Skip to main content

Nanocarriers: An Emerging Tool for Micronutrient Delivery in Plants

  • Chapter
  • First Online:
Plant Micronutrients

Abstract

Presently, the requirements of food have increased with increasing population, hence the necessity for effective agricultural technologies that enhance the productivity of crops and reduce environmental risks. Nanotechnology in medicine enhances therapeutic accuracy by the targeted delivery system to the diseased cells and also disabling biological barriers. The application of nanomaterials or nanocarriers as nano-pesticides, nano-fertilizers, and sensors might enhance the productivity of crops, thereby making these emerging areas of research nowadays. The nanocarriers effectively enhance the micronutrient, fertilizer, and agrochemical delivery within the plants. Also, nanocarriers have the potential ability to protect plants against pathogens through numerous mechanisms mainly reactive oxygen species (ROS). The nanocarriers have the ability to replace conventional pesticides and fertilizers, and also reduce environmental impacts. This book chapter focuses on the various nanocarriers such as carbon and polymer-based nanocarriers and its application in micronutrients, and pesticide delivery system. We also focus on the toxicological aspects of nanocarriers and its environmental impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afreen, S., Omar, R. A., Talreja, N., Chauhan, D., & Ashfaq, M. (2018). Carbon-based nanostructured materials for energy and environmental remediation applications. In R. Prasad & E. Aranda (Eds.), Approaches in bioremediation: The new era of environmental microbiology and nanobiotechnology. Cham: Springer International Publishing.

    Google Scholar 

  • Afreen, S., Talreja, N., Chauhan, D. & Ashfaq, M. (2020). Polymer/metal/carbon-based hybrid materials for the detection of heavy metal ions. In: Abd-Elsalam, K. A. (ed.) Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems. Elsevier.

    Google Scholar 

  • Ashfaq, M., Khan, S., & Verma, N. (2014). Synthesis of PVA-CAP-based biomaterial in situ dispersed with Cu nanoparticles and carbon micro-nanofibers for antibiotic drug delivery applications. Biochemical Engineering Journal, 90, 79–89.

    Article  CAS  Google Scholar 

  • Ashfaq, M., Singh, S., Sharma, A., & Verma, N. (2013). Cytotoxic evaluation of the hierarchical web of carbon micronanofibers. Industrial & Engineering Chemistry Research, 52(12), 4672–4682.

    Article  CAS  Google Scholar 

  • Ashfaq, M., Talreja, N., Chuahan, D., & Srituravanich, W. (2019). Carbon nanostructure-based materials: A novel tool for detection of Alzheimer’s disease. In G. M. Ashraf & A. Alexiou (Eds.), Biological, diagnostic and therapeutic advances in Alzheimer’s disease: Non-pharmacological therapies for Alzheimer’s disease. Springer Singapore: Singapore.

    Google Scholar 

  • Ashfaq, M., Verma, N., & Khan, S. (2016). Copper/zinc bimetal nanoparticles-dispersed carbon nanofibers: A novel potential antibiotic material. Materials Science and Engineering: C, 59, 938–947.

    Article  CAS  Google Scholar 

  • Ashfaq, M., Verma, N., & Khan, S. (2017a). Carbon nanofibers as a micronutrient carrier in plants: Efficient translocation and controlled release of cu nanoparticles. Environmental Science: Nano, 4(1), 138–148.

    CAS  Google Scholar 

  • Ashfaq, M., Verma, N., & Khan, S. (2017b). Highly effective cu/Zn-carbon micro/nanofiber-polymer nanocomposite-based wound dressing biomaterial against the P. aeruginosa multi- and extensively drug-resistant strains. Materials Science and Engineering: C, 77, 630–641.

    Article  CAS  Google Scholar 

  • Ashfaq, M., Verma, N., & Khan, S. (2018). Novel polymeric composite grafted with metal nanoparticle-dispersed CNFs as a chemiresistive non-destructive fruit sensor material. Materials Chemistry and Physics, 217, 216–227.

    Article  CAS  Google Scholar 

  • Avellan, A., Yun, J., Zhang, Y., Spielman-Sun, E., Unrine, J. M., Thieme, J., Li, J., Lombi, E., Bland, G., & Lowry, G. V. (2019). Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano, 13(5), 5291–5305.

    Article  CAS  PubMed  Google Scholar 

  • Bhadauriya, P., Mamtani, H., Ashfaq, M., Raghav, A., Teotia, A. K., Kumar, A., & Verma, N. (2018). Synthesis of yeast-immobilized and copper nanoparticle-dispersed carbon nanofiber-based diabetic wound dressing material: Simultaneous control of glucose and bacterial infections. ACS Applied Bio Materials, 1(2), 246–258.

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty, D., Erande, M. B., & Late, D. J. (2015). Graphene quantum dots as enhanced plant growth regulators: Effects on coriander and garlic plants. Journal of the Science of Food and Agriculture, 95(13), 2772–2778.

    Article  CAS  PubMed  Google Scholar 

  • Chauhan, D., Afreen, S., Talreja, N. & Ashfaq, M. (2020). Multifunctional copper polymer-based nanocomposite for environmental and agricultural applications. In: Abd-Elsalam, K. A. (ed.) Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems. Elsevier.

    Google Scholar 

  • Chen, B. Z., Ashfaq, M., Zhu, D. D., Zhang, X. P., & Guo, X. D. (2018). Controlled delivery of insulin using rapidly separating microneedles fabricated from Genipin-Crosslinked Gelatin. Macromolecular Rapid Communications, 39(20), 1800075.

    Article  CAS  Google Scholar 

  • Chen, B. Z., Yang, Y., Wang, B. B., Ashfaq, M., & Guo, X. D. (2019). Self-implanted tiny needles as alternative to traditional parenteral administrations for controlled transdermal drug delivery. International Journal of Pharmaceutics, 556, 338–348.

    Article  CAS  PubMed  Google Scholar 

  • Chen, G., Qiu, J., Liu, Y., Jiang, R., Cai, S., Liu, Y., Zhu, F., Zeng, F., Luan, T., & Ouyang, G. (2015). Carbon nanotubes act as contaminant carriers and translocate within plants. Scientific Reports, 5(1), 15682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshpande, P., Dapkekar, A., Oak, M. D., Paknikar, K. M., & Rajwade, J. M. (2017). Zinc complexed chitosan/TPP nanoparticles: A promising micronutrient nanocarrier suited for foliar application. Carbohydrate Polymers, 165, 394–401.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, G. S., Kumar, A., & Verma, N. (2019). Bacterial homoserine lactones as a nanocomposite fertilizer and defense regulator for chickpeas. Environmental Science: Nano, 6(4), 1246–1258.

    CAS  Google Scholar 

  • He, Y., Hu, R., Zhong, Y., Zhao, X., Chen, Q., & Zhu, H. (2018). Graphene oxide as a water transporter promoting germination of plants in soil. Nano Research, 11(4), 1928–1937.

    Article  CAS  Google Scholar 

  • Hernández-Hernández, H., Quiterio-Gutiérrez, T., Cadenas-Pliego, G., Ortega-Ortiz, H., Hernández-Fuentes, A. D., Cabrera de la Fuente, M., Valdés-Reyna, J., & Juárez-Maldonado, A. (2019). Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants (Basel, Switzerland), 8(10), 355.

    PubMed Central  Google Scholar 

  • Hu, X., Lu, K., Mu, L., Kang, J., & Zhou, Q. (2014). Interactions between graphene oxide and plant cells: Regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders. Carbon, 80, 665–676.

    Article  CAS  Google Scholar 

  • Jin, X., Zhu, D. D., Chen, B. Z., Ashfaq, M., & Guo, X. D. (2018). Insulin delivery systems combined with microneedle technology. Advanced Drug Delivery Reviews, 127, 119–137.

    Article  CAS  PubMed  Google Scholar 

  • Kabiri, S., Degryse, F., Tran, D. N. H., da Silva, R. C., McLaughlin, M. J., & Losic, D. (2017). Graphene oxide: A new carrier for slow release of plant micronutrients. ACS Applied Materials & Interfaces, 9(49), 43325–43335.

    Article  CAS  Google Scholar 

  • Kashyap, P. L., Xiang, X., & Heiden, P. (2015). Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules, 77, 36–51.

    Article  CAS  PubMed  Google Scholar 

  • Khare, P., Talreja, N., Deva, D., Sharma, A., & Verma, N. (2013). Carbon nanofibers containing metal-doped porous carbon beads for environmental remediation applications. Chemical Engineering Journal, 229, 72–81.

    Article  CAS  Google Scholar 

  • Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., & Biris, A. S. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 3(10), 3221–3227.

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya, M. V., Kim, B.-S., Kim, J. N., Alimohammadi, M., Dervishi, E., Mustafa, T., & Cernigla, C. E. (2013). Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small, 9(1), 115–123.

    Article  CAS  PubMed  Google Scholar 

  • Khot, L. R., Sankaran, S., Maja, J. M., Ehsani, R., & Schuster, E. W. (2012). Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection, 35, 64–70.

    Article  CAS  Google Scholar 

  • Kumar, A., Gahoi, P., & Verma, N. (2020). Simultaneous scavenging of Cr(VI) from soil and facilitation of nutrient uptake in plant using a mixture of carbon microfibers and nanofibers. Chemosphere, 239, 124760.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, D., & Talreja, N. (2019). Nickel nanoparticles-doped rhodamine grafted carbon nanofibers as colorimetric probe: Naked eye detection and highly sensitive measurement of aqueous Cr3+ and Pb2+. Korean Journal of Chemical Engineering, 36(1), 126–135.

    Article  CAS  Google Scholar 

  • Kumar, R., Ashfaq, M., & Verma, N. (2018). Synthesis of novel PVA–starch formulation-supported cu–Zn nanoparticle carrying carbon nanofibers as a nanofertilizer: Controlled release of micronutrients. Journal of Materials Science, 53(10), 7150–7164.

    Article  CAS  Google Scholar 

  • Kumar, V., Talreja, N., Deva, D., Sankararamakrishnan, N., Sharma, A., & Verma, N. (2011). Development of bi-metal doped micro- and nano multi-functional polymeric adsorbents for the removal of fluoride and arsenic(V) from wastewater. Desalination, 282, 27–38.

    Article  CAS  Google Scholar 

  • Lee, W.-M., An, Y.-J., Yoon, H., & Kweon, H.-S. (2008). Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): Plant agar test for water-insoluble nanoparticles. Environmental Toxicology and Chemistry, 27(9), 1915–1921.

    Article  CAS  PubMed  Google Scholar 

  • Li, T., Gao, B., Tong, Z., Yang, Y., & Li, Y. (2019). Chitosan and graphene oxide nanocomposites as coatings for controlled-release fertilizer. Water, Air, & Soil Pollution, 230(7), 146.

    Article  CAS  Google Scholar 

  • López-Vargas, R. E., Ortega-Ortíz, H., Cadenas-Pliego, G., De Alba Romenus, K., Cabrera de la Fuente, M., Benavides-Mendoza, A., & Juárez-Maldonado, A. (2018). Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes. Applied Sciences, 8(7), 1020.

    Article  CAS  Google Scholar 

  • Luo, Y., & Rimmer, D. L. (1995). Zinc-copper interaction affecting plant growth on a metal-contaminated soil. Environmental Pollution, 88(1), 79–83.

    Article  PubMed  Google Scholar 

  • Martínez-Ballesta, M. C., Zapata, L., Chalbi, N., & Carvajal, M. (2016). Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. Journal of Nanobiotechnology, 14(1), 42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mikula, K., Izydorczyk, G., Skrzypczak, D., Mironiuk, M., Moustakas, K., Witek-Krowiak, A., & Chojnacka, K. (2020). Controlled release micronutrient fertilizers for precision agriculture—A review. Science of the Total Environment, 712, 136365.

    Article  CAS  Google Scholar 

  • Mohamed, M. A., Hashim, A. F., Alghuthaymi, M. A., & Abd-Elsalam, K. A. (2018). Nano-carbon: Plant growth promotion and protection. In K. A. Abd-Elsalam & R. Prasad (Eds.), Nanobiotechnology applications in plant protection. Cham: Springer International Publishing.

    Google Scholar 

  • Mohammad Ashfaq, N. T., Chuahan, D., Srituravanich, W. (2019). Polymeric Nanocomposite-Based Agriculture Delivery System: Emerging Technology for Agriculture, 1–10.

    Google Scholar 

  • Mohammad Ashfaq, S. K. (2017). Role of phytohormones in improving the yield of oilseed crops. Oilseed Crops.

    Google Scholar 

  • Mukherjee, A., Majumdar, S., Servin, A. D., Pagano, L., Dhankher, O. P., & White, J. C. (2016). Carbon Nanomaterials in agriculture: A critical review. Frontiers in Plant Science, 7, 172–172.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ocsoy, I., Paret, M. L., Ocsoy, M. A., Kunwar, S., Chen, T., You, M., & Tan, W. (2013). Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano, 7(10), 8972–8980.

    Article  CAS  PubMed  Google Scholar 

  • Olkhovych, O., Volkogon, M., Taran, N., Batsmanova, L., & Kravchenko, I. (2016). The effect of copper and zinc nanoparticles on the growth parameters, contents of ascorbic acid, and qualitative composition of amino acids and Acylcarnitines in Pistia stratiotes L. (Araceae). Nanoscale Research Letters, 11(1), 218–218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oloumi, H., Mousavi, E. A., & Nejad, R. M. (2018). Multi-Wall carbon nanotubes effects on plant seedlings growth and cadmium/lead uptake in vitro. Russian Journal of Plant Physiology, 65(2), 260–268.

    Article  CAS  Google Scholar 

  • Omar, R. A., Afreen, S., Talreja, N., Chauhan, D., & Ashfaq, M. (2019a). Impact of nanomaterials in plant systems. In R. Prasad (Ed.), Plant nanobionics: Volume 1, advances in the understanding of nanomaterials research and applications. Cham: Springer International Publishing.

    Google Scholar 

  • Omar, R. A., Afreen, S., Talreja, N., Chauhan, D., Ashfaq, M., & Srituravanich, W. (2019b). Impact of nanomaterials on the microbial system. In R. Prasad (Ed.), Microbial nanobionics: Volume 1, state-of-the-art. Cham: Springer International Publishing.

    Google Scholar 

  • Pereira, A. d. E. S., Oliveira, H. C., & Fraceto, L. F. (2019). Polymeric nanoparticles as an alternative for application of gibberellic acid in sustainable agriculture: A field study. Scientific Reports, 9(1), 7135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pérez-de-Luque, A. (2017). Interaction of Nanomaterials with plants: What do we need for real applications in agriculture? Frontiers in Environmental Science, 5, 12.

    Article  Google Scholar 

  • Rastogi, A., Zivcak, M., Sytar, O., Kalaji, H. M., He, X., Mbarki, S., & Brestic, M. (2017). Impact of metal and metal oxide nanoparticles on plant: A critical review. Frontiers in Chemistry, 5, 78–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sankararamakrishnan, N., Chauhan, D., & Dwivedi, J. (2016). Synthesis of functionalized carbon nanotubes by floating catalytic chemical vapor deposition method and their sorption behavior toward arsenic. Chemical Engineering Journal, 284, 599–608.

    Article  CAS  Google Scholar 

  • Saraswat, R., Talreja, N., Deva, D., Sankararamakrishnan, N., Sharma, A., & Verma, N. (2012). Development of novel in situ nickel-doped, phenolic resin-based micro–nano-activated carbon adsorbents for the removal of vitamin B-12. Chemical Engineering Journal, 197, 250–260.

    Article  CAS  Google Scholar 

  • Sathiyabama, M., & Parthasarathy, R. (2016). Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi. Carbohydrate Polymers, 151, 321–325.

    Article  CAS  PubMed  Google Scholar 

  • Serag, M. F., Kaji, N., Gaillard, C., Okamoto, Y., Terasaka, K., Jabasini, M., Tokeshi, M., Mizukami, H., Bianco, A., & Baba, Y. (2011). Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano, 5(1), 493–499.

    Article  CAS  PubMed  Google Scholar 

  • Shakiba, S., Astete, C. E., Paudel, S., Sabliov, C. M., Rodrigues, D. F., & Louie, S. M. (2020). Emerging investigator series: Polymeric nanocarriers for agricultural applications: Synthesis, characterization, and environmental and biological interactions. Environmental Science: Nano, 7(1), 37–67.

    CAS  Google Scholar 

  • Singh, S., Ashfaq, M., Singh, R. K., Joshi, H. C., Srivastava, A., Sharma, A., & Verma, N. (2013). Preparation of surfactant-mediated silver and copper nanoparticles dispersed in hierarchical carbon micro-nanofibers for antibacterial applications. New Biotechnology, 30(6), 656–665.

    Article  CAS  PubMed  Google Scholar 

  • Singh, S., & Verma, N. (2015). Fabrication of Ni nanoparticles-dispersed carbon micro-nanofibers as the electrodes of a microbial fuel cell for bio-energy production. International Journal of Hydrogen Energy, 40(2), 1145–1153.

    Article  CAS  Google Scholar 

  • Talreja, N., Jung, S., Yen, L. T. H., & Kim, T. (2020). Phenol-formaldehyde-resin-based activated carbons with controlled pore size distribution for high-performance supercapacitors. Chemical Engineering Journal, 379, 122332.

    Article  CAS  Google Scholar 

  • Talreja, N., Kumar, D., & Verma, N. (2014). Removal of hexavalent chromium from water using Fe-grown carbon nanofibers containing porous carbon microbeads. Journal of Water Process Engineering, 3, 34–45.

    Article  Google Scholar 

  • Talreja, N., Verma, N., & Kumar, D. (2016). Carbon bead-supported ethylene diamine-functionalized carbon nanofibers: An efficient adsorbent for salicylic acid. CLEAN – Soil, Air, Water, 44(11), 1461–1470.

    Article  CAS  Google Scholar 

  • Tripathi, K. M., Tyagi, A., Ashfaq, M., & Gupta, R. K. (2016). Temperature dependent, shape variant synthesis of photoluminescent and biocompatible carbon nanostructures from almond husk for applications in dye removal. RSC Advances, 6(35), 29545–29553.

    Article  CAS  Google Scholar 

  • Verma, S. K., Das, A. K., Gantait, S., Kumar, V., & Gurel, E. (2019). Applications of carbon nanomaterials in the plant system: A perspective view on the pros and cons. Science of the Total Environment, 667, 485–499.

    Article  CAS  Google Scholar 

  • Vithanage, M., Seneviratne, M., Ahmad, M., Sarkar, B., & Ok, Y. S. (2017). Contrasting effects of engineered carbon nanotubes on plants: A review. Environmental Geochemistry and Health, 39(6), 1421–1439.

    Article  CAS  PubMed  Google Scholar 

  • Zaytseva, O., & Neumann, G. (2016). Carbon nanomaterials: Production, impact on plant development, agricultural and environmental applications. Chemical and Biological Technologies in Agriculture, 3(1), 17.

    Article  CAS  Google Scholar 

  • Zeng, X., Zhong, B., Jia, Z., Zhang, Q., Chen, Y., & Jia, D. (2019). Halloysite nanotubes as nanocarriers for plant herbicide and its controlled release in biodegradable polymers composite film. Applied Clay Science, 171, 20–28.

    Article  CAS  Google Scholar 

  • Zhang, M., Gao, B., Chen, J., & Li, Y. (2015). Effects of graphene on seed germination and seedling growth. Journal of Nanoparticle Research, 17(2), 78.

    Article  CAS  Google Scholar 

  • Zhang, P., Zhang, R., Fang, X., Song, T., Cai, X., Liu, H., & Du, S. (2016). Toxic effects of graphene on the growth and nutritional levels of wheat (Triticum aestivum L.): Short- and long-term exposure studies. Journal of Hazardous Materials, 317, 543–551.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Y., Xu, F., Liu, Q., Chen, M., Liu, X., Wang, Y., Sun, Y., & Zhang, L. (2019). Nanomaterials and plants: Positive effects, toxicity and the remediation of metal and metalloid pollution in soil. Science of the Total Environment, 662, 414–421.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support by CONICYT through FONDECYT project Nos. 3190515 and 319581.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Irsad, Talreja, N., Chauhan, D., Rodríguez, C.A., Mera, A.C., Ashfaq, M. (2020). Nanocarriers: An Emerging Tool for Micronutrient Delivery in Plants. In: Aftab, T., Hakeem, K.R. (eds) Plant Micronutrients. Springer, Cham. https://doi.org/10.1007/978-3-030-49856-6_16

Download citation

Publish with us

Policies and ethics