Skip to main content

Assessment of Cardiac Function: First-Pass, Equilibrium Blood Pool, and Gated Myocardial SPECT

  • Chapter
  • First Online:
Atlas of Nuclear Cardiology

Abstract

Radionuclide-based techniques have been used to measure ventricular function for over three decades [1–8]. The methods for measurement of ventricular function can be divided into two basic categories. The first category employs any tracer that can directly label the blood pool itself. One then examines the deformity of the cavitary blood pool as it is moved by the thickening and systolic motion of the myocardial walls. With these methods, one can directly image the blood pool in the ventricular cavity throughout the cardiac cycle. The second category of methods for measurement of ventricular function uses tracers that label the myocardial walls (e.g., 99mTc-sestamibi, [18F]-fluorodeoxyglucose). One then examines how those walls thicken and translate, move, or contract throughout the cardiac cycle. With this method, one can directly image the myocardium throughout the cardiac cycle. Active movement or contraction of the inner endocardial wall of the ventricular chamber compresses the blood pool and deforms the ventricular cavity and is the conventional marker for systolic ventricular wall motion or function. Only this method permits the evaluation of myocardial wall thickening, a marker of systolic function and viability that can help separate passive systolic wall motion from active myocardial contraction. This method for measuring ventricular mechanical function simultaneously yields a measurement of myocardial perfusion or of metabolism (depending on the tracer used to label the myocardium), but this advantage is also a source of one of the method’s disadvantages: If perfusion or metabolism is reduced in a particular segment of the myocardium, then that segment is not easily visualized, hampering visualization of wall motion or thickening in that segment. Temporal and spatial resolution of the related functional image data is not as good as for the blood pool method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffmann G, Klein N. Die methode der radiokardiographischen funktions analyse. Nuklearmedizin. 1968;7:350–70.

    Article  CAS  Google Scholar 

  2. Strauss HW, Zaret BL, Hurley PJ. A scintiphotographic method for measuring left ventricular ejection fraction in man without cardiac catheterization. Am J Cardiol. 1971;28:575–80.

    Article  CAS  PubMed  Google Scholar 

  3. Zaret BL, Strauss HW, Hurley PJ. A noninvasive scintiphotographic method for detecting regional ventricular dysfunction in man. N Engl J Med. 1971;284:1165–70.

    Article  CAS  PubMed  Google Scholar 

  4. Parker JA, Secker-Walker R, Hill R. A new technique for the calculation of left ventricular ejection fraction. J Nucl Med. 1972;13:649–51.

    CAS  PubMed  Google Scholar 

  5. Green MV, Ostrow HG, Douglas MA, Myers RW, Scott RN, Bailey JJ, Johnston GS. High temporal resolution ECG-gated scintigraphic angiocardiography. J Nucl Med. 1975;16:95–8.

    CAS  PubMed  Google Scholar 

  6. Steele P, Kirch D, LeFree M, Battock D. Measurement of right and left ventricular ejection fractions by radionuclide angiocardiography in coronary artery disease. Chest. 1976;70:51–6.

    Article  CAS  PubMed  Google Scholar 

  7. Bacharach SL, Green MV, Borer JS. A real-time system for multi-image gated cardiac studies. J Nucl Med. 1977;18:79–84.

    CAS  PubMed  Google Scholar 

  8. Borer JS, Bacharach SL, Green MV. Real-time radionuclide cineangiography in the noninvasive evaluation of global and regional left ventricular function at rest and during exercise in patients with coronary-artery disease. N Engl J Med. 1977;296:839–44.

    Article  CAS  PubMed  Google Scholar 

  9. Freedman NMT, Bacharach SL, Cuocolo A, et al. ECG gated PET C-11 monoxide studies: an answer to the “background” question in planar Tc-99m gated blood pool imaging. J Nucl Med. 1992;33:938.

    Google Scholar 

  10. Boyd HL, Gunn RN, Marinho NV, Kanwatowski SP, Bailey DL, Costa DC, et al. Non-invasive measurement of left ventricular volumes and function by gated positron emission tomography. Eur J Nucl Med. 1996;23:1594–602.

    Article  CAS  PubMed  Google Scholar 

  11. Fischman AJ, Moore RH, Gill JB, Strauss HW. Gated blood pool tomography: a technology whose time has come. Semin Nucl Med. 1989;19:13–21.

    Article  CAS  PubMed  Google Scholar 

  12. Underwood SR, Walton S, Laming PJ, Jarritt PH, Ell PJ, Emanuel RW, Swanton RH. Left ventricular volume and ejection fraction determined by gated blood pool emission tomography. Br Heart J. 1985;53:216–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ishino Y. Assessment of cardiac function and left ventricular regional wall motion by 99mTc multigated cardiac blood-pool emission computed tomography. Kaku Igaku. 1992;29:1069–81.

    CAS  PubMed  Google Scholar 

  14. Bartlett ML, Srinivasan G, Barker WC, Kitsiou AN, Dilsizian V, Bacharach SL. Left ventricular ejection fraction: comparison of results from planar and SPECT gated blood-pool studies. J Nucl Med. 1996;37:1795–9.

    CAS  PubMed  Google Scholar 

  15. Borer J, Supino P. Radionuclide angiography part II: equilibrium imaging. In: Iskandrian AE, Verani MS, editors. Nuclear cardiac imaging: principles and applications. New York: Oxford University Press; 2003. p. 323–67.

    Google Scholar 

  16. Botvinick EH, O'Connell JW, Kadkade PP, Glickman SL, Dae MW, Cohen TJ, et al. Potential added value of three-dimensional reconstruction and display of single photon emission computed tomographic gated blood pool images. J Nucl Cardiol. 1998;5:245–55.

    Article  CAS  PubMed  Google Scholar 

  17. Gill JB, Moore RH, Tamaki N, Miller DD, Barlai-Kovach M, Yasuda T, et al. Multigated blood-pool tomography: new method for the assessment of left ventricular function. J Nucl Med. 1986;27:1916–24.

    CAS  PubMed  Google Scholar 

  18. Groch MW, Marshall RC, Erwin WD, Schippers DJ, Barnett CA, Leidholdt EM Jr. Quantitative gated blood pool SPECT for the assessment of coronary artery disease at rest. J Nucl Cardiol. 1998;5:567–73.

    Article  CAS  PubMed  Google Scholar 

  19. Groch MW, Marshall RC, Schippers D, et al. Three dimensional analysis of gated blood pool SPECT: applicability of multiple reference models. J Nucl Med. 1998;39:45P–145.

    Google Scholar 

  20. Germano G, Kavanagh PB, Wachter P. A new algorithm for the quantitation of myocardial perfusion SPECT. J Nucl Med. 2000;41:712–9.

    CAS  PubMed  Google Scholar 

  21. Bartlett ML, Buvat I, Vaquero JJ, Mok D, Dilsizian V, Bacharach SL. Measurement of myocardial wall thickening from PET/SPECT images: comparison of two methods. J Comput Assist Tomogr. 1996;20:473–81.

    Article  CAS  PubMed  Google Scholar 

  22. Cooke CD, Garcia EV, Cullom SJ, Faber TL, Pettigrew RI. Determining the accuracy of calculating systolic wall thickening using a fast Fourier transform approximation: a simulation study based on canine and patient data. J Nucl Med. 1994;35:1185–92.

    CAS  PubMed  Google Scholar 

  23. Garcia E, Bacharach SL, Mahmarian JJ, et al. Imaging guidelines for nuclear cardiology procedures: part 1. J Nucl Med. 1996;3:G3–46.

    Google Scholar 

  24. Botvinick EH. Editor. Topic 7, radionuclide angiography: equilibrium and first pass methods. Self-study program III. In: Botvinick E, editor. Nuclear medicine: cardiology. Society of Nuclear Medicine: Reston, VA; 2007.

    Google Scholar 

  25. Botvinick EH, Glazer H, Shosa D. What is the relationship and utility of scintigraphic methods for the assessment of ventricular function? Cardiovasc Clin. 1983;13:65–78.

    CAS  PubMed  Google Scholar 

  26. Bodenheier MM, Banka FS, Fooshee CM. Quantitative radionuclide angiography in the right anterior oblique view: comparison with contrast ventriculography. Am J Cardiol. 1978;41:718–25.

    Article  Google Scholar 

  27. Marshall RC, Berger HJ, Costin JC. Assessment of cardiac performance with quantitative radionuclide angiocardiography. Circulation. 1977;56:820–9.

    Article  CAS  PubMed  Google Scholar 

  28. VanDyke D, Anger HO, Sullivan RW. Cardiac evaluation from radioisotope dynamics. J Nucl Med. 1972;13:585–92.

    CAS  Google Scholar 

  29. Bacharach SL, Green MV, Borer SJ. Instrumentation and data processing in cardiovascular nuclear medicine: evaluation of ventricular function. Semin Nucl Med. 1979;9:257–74.

    Article  CAS  PubMed  Google Scholar 

  30. Wackers JF. New horizons for myocardial perfusion imaging with technetium-99m labeled isonitrile. In: Pohost GM, Higgins CB, Nanda NC, et al., editors. New concepts in cardiac imaging. Chicago: Year Book Medical Publishers; 1989. p. 93–108.

    Google Scholar 

  31. Upton MT, Rerych SK, Newman GE, Port S, Cobb FR, Jones RH. Detecting abnormalities in left ventricular function during exercise before angina and ST-segment depression. Circulation. 1980;62:341–9.

    Article  CAS  PubMed  Google Scholar 

  32. Udelson JE, Dilsizian V, Bonow RO. Nuclear cardiology. In: Libby P, Zipes DP, Mann DL, Bonow RO, editors. Braunwald’s heart disease: a textbook of cardiovascular medicine. 8th ed. Philadelphia: WB Saunders; 2007. p. 287–331.

    Google Scholar 

  33. Garcia E, Botvinick EH, Hasagawa B, Ratzlaff N. Topic 1, physical and technical aspects of nuclear cardiology. Self-study program III. In: Botvinick E, editor. Nuclear medicine: cardiology. Society of Nuclear Medicine: Reston, VA; 2003.

    Google Scholar 

  34. Maltz OL, Treves S. Quantitative radionuclide angiocardiography. Determination of Qp/Qs in children Circulation. 1973;76:1049.

    Google Scholar 

  35. Bacharach SL, Green MV. Data processing in nuclear cardiology: measurement of ventricular function. IEEE Trans Nucl Sci. 1982;29:1343–54.

    Article  Google Scholar 

  36. Strauss HW, Zaret BW, Hurley PJ. A scintigraphic method for measuring left ventricular ejection fraction in man without cardiac catheterization. Am J Cardiol. 1971;28:575–83.

    Article  CAS  PubMed  Google Scholar 

  37. Parker DA, Karvelis KC, Thrall JH, Froelich JW. Radionuclide ventriculography: methods. In: Gerson MC, editor. Cardiac nuclear medicine. 3rd ed. New York: McGraw Hill; 1997.

    Google Scholar 

  38. Links JM, Frank TL, Engdahl JC, Becker LC. Cardiac single-photon emission tomography with a 90 degrees dual-head system. Eur J Nucl Med. 1995;22:548–52.

    Article  CAS  PubMed  Google Scholar 

  39. Underwood SR, Walton S, Ell PJ, Jarritt PH, Emanuel RW, Swanton RH. Gated blood-pool emission tomography: a new technique for the investigation of cardiac structure and function. Eur J Nucl Med. 1985;10:332–7.

    Article  CAS  PubMed  Google Scholar 

  40. Bacharach SL, Green MV, Borer JS, Hyde JE, Farkas SP, Johnston GS. Left-ventricular peak ejection rate, filling rate, and ejection fraction—frame rate requirements at rest and exercise: concise communication. J Nucl Med. 1979;20:189–93.

    CAS  PubMed  Google Scholar 

  41. Bacharach SL, et al. Assessment of ventricular function. In: Pohost GM, O’Rourke RA, Berman DS, Shah PM, editors. Imaging in cardiovascular disease. Philadelphia: Lippincott Williams & Williams; 2000.

    Google Scholar 

  42. Bonow R, Bacharach SL, Green MV. Impaired left ventricular diastolic filling in patients with coronary artery disease assessment with radionuclide angiography. Circulation. 1981;64:315–23.

    Article  CAS  PubMed  Google Scholar 

  43. Botvinick EH, Dae MW, O’Connell JW. Blood pool scintigraphy. Clin Cardiol. 1989;7:537–63.

    Article  CAS  Google Scholar 

  44. Patel CD, Balakrishnan VB, Kumar L, Naswa N, Malhotra A. Does left ventricular diastolic function deteriorate earlier than left ventricular systolic function in anthracycline cardiotoxicity? Hell J Nucl Med. 2010;13:233–7.

    PubMed  Google Scholar 

  45. Appel JM, Jensen BV, Nielsen DL, Ryberg M, Zerahn B. Systolic versus diastolic cardiac function variables during epirubicin treatment for breast cancer. Int J Cardiovasc Imaging. 2010;26:217–23.

    Article  PubMed  Google Scholar 

  46. Dae MW, Botvinick EH, O’Connell JW, Schiller NB, Bouchard A, Ports TA, Faulkner D. Increased accuracy of scintigraphic quantitation of valvular regurgitation using atrial-corrected Fourier amplitude ratios. Am J Noninvas Cardiol. 1987;1:155–62.

    Article  Google Scholar 

  47. Frais M, Botvinick E, Shosa D, O’Connell JW. Phase image characterization of ventricular contraction in left and right bundle branch block. Am J Cardiol. 1982;50:95–103.

    Article  CAS  PubMed  Google Scholar 

  48. Kerwin W, Botvinick EH, O’Connell JW. Ventricular contraction abnormalities in dilated cardiomyopathy: acute effects of dual chamber simultaneous biventricular pacing to correct interventricular dyssynchrony. J Am Coll Cardiol. 2000;35:1221–7.

    Article  CAS  PubMed  Google Scholar 

  49. Munoz del Romeral L, Stillson C, Lesh M, Dae M, Botvinick E. The relationship of myocardial contraction and electrical excitation—the correlation between scintigraphic phase image analysis and electrophysiologic mapping. J Nucl Cardiol. 2009;16:792–800.

    Article  PubMed  Google Scholar 

  50. Munoz del Romeral L, Stillson C, Lesh M, Botvinick E. The variable functional effects of the pacing site in normal and scarred ventricles. J Nucl Cardiol. 2009;16:904–13.

    Article  PubMed Central  Google Scholar 

  51. O'Connell JW, Schreck C, Moles M, Badwar N, DeMarco T, Olgin J, et al. A unique method by which to quantitate synchrony with equilibrium radionuclide angiography. J Nucl Cardiol. 2005;12:441–50.

    Article  PubMed  Google Scholar 

  52. Lalonde M, Birnie D, Ruddy TD. deKemp RA, Wassenaar RW. SPECT blood pool phase analysis can accurately and reproducibly quantify mechanical dyssynchrony. J Nucl Cardiol. 2010;17:803–10.

    Article  PubMed  Google Scholar 

  53. Badhwar N, James J, Hoffmayer KS, O'Connell JW, Green D, De Marco T, Botvinick EH. Utility of equilibrium radionuclide angiogram-derived measures of dyssynchrony to predict outcomes in heart failure patients undergoing cardiac resynchronization therapy. J Nucl Med. 2016;57:1880–6.

    Article  PubMed  Google Scholar 

  54. Nichols KJ, Van Tosh A, Wang Y, Palestro CJ, Reichek N. Validation of gated blood-pool SPECT regional left ventricular function measurements. J Nucl Med. 2009;50:53–60.

    Article  PubMed  Google Scholar 

  55. Harel F, Finnerty V, Gregoire J, Thibault B, Marcotte F, Ugoloni P, Khairy P. Gated blood pool SPECT versus cardiac magnetic resonance imaging for the assessment of left ventricular volumes and ejection fraction. J Nucl Cardiol. 2010;17:427–34.

    Article  PubMed  Google Scholar 

  56. Oeff M, Scheinman MM, Abbott JA, Botvinick EH, Griffin JC, Herre JM, Dae MW. Phase image triangulation of accessory pathways in patients undergoing catheter ablation of posteroseptal pathways. Pacing Clin Electrophysiol. 1991;14:1072–85.

    Article  CAS  PubMed  Google Scholar 

  57. Germano G. Technical aspects of myocardial SPECT imaging. J Nucl Med. 2001;42:1499–507.

    CAS  PubMed  Google Scholar 

  58. The Cardiovascular Imaging Committee, American College of Cardiology, The Committee on Advanced Cardiac Imaging and Technology, Council on Clinical Cardiology, American Heart Association, Board of Directors, Cardiovascular Council, Society of Nuclear Medicine. Standardization of cardiac tomographic imaging. J Am Coll Cardiol. 1992;20:255–6.

    Article  Google Scholar 

  59. Germano G, Berman D. Acquisition and processing for gated perfusion SPECT: technical aspects. In: Germano G, Berman D, editors. Clinical gated cardiac SPECT. Armonk, NY: Futura; 1999. p. 93–113.

    Google Scholar 

  60. Botvinick E, Davis J, Dae M, O'Connell J, Schechtmann N, Abbott J, et al. Localization of ventricular tachycardia exit site and subsequent contraction sequence and functional effects with bedside radionuclide angiography. JACC Cardiovasc Imaging. 2008;1:605–13.

    Article  PubMed  Google Scholar 

  61. Nakajima K, Higuchi T, Taki J, Kawano M, Tonami N. Accuracy of ventricular volume and ejection fraction measured by gated myocardial SPECT: comparison of 4 software programs. J Nucl Med. 2001;42:1571–8.

    CAS  PubMed  Google Scholar 

  62. Schaefer WM, Lipke CS, Standke D, Kühl HP, Nowak B, Kaiser HJ, et al. Quantification of left ventricular volumes and ejection fraction from gated 99mTc-MIBI SPECT: MRI validation and comparison of the Emory Cardiac Tool Box with QGS and 4D-MSPECT. J Nucl Med. 2005;46:1256–63.

    PubMed  Google Scholar 

  63. Xia W, Lv Z, Wang G, Cai H, Ni J, Zhang Y, Ye B. A comparison and validation of blood-pool imaging and ECG-gated SPET myocardial perfusion imaging to assess left ventricular ejection fraction. Hell J Nucl Med. 2010;13(3):241–5.

    PubMed  Google Scholar 

  64. Nakajima K, Nishimura T. Inter-institution preference-based variability of ejection fraction and volumes using quantitative gated SPECT with Tc-99m-tetrofosmin: a multicentre study involving 106 hospitals. Eur J Nucl Med Mol Imaging. 2006;33:127–33.

    Article  PubMed  Google Scholar 

  65. Honda N, Machida K, Mamiya T, Takahashi T, Takishima T, Hasegawa N, et al. Two-dimensional polar display of cardiac blood pool SPECT. Eur J Nucl Med. 1989;15:133–6.

    Article  CAS  PubMed  Google Scholar 

  66. Links JM, Devous MD Sr. Three-dimensional display in nuclear medicine: a more useful depiction of reality, or only a superficial rendering? J Nucl Med. 1995;36:703–4.

    CAS  PubMed  Google Scholar 

  67. Metcalfe MJ, Cross S, Norton MY, Lomax A, Jennings K, Walton S. Polar map or novel three-dimensional display technique for the improved detection of inferior wall myocardial infarction using tomographic radionuclide ventriculography. Nucl Med Commun. 1994;15:330–40.

    Article  CAS  PubMed  Google Scholar 

  68. Botvinick EH, Hoffman JIE, Maddahi J, Garcia E, Rodrigues EA, Van Train K, Berman DS. Topic 5, myocardial perfusion scintigraphy-technical aspects. Self-study program III. In: Botvinick E, editor. Nuclear medicine: cardiology. Society of Nuclear Medicine: Reston, VA; 2003.

    Google Scholar 

  69. Indovina AG. Three-dimensional surface display in blood pool gated SPECT. Angiology. 1994;45:861–6.

    Article  CAS  PubMed  Google Scholar 

  70. Taillefer R, DePuey EG, Udelson JE, Beller GA, Benjamin C, Gagnon A. Comparison between the end-diastolic images and the summed images of gated Tc-99m sestamibi SPECT perfusion study in detection of coronary artery disease in women. J Nucl Cardiol. 1999;6:169–76.

    Article  CAS  PubMed  Google Scholar 

  71. Mok DY, Bartlett ML, Bacharach SL, et al. Can partial volume effects be used to measure myocardial thickness and thickening? IEEE Comp Cardiol. 1992;19:195–8.

    Article  Google Scholar 

  72. Bacharach SL. Regional and global ventricular function. In: Dilsizian V, editor. Myocardial viability: a clinical and scientific treatise. Armonk, NY: Futura; 2000.

    Google Scholar 

  73. Botvinick EH, Dae MW, O’Connell JW. The scintigraphic evaluation of the cardiovascular system. In: Parmley WW, Chatterjee KC, editors. Cardiology. Philadelphia: JB Lippincott; 1983.

    Google Scholar 

  74. Yun J, Block M, Botvinick EH. Unique contraction pattern in patients after coronary bypass graft surgery by gated SPECT myocardial perfusion imaging. Clin Nucl Med. 2003;28:18–24.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Botvinick, E.H., Costouros, N.G., Bacharach, S.L., O’Connell, J.W. (2021). Assessment of Cardiac Function: First-Pass, Equilibrium Blood Pool, and Gated Myocardial SPECT. In: Dilsizian, V., Narula, J. (eds) Atlas of Nuclear Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-49885-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49885-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49884-9

  • Online ISBN: 978-3-030-49885-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics