses by prostaglandin E2. Immunology 118(3):343–352

    Article  CAS  Google Scholar 

  143. Gualde N, Harizi H (2004) Prostanoids and their receptors that modulate dendritic cell-mediated immunity. Immunol Cell Biol 82(4):353–360

    Article  CAS  Google Scholar 

  144. Mougiakakos D, Johansson CC, Trocme E, All-Ericsson C, Economou MA, Larsson O et al (2010) Intratumoral forkhead box P3-positive regulatory T cells predict poor survival in cyclooxygenase-2-positive uveal melanoma. Cancer 116(9):2224–2233

    Google Scholar 

  145. Yuan XL, Chen L, Li MX, Dong P, Xue J, Wang J et al (2010) Elevated expression of Foxp3 in tumor-infiltrating Treg cells suppresses T-cell proliferation and contributes to gastric cancer progression in a COX-2-dependent manner. Clin Immunol 134(3):277–288

    Article  CAS  Google Scholar 

  146. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061

    Article  CAS  Google Scholar 

  147. Mahic M, Yaqub S, Johansson CC, Tasken K, Aandahl EM (2006) FOXP3+CD4+CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J Immunol 177(1):246–254

    Article  CAS  Google Scholar 

  148. Martinet L, Jean C, Dietrich G, Fournie JJ, Poupot R (2010) PGE2 inhibits natural killer and gamma delta T cell cytotoxicity triggered by NKR and TCR through a cAMP-mediated PKA type I-dependent signaling. Biochem Pharmacol 80(6):838–845

    Article  CAS  Google Scholar 

  149. Markosyan N, Chen EP, Ndong VN, Yao Y, Sterner CJ, Chodosh LA et al (2011) Deletion of cyclooxygenase 2 in mouse mammary epithelial cells delays breast cancer onset through augmentation of type 1 immune responses in tumors. Carcinogenesis 32(10):1441–1449

    Article  CAS  Google Scholar 

  150. Harizi H, Juzan M, Pitard V, Moreau JF, Gualde N (2002) Cyclooxygenase-2-issued prostaglandin e(2) enhances the production of endogenous IL-10, which down-regulates dendritic cell functions. J Immunol 168(5):2255–2263

    Article  CAS  Google Scholar 

  151. Harizi H, Grosset C, Gualde N (2003) Prostaglandin E2 modulates dendritic cell function via EP2 and EP4 receptor subtypes. J Leukoc Biol 73(6):756–763

    Article  CAS  Google Scholar 

  152. Harris SG, Padilla J, Koumas L, Ray D, Phipps RP (2002) Prostaglandins as modulators of immunity. Trends Immunol 23(3):144–150

    Article  CAS  Google Scholar 

  153. Harizi H, Gualde N (2005) The impact of eicosanoids on the crosstalk between innate and adaptive immunity: the key roles of dendritic cells. Tissue Antigens 65(6):507–514

    Article  CAS  Google Scholar 

  154. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB et al (1998) Cyclooxygenase in biology and disease. FASEB J 12(12):1063–1073

    Article  CAS  Google Scholar 

  155. Masferrer JL, Leahy KM, Koki AT, Zweifel BS, Settle SL, Woerner BM et al (2000) Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res 60(5):1306–1311

    CAS  Google Scholar 

  156. Kirschenbaum A, Liu X, Yao S, Levine AC (2001) The role of cyclooxygenase-2 in prostate cancer. Urology 58(2 Suppl 1):127–131

    Article  CAS  Google Scholar 

  157. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676

    Article  CAS  Google Scholar 

  158. Seno H, Oshima M, Ishikawa TO, Oshima H, Takaku K, Chiba T et al (2002) Cyclooxygenase 2- and prostaglandin E(2) receptor EP(2)-dependent angiogenesis in Apc(Delta716) mouse intestinal polyps. Cancer Res 62(2):506–511

    CAS  Google Scholar 

  159. Dormond O, Foletti A, Paroz C, Ruegg C (2001) NSAIDs inhibit alpha V beta 3 integrin-mediated and Cdc42/Rac-dependent endothelial-cell spreading, migration and angiogenesis. Nat Med 7(9):1041–1047

    Article  CAS  Google Scholar 

  160. Fukuda R, Kelly B, Semenza GL (2003) Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Res 63(9):2330–2334

    CAS  Google Scholar 

  161. Salcedo R, Zhang X, Young HA, Michael N, Wasserman K, Ma WH et al (2003) Angiogenic effects of prostaglandin E2 are mediated by up-regulation of CXCR4 on human microvascular endothelial cells. Blood 102(6):1966–1977

    Article  CAS  Google Scholar 

  162. Wang D, Wang H, Brown J, Daikoku T, Ning W, Shi Q et al (2006) CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J Exp Med 203(4):941–951

    Article  CAS  Google Scholar 

  163. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6(4):389–395

    Article  CAS  Google Scholar 

  164. Lee A, Frischer J, Serur A, Huang J, Bae JO, Kornfield ZN et al (2006) Inhibition of cyclooxygenase-2 disrupts tumor vascular mural cell recruitment and survival signaling. Cancer Res 66(8):4378–4384

    Article  CAS  Google Scholar 

  165. Szweda M, Rychlik A, Babinska I, Pomianowski A (2019) Significance of cyclooxygenase-2 in oncogenesis. J Vet Res 63(2):215–224

    Article  Google Scholar 

  166. Hirschi KK, D'Amore PA (1996) Pericytes in the microvasculature. Cardiovasc Res 32(4):687–698

    Article  CAS  Google Scholar 

  167. Diaz-Flores L, Gutierrez R, Varela H, Rancel N, Valladares F (1991) Microvascular pericytes: a review of their morphological and functional characteristics. Histol Histopathol 6(2):269–286

    CAS  Google Scholar 

  168. Birbrair A (2018) Pericyte biology: development, homeostasis, and disease. Adv Exp Med Biol 1109:1–3

    Article  CAS  Google Scholar 

  169. Erber R, Thurnher A, Katsen AD, Groth G, Kerger H, Hammes HP et al (2004) Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J 18(2):338–340

    Article  CAS  Google Scholar 

  170. Frischer JS, Huang J, Serur A, Kadenhe-Chiweshe A, McCrudden KW, O'Toole K et al (2004) Effects of potent VEGF blockade on experimental Wilms tumor and its persisting vasculature. Int J Oncol 25(3):549–553

    CAS  Google Scholar 

  171. Huang J, Soffer SZ, Kim ES, McCrudden KW, Huang J, New T et al (2004) Vascular remodeling marks tumors that recur during chronic suppression of angiogenesis. Mol Cancer Res 2(1):36–42

    CAS  Google Scholar 

  172. Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A et al (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307(1):C25–C38

    Article  CAS  Google Scholar 

  173. Yang X, Sheares KK, Davie N, Upton PD, Taylor GW, Horsley J et al (2002) Hypoxic induction of cox-2 regulates proliferation of human pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol 27(6):688–696

    Article  CAS  Google Scholar 

  174. Inoue H, Taba Y, Miwa Y, Yokota C, Miyagi M, Sasaguri T (2002) Transcriptional and posttranscriptional regulation of cyclooxygenase-2 expression by fluid shear stress in vascular endothelial cells. Arterioscler Thromb Vasc Biol 22(9):1415–1420

    Article  CAS  Google Scholar 

  175. Subbaramaiah K, Dannenberg AJ (2003) Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol Sci 24(2):96–102

    Article  CAS  Google Scholar 

  176. Csiki I, Yanagisawa K, Haruki N, Nadaf S, Morrow JD, Johnson DH et al (2006) Thioredoxin-1 modulates transcription of cyclooxygenase-2 via hypoxia-inducible factor-1alpha in non-small cell lung cancer. Cancer Res 66(1):143–150

    Article  CAS  Google Scholar 

  177. Sheng H, Shao J, Hooton EB, Tsujii M, DuBois RN, Beauchamp RD (1997) Cyclooxygenase-2 induction and transforming growth factor beta growth inhibition in rat intestinal epithelial cells. Cell Growth Differ: the molecular biology journal of the American Association for Cancer Research 8(4):463–470

    CAS  Google Scholar 

  178. Guo YS, Cheng JZ, Jin GF, Gutkind JS, Hellmich MR, Townsend CM Jr (2002) Gastrin stimulates cyclooxygenase-2 expression in intestinal epithelial cells through multiple signaling pathways. Evidence for involvement of ERK5 kinase and transactivation of the epidermal growth factor receptor. J Biol Chem 277(50):48755–48763

    Article  CAS  Google Scholar 

  179. Jones MK, Sasaki E, Halter F, Pai R, Nakamura T, Arakawa T et al (1999) HGF triggers activation of the COX-2 gene in rat gastric epithelial cells: action mediated through the ERK2 signaling pathway. FASEB J 13(15):2186–2194

    Article  CAS  Google Scholar 

  180. Howe LR, Subbaramaiah K, Chung WJ, Dannenberg AJ, Brown AM (1999) Transcriptional activation of cyclooxygenase-2 in Wnt-1-transformed mouse mammary epithelial cells. Cancer Res 59(7):1572–1577

    CAS  Google Scholar 

  181. Howe LR, Crawford HC, Subbaramaiah K, Hassell JA, Dannenberg AJ, Brown AM (2001) PEA3 is up-regulated in response to Wnt1 and activates the expression of cyclooxygenase-2. J Biol Chem 276(23):20108–20115

    Article  CAS  Google Scholar 

  182. Araki Y, Okamura S, Hussain SP, Nagashima M, He P, Shiseki M et al (2003) Regulation of cyclooxygenase-2 expression by the Wnt and ras pathways. Cancer Res 63(3):728–734

    CAS  Google Scholar 

  183. Theodoraki MN, Hoffmann TK, Whiteside TL (2018) Separation of plasma-derived exosomes into CD3((+)) and CD3((−)) fractions allows for association of immune cell and tumour cell markers with disease activity in HNSCC patients. Clin Exp Immunol 192(3):271–283

    Article  CAS  Google Scholar 

  184. Xu Y, Yang X, Wang T, Yang L, He YY, Miskimins K et al (2018) Knockdown delta-5-desaturase in breast cancer cells that overexpress COX-2 results in inhibition of growth, migration and invasion via a dihomo-gamma-linolenic acid peroxidation dependent mechanism. BMC Cancer 18(1):330

    Article  CAS  Google Scholar 

  185. Qiu HY, Wang PF, Li Z, Ma JT, Wang XM, Yang YH et al (2016) Synthesis of dihydropyrazole sulphonamide derivatives that act as anti-cancer agents through COX-2 inhibition. Pharmacol Res 104:86–96

    Article  CAS  Google Scholar 

  186. Kirk J, Shah N, Noll B, Stevens CB, Lawler M, Mougeot FB et al (2018) Text mining-based in silico drug discovery in oral mucositis caused by high-dose cancer therapy. Support Care Cancer 26(8):2695–2705

    Article  Google Scholar 

  187. Ikeya S, Sakabe JI, Yamada T, Naito T, Tokura Y (2018) Voriconazole-induced photocarcinogenesis is promoted by aryl hydrocarbon receptor-dependent COX-2 upregulation. Sci Rep 8(1):5050

    Article  CAS  Google Scholar 

  188. Glinghammar B, Inoue H, Rafter JJ (2002) Deoxycholic acid causes DNA damage in colonic cells with subsequent induction of caspases, COX-2 promoter activity and the transcription factors NF-kB and AP-1. Carcinogenesis 23(5):839–845

    Article  CAS  Google Scholar 

  189. Wang J, Cho NL, Zauber AG, Hsu M, Dawson D, Srivastava A et al (2018) Chemopreventive efficacy of the Cyclooxygenase-2 (Cox-2) inhibitor, celecoxib, is predicted by adenoma expression of Cox-2 and 15-PGDH. Cancer Epidemiol Biomarkers Prev: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 27:728

    Article  CAS  Google Scholar 

  190. Ng K, Meyerhardt JA, Chan AT, Sato K, Chan JA, Niedzwiecki D et al (2015) Aspirin and COX-2 inhibitor use in patients with stage III colon cancer. J Natl Cancer Inst 107(1):345

    Article  CAS  Google Scholar 

  191. Kargman SL, O'Neill GP, Vickers PJ, Evans JF, Mancini JA, Jothy S (1995) Expression of prostaglandin G/H synthase-1 and -2 protein in human colon cancer. Cancer Res 55(12):2556–2559

    CAS  Google Scholar 

  192. Zhu LL, Xu LC, Chen Y, Zhou Q, Zeng S (2012) Poor awareness of preventing aspirin-induced gastrointestinal injury with combined protective medications. World J Gastroenterol 18(24):3167–3172

    Article  CAS  Google Scholar 

  193. Cao Y, Prescott SM (2002) Many actions of cyclooxygenase-2 in cellular dynamics and in cancer. JCell Physiol 190(3):279–286

    Article  CAS  Google Scholar 

  194. Punganuru SR, Madala HR, Mikelis CM, Dixit A, Arutla V, Srivenugopal KS (2018) Conception, synthesis, and characterization of a rofecoxib-combretastatin hybrid drug with potent cyclooxygenase-2 (COX-2) inhibiting and microtubule disrupting activities in colon cancer cell culture and xenograft models. Oncotarget 9(40):26109–26129

    Article  Google Scholar 

  195. Hudson M, Richard H, Pilote L (2007) Parabolas of medication use and discontinuation after myocardial infarction--are we closing the treatment gap? Pharmacoepidemiol Drug Saf 16(7):773–785

    Article  CAS  Google Scholar 

  196. Russell RI (2001) Non-steroidal anti-inflammatory drugs and gastrointestinal damage-problems and solutions. Postgrad Med J 77(904):82–88

    Article  CAS  Google Scholar 

  197. Sandler RS, Halabi S, Baron JA, Budinger S, Paskett E, Keresztes R et al (2003) A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N Engl J Med 348(10):883–890

    Article  CAS  Google Scholar 

  198. Bertagnolli MM, Eagle CJ, Zauber AG, Redston M, Solomon SD, Kim K et al (2006) Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med 355(9):873–884

    Article  CAS  Google Scholar 

  199. Bresalier RS, Sandler RS, Quan H, Bolognese JA, Oxenius B, Horgan K et al (2005) Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med 352(11):1092–1102

    Article  CAS  Google Scholar 

  200. Arber N, Eagle CJ, Spicak J, Racz I, Dite P, Hajer J et al (2006) Celecoxib for the prevention of colorectal adenomatous polyps. N Engl J Med 355(9):885–895

    Article  CAS  Google Scholar 

  201. Martinez JA, Yang J, Wertheim BC, Roe DJ, Schriewer A, Lance P et al (2018) Celecoxib use and circulating oxylipins in a colon polyp prevention trial. PLoS One 13(4):e0196398

    Article  CAS  Google Scholar 

  202. Harris RE (2009) Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung. Inflammopharmacology 17(2):55–67

    Article  CAS  Google Scholar 

  203. Buchanan FG, Holla V, Katkuri S, Matta P, DuBois RN (2007) Targeting cyclooxygenase-2 and the epidermal growth factor receptor for the prevention and treatment of intestinal cancer. Cancer Res 67(19):9380–9388

    Article  CAS  Google Scholar 

  204. Reckamp KL, Krysan K, Morrow JD, Milne GL, Newman RA, Tucker C et al (2006) A phase I trial to determine the optimal biological dose of celecoxib when combined with erlotinib in advanced non-small cell lung cancer. Clin Cancer Res 12(11 Pt 1):3381–3388

    Article  CAS  Google Scholar 

  205. Barry M, Cahill RA, Roche-Nagle G, Neilan TG, Treumann A, Harmey JH et al (2009) Neoplasms escape selective COX-2 inhibition in an animal model of breast cancer. Ir J Med Sci 178(2):201–208

    Article  CAS  Google Scholar 

  206. Anderson GD, Keys KL, De Ciechi PA, Masferrer JL (2009) Combination therapies that inhibit cyclooxygenase-2 and leukotriene synthesis prevent disease in murine collagen induced arthritis. Inflamm Res 58(2):109–117

    Article  CAS  Google Scholar 

  207. Falandry C, Canney PA, Freyer G, Dirix LY (2009) Role of combination therapy with aromatase and cyclooxygenase-2 inhibitors in patients with metastatic breast cancer. Ann Oncol 20(4):615–620

    Article  CAS  Google Scholar 

  208. Duan DP, Dang XQ, Wang KZ, Wang YP, Zhang H, You WL (2012) The cyclooxygenase-2 inhibitor NS-398 inhibits proliferation and induces apoptosis in human osteosarcoma cells via downregulation of the survivin pathway. Oncol Rep 28(5):1693–1700

    Article  CAS  Google Scholar 

  209. Mullins MN, Lana SE, Dernell WS, Ogilvie GK, Withrow SJ, Ehrhart EJ (2004) Cyclooxygenase-2 expression in canine appendicular osteosarcomas. J Vet Intern Med 18(6):859–865

    Article  Google Scholar 

  210. Naruse T, Nishida Y, Hosono K, Ishiguro N (2006) Meloxicam inhibits osteosarcoma growth, invasiveness and metastasis by COX-2-dependent and independent routes. Carcinogenesis 27(3):584–592

    Article  CAS  Google Scholar 

  211. Urakawa H, Nishida Y, Naruse T, Nakashima H, Ishiguro N (2009) Cyclooxygenase-2 overexpression predicts poor survival in patients with high-grade extremity osteosarcoma: a pilot study. Clin Orthop Relat Res 467(11):2932–2938

    Article  Google Scholar 

  212. Arjona-Sanchez A, Ruiz-Rabelo J, Perea MD, Vazquez R, Cruz A, Munoz Mdel C et al (2010) Effects of capecitabine and celecoxib in experimental pancreatic cancer. Pancreatology 10(5):641–647

    Article  CAS  Google Scholar 

  213. Howe LR, Subbaramaiah K, Patel J, Masferrer JL, Deora A, Hudis C et al (2002) Celecoxib, a selective cyclooxygenase 2 inhibitor, protects against human epidermal growth factor receptor 2 (HER-2)/neu-induced breast cancer. Cancer Res 62(19):5405–5407

    CAS  Google Scholar 

  214. Dandekar DS, Lopez M, Carey RI, Lokeshwar BL (2005) Cyclooxygenase-2 inhibitor celecoxib augments chemotherapeutic drug-induced apoptosis by enhancing activation of caspase-3 and -9 in prostate cancer cells. Int J Cancer 115(3):484–492

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Ting Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., Tighe, S., Zhu, YT. (2020). COX-2 Signaling in the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment . Advances in Experimental Medicine and Biology, vol 1277. Springer, Cham. https://doi.org/10.1007/978-3-030-50224-9_6

Download citation

Publish with us

Policies and ethics