Skip to main content

Agricultural Land Degradation: Processes and Problems Undermining Future Food Security

  • Chapter
  • First Online:
Environment, Climate, Plant and Vegetation Growth

Abstract

Despite significant progress in increasing agricultural production, meeting the changing dietary preferences and increasing food demands of future populations remain significant challenges. This is especially the case in developing countries. Climate change and variability, unstable markets, and shrinking arable land resources that result from urbanization and industrialization represent additional challenges. In many countries – especially those with dense populations and/or diverse ecosystems in need of conservation – expanding agriculture to new lands to increase production is not an option. Conversely, where farmers’ practices result in land degradation and deterioration of soils and natural resources upon which future productivity depends, urgent research and policy attention is needed to arrest and reverse declines in land degradation and adverse soil quality in consideration of mounting global demands for agricultural goods. This chapter provides a synopsis of agricultural land degradation issues while providing potential solutions to reverse soil quality decline through an understanding of integrated land management practices. In addition to methodologically describing the impacts of land degradation on agricultural productivity, the chapter provides up-to-date information for the specialists in the fields of agricultural development, soil science, topography, economics, and ecological management. Options for appropriate policy frameworks to mitigate the degradation of agricultural land at the international, regional and national levels are discussed and proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Cd:

cadmium

Cu:

copper

EC:

electrical conductivity

Fe:

iron

FAO:

Food and Agricultural Organization

GHG:

greenhouse gas emissions

GLADA:

An on-going assessment within the FAO’s Global Assessment of Lands Degradation and Improvement project

GLASOD:

The Global Assessment of Soil Degradation

GR:

glutathione reductase

GSH:

glutathione

IBSRAM:

International Board for Soil Research and Management

MNR:

Ministry of Natural Resources

Ni:

nickel

Pb:

lead

POX:

peroxidase

SOD:

superoxide dismutase

SOM:

Soil organic matter

UN:

United Nations;

UNEP:

United Nation Environmental Programme

UNISDR AF:

United Nations Office for Disaster Risk Reduction – Regional Office for Africa

UNNC:

United News Centre report

US-EPA:

United States Environmental Protection Agency

WWF:

World Wildlife Fund

Zn:

zinc

References

  • Acids and Bases (2015) In your mother was a chemist. http://kitchenscience.sci-toys.com/acids. Accessed on 29 Aug 2019

  • Afal A, Wiener SW (2014) Metal toxicity. Medscape.org. Accessed on 29 Aug 2019

  • Agrawal A, Pandey RS, Sharma B (2010) Water pollution with special reference to pesticide contamination in India. J Water Resour Prot 2(05):432

    Article  CAS  Google Scholar 

  • Agrella R (2015) The 10 driest places on earth: the worst droughts worldwide. http://www.safebee.com/slideshows/outdoors/10-driest-places-earth/. Accessed on 29 Aug 2019

  • Ahmed ZU, Panaullah GM, DeGloria SD, Duxbury JM (2011a) Factors affecting paddy soil arsenic concentration in Bangladesh: prediction and uncertainty of geostatistical risk mapping. Sci Total Environ 412-413:324–335

    Article  CAS  PubMed  Google Scholar 

  • Ahmed ZU, Panaullah GM, Gauch H, McCouch SR, Tyagi W, Kabir MS, Duxbury JM (2011b) Genotype and environment effects on rice (Oryza sativa L.) grain arsenic concentration in Bangladesh. Plant Soil 338:367–382

    Article  CAS  Google Scholar 

  • Ahmed MK, Shaheen N, Islam MS, Habibullah-Al-Mamun M, Islam S, Islam MM, Kundu GK, Bhattacharjee L (2016) A comprehensive assessment of arsenic in commonly consumed foodstuffs to evaluate the potential health risk in Bangladesh. Sci Total Environ 544:125–133

    Article  CAS  PubMed  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture: towards 2030/2050: the 2012 revision. FAO, Rome. Available online: http://www.fao.org/docrep/016/ap106e/ap106e.pdf. Accessed on 29 Aug 2019

  • Ali AM, Van Leeuwen HH, Koopmans RK (2001) Benefits of draining agricultural land in Egypt: results of five years monitoring of drainage effects and impacts. Water Resour Dev 17(4):633–646

    Article  Google Scholar 

  • Andrade AIASS, Stigter TY (2009) Multi-method assessment of nitrate and pesticide contamination in shallow alluvial groundwater as a function of hydrogeological setting and land use. Agric Water Manag 96(12):1751–1765

    Article  Google Scholar 

  • Annan K, Kojo AI, Cindy A, Samuel A, Tunkumgnen BM (2010) Profile of heavy metals in some medicinal plants from Ghana commonly used as components of herbal formulations. Pharm Res 2(1):41–44

    CAS  Google Scholar 

  • Bai ZG, Dent DL, Olsson L, Schaepman ME (2008) Proxy global assessment of land degradation. Soil Use Manag 24(3):223e234. https://doi.org/10.1111/j.1475-2743.2008.00169.x

    Article  Google Scholar 

  • Bationo A, Hartemink A, Lungu O, Naimi M, Okoth P, Smalling E, Thiombiano L (2006) African soils: their productivity and profitability of fertilizer use. Background paper presented for the African fertilizer summit, 9–13 June 2006, Abuja, Nigeria, 26 pp

    Google Scholar 

  • Beasley RP (1972) Erosion and sediment pollution control. Erosion and sediment pollution control. Iowa State University Press, Ames, 320pp

    Google Scholar 

  • Beek KJ, Blokhuis WA, Driessen PM, Breemen NV, Brinkman R, Pons LJ (1980) Problem soils: their reclamation and management. Technical report 2. ISRC, Wageningen, pp 9–72. Taken from: Land reclamation and water management, Developments, problems and challenges, ILRI Publication 27, 1980, pp 43–72. http://www.isric.org/isric/webdocs/docs/ISRIC_TechPap12.pdf. Accessed on 29 Aug 2019

  • Begonia GB (1998) Growth responses of Indian mustard (Brassica juncea L.) and its phytoextraction of lead from a contaminated soil. Bull Environ Contam Toxicol 61:38–43

    Article  CAS  PubMed  Google Scholar 

  • Benites J, Saintraint D, Morimoto K (2003) Degradación de suelos y producción agrícola en Argentina, Bolivia, Brasil, Chile, y Paraguay

    Google Scholar 

  • Bhatt R, Arora S, Kaur R (2016a) Conservation agriculture for improving land and water productivity. In: Pareek NK, Arora S (eds) Natural resource management in arid and semi-arid ecosystem for climate resilient agriculture. Soil Conservation Society of India, New Delhi, pp 187–201

    Google Scholar 

  • Bhatt R, Kukal SS, Busari MA, Arora S, Yadav M (2016b) Sustainability issues on rice-wheat cropping system. Int Soil Water Conserv Res 4:68–83. https://doi.org/10.1016/j.iswcr.2015.12.001

    Article  Google Scholar 

  • Bielders C, Rajot JL, Koala S (1998) Wind erosion research in Niger: the experience of ICRISAT and Advanced Research Organizations. In: Sivakumar MVK, Zobisch MA, Koala S, Mokanen T (eds) Wind erosion in Africa and West Asia: problems and its control strategies. Proceedings of the ICARDA/ICRISAT /UNEP/WMO Expert Group Meeting, 22–25 April 1997, Cairo Egypt. ICARDA, Aleppo, Syria, pp 95–125

    Google Scholar 

  • Bindraban PS, van der Velde M, Ye L, Van den Berg M, Materechera S, Kiba DI, Tamene L, Ragnarsdóttir KV, Jongschaap R, Hoogmoed M, Hoogmoed W (2012) Assessing the impact of soil degradation on food production. Curr Opin Environ Sustain 4(5):478–488

    Article  Google Scholar 

  • Borlaug N (2007) Feeding a hungry world. Science 318(5849):318–359

    Article  Google Scholar 

  • Borovskii VM (1982) Formation of saline soils and haologeochemical regions of Kazakhstan. Alma-Ata, Nauka publication, 256 pp [in Russian]

    Google Scholar 

  • Bouza ME, Aranda-Rickert A, Brizuela MM, Wilson MG, Sasal MC, Sione SM, Beghetto S, Gabioud EA, Oszust JD, Bran DE, Velazco V (2016) Economics of land degradation in Argentina. In: Economics of land degradation and improvement – a global assessment for sustainable development. Springer, Cham, pp 291–326

    Chapter  Google Scholar 

  • Braimoh AK (2015) The role of climate-smart agriculture in addressing land degradation. Solut J 6(5):48–57

    Google Scholar 

  • Brammer H, Ravenscroft P (2009) Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia. Environ Int 35(3):647–654

    Article  CAS  PubMed  Google Scholar 

  • Bridges EM, Oldeman LR (1999) Global assessment of human-induced soil degradation. Arid Soil Res Rehabil 113:319–325

    Article  Google Scholar 

  • Bruinsma J (ed) (2003) World agriculture: towards 2015/2030. A FAO perspective. Earthscan, London. ftp://ftp.fao.org/docrep/fao/005/y4252e/y4252e.pdf. Accessed on 15 July 2019

  • Bruinsma J (2011) By how much do land, water and crop yields need to increase by 2050? FAO, Rome. ftp://ftp.fao.org/agl/aglw/docs/ResourceOutlookto2050.pdf. Accessed on 29 Aug 2019

  • Brus D, Li ZB, Temmingh EJM, Song J, Koopmans GF, Luo YM, Japenga J (2009) Predictions of spatially averaged cadmium Contents in rice grains in the Fuyang Valley, P.R. China. J Environ Qual 38:1126–1136

    Article  CAS  PubMed  Google Scholar 

  • Brusseau ML, Glenn EP, Pepper IL (2019) Reclamation and restoration of disturbed systems. In: Environmental and pollution science. Academic, Amsterdam, pp 355–376

    Chapter  Google Scholar 

  • Butcher K, Wick AF, De Sutter T, Chatterjee A, Harmon J (2016) Soil salinity: a threat to global food security. Agron J 108(6):2189–2200

    Article  CAS  Google Scholar 

  • CACILM (2006) CACILM multicountry partnership framework project document. Central Asian Countries Initiative for Land Management, Asian Development Bank, 70 pp

    Google Scholar 

  • Cai X, Zhang X, Wang D (2011) Land availability for biofuel production. Environ Sci Technol 45(1):334e339. https://doi.org/10.1021/es103338e

    Article  CAS  Google Scholar 

  • Campbell JE, Lobell DB, Genova RC, Field CB (2008) The global potential of bioenergy on abandoned agriculture lands. Environ Sci Technol 42(15):5791–5794

    Article  CAS  PubMed  Google Scholar 

  • Carl JD (2016) Facts 101: think social problems, 2nd edn. Cram101 Textbook Reviews, 26-Sep-2016- Education −406

    Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8(3):559–568

    Article  Google Scholar 

  • Cassman KG (1999) Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. PNAS 96:5952–5959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalise D, Kumar L, Kristiansen P (2019) Land degradation by soil erosion in Nepal: a review. Soil Syst Soil Syst 3(1):12. https://doi.org/10.3390/soilsystems3010012

    Article  Google Scholar 

  • Conway G (2012) One billion hungry: can we feed the world. Cornell University Press, Ithaca

    Book  Google Scholar 

  • Corwin D, Lesch S (2003) Application of soil electrical conductivity to precision agriculture. Agron J 95(3):455–471

    Google Scholar 

  • Costa JE (1975) Effects of agriculture on erosion and sedimentation in the Piedmont Province, Maryland. Geol Soc Am Bull 86(9):1281–1286

    Article  Google Scholar 

  • Crosson PR (1997) The on-farm economic costs of erosion. In: Lal R, Blum WEH, Valentin C, Stewart BA (Eds) Methods for Assessment of Land Degradation. CRC, Boca Raton

    Google Scholar 

  • Daly KR, Mooney SJ, Bennett MJ, Crout NM, Roose T, Tracy SR (2015) Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray computed tomography and numerical modelling. J Exp Bot 66(8):2305–2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das KK, Dasgupta S (2002) Effect of nickel sulphate on testicular steroidogenesis in rats during protein restriction. Environ Health Perspect 110:923–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLong C, Cruse R, Wieneret J (2015) The soil degradation paradox: compromising our resources when we need them the most. Sustainability 7:866–879

    Article  Google Scholar 

  • Desanker P, Magadza C, Allali A, Basalirwa C, Boko M, Dieudonne G, Downing T, Dube PO, Giheko A, Gihendu M, Gonzalez P, Gwary D, Jallow B, Nwafor J, Scholes R (2001) Africa. In: McCarty JJ (ed) Climate change: impacts, adaptation, and vulnerability. Cambridge University Press, Cambridge, pp 487–531

    Google Scholar 

  • Descroix L, Mahé G, Lebel T, Favreau G, Galle S, Gautier E, Olivry JC, Albergel J, Amogu O, Cappelaere B, Dessouassi R (2009) Spatio-temporal variability of hydrological regimes around the boundaries between Sahelian and Sudanian areas of West Africa: a synthesis. J Hydrol 375(1–2):90–102

    Article  Google Scholar 

  • Dexter AR (1988) Advances in characterization of soil structure. Soil Tillage Res 11:199–238. https://doi.org/10.1016/0167-1987(88)90002-5

    Article  Google Scholar 

  • Dey S, Saxena A, Dan A, Swarup D (2009) Indian medicinal herb: a source of lead and cadmium for humans and animals. Arch Environ Occup Health 4:164–167

    Article  Google Scholar 

  • Dharmananda S (2012) Lead content of soil, plants, foods, air, and Chinese herb formulas. Director, Institute for Traditional Medicine, Portland, Oregon. http://www.itmonline.org/arts/lead.htm. Accessed on 29 Aug 2019

  • Dhruvanarayana VV, Babu R (1983) Estimation of soil erosion in India. J Irrig Drain Eng 109:419–434

    Article  Google Scholar 

  • Divan AM, Oliva MA, Ferreira FA (2008) Dispersal pattern of airborne emissions from an aluminium smelter in Ouro Preto, Brasil, as expressed by foliar fluoride accumulation in eight plant species. Ecol Indic 2:454–461

    Article  CAS  Google Scholar 

  • Downs RE, Kerner DO, Reyna SP (1991) The political economy of African famine. Gordon and Breach Science Publishers, Philadelphia

    Google Scholar 

  • Dregne HE (1990) Erosion and soil productivity in Africa. J Soil Water Conserv 45(4):431–436

    Google Scholar 

  • Dregne HE, Chou NT (1992) Global desertification dimensions and costs. In: Degradation & restoration of arid lands. Texas Tech University, Lubbock, pp 73–92

    Google Scholar 

  • EEA (2011) European pollutant release and transfer register. http://prtr.ec.europa.eu/pgAbout.aspx. Accessed on 26 Aug 2019

  • Eitelberg DA, van Vliet J, Verburg PH (2015) A review of global potentially available cropland estimates and their consequences for model-based assessments. Glob Chang Biol 21:1236–1248

    Article  PubMed  Google Scholar 

  • Ellies A (2000) Soil erosion and its control in Chile – an overview. Acta Geol Hisp 35(3):279–284

    Google Scholar 

  • Endonca-Santos M, Comerma J, Alegre J, Pla Sentis I, Cruz Gaistardo C, Vargas R, Tassinari D, Dias Junior Md, Santayana Vela S, Corso M, Pietragalla V (2015) Regional assessment of soil changes in Latin America and the Caribbean. Embrapa Solos-Capítulo Em Livro Científico (ALICE)

    Google Scholar 

  • Eswaran H, Reich P, Beinroth F (1997a) Global distribution of soils with acidity. In: Plant-soil interactions at low pH: sustainable agriculture and forestry production. Brazilian Soil Science Society, Viçosa, pp 159–164

    Google Scholar 

  • Eswaran H, Almaraz R, van den Berg E, Reich P (1997b) An assessment of the soil resources of Africa in relation to productivity. Geoderma 77(1):1–8

    Article  Google Scholar 

  • Eswaran H, Lal R, Reich PF (2001) Land degradation: an overview. In: Bridges EM, Hannam ID, Oldeman LR, Pening de Vries FWT, Scherr SJ, Sompatpanit S (eds) Responses to land degradation. Proceedings of the 2nd international conference on land degradation and desertification, Khon Kaen, Thailand. Oxford & IBH Publishing, New Delhi, pp 20–35

    Google Scholar 

  • Euronews Reports (2015) Moroccosets off on 10 year plan to hold back the desert. http://www.euronews.com/2015/08/24/morocco-sets-off-on-10-year-plan-to-hold-back-the-desert. Accessed on 29 Aug 2019

  • European Commission (Press release) (2017) No region left behind: launch of the platform for coal regions in transition. https://europa.eu/rapid/press-release_IP-17-5165_en.htm

  • Fageria NK, Baligar VC (2001) Improving nutrient use efficiency of annual crops in Brazilian acid soils for sustainable crop production. Commun Soil Sci Plant Anal 32:1303–1319

    Article  CAS  Google Scholar 

  • FAO (1990) FAO yearbook 1989, Production. FAO statistical series no. 94, vol 43. FAO, Rome

    Google Scholar 

  • FAO (1992) The use of saline waters for crop production, Technical report. Food and Agriculture Organization, Rome

    Google Scholar 

  • FAO (2002) The salt of the earth: hazardous for food production. World food summit. http://www.fao.org/worldfoodsummit/english/newsroom/focus/focus1.htm. Accessed on 29 Aug 2019

  • FAO (2009) Land and plant nutrition management service. http://www.fao.org/ag/AGL/public.stm/. Accessed on 29 Aug 2019

  • FAO (2019) Proceedings of the Global Symposium on Soil Erosion 2019, held on 15–17 May 2019, FAO headquarters, Rome, Italy. http://www.fao.org/3/ca5582en/CA5582EN.pdf. Accessed on June 2019

  • FAO (Food and Agriculture Organization) (1985) Irrigation water management: training manual no. 1. In: Brouwer C, Goffeau A, Heibloem M (eds) Introduction to irrigation. Food and Agriculture Organization of the United Nations, Rome, pp 102–103. http://www.fao.org/3/r4082e/r4082e00.htm#Contents. Accessed on 29 Aug 2019

  • FAO (Food and Agriculture Organization) (1988) Sodic soils and their management. In: Abrol IP, Yadav JS, Massoud FI (eds) Salt-affected soils and their management. Food & Agriculture Organization. http://www.fao.org/3/x5871e/x5871e05.htm. Accessed on 29 Aug 2019

  • FAO (Food and Agriculture Organization) (1995) Land and environmental degradation and desertification in Africa. Food and Agriculture Organization, Rome

    Google Scholar 

  • FAO (Food and Agriculture Organization) (2016) FAO soils portal: salt affected soils. FAO, Rome. http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/. Accessed on 29 Aug 2019

  • FAO (The Food and Agriculture Organization of the United Nations) (2011) The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW) – managing systems at risk. Food and Agriculture Organization of the United Nations/Earthscan, Rome/London. Available online: http://www.fao.org/docrep/017/i1688e/i1688e.pdf. Accessed on 29 Aug 2019

  • FAO (The Food and Agriculture Organization of the United Nations) (2015a) Climate change and food systems: global assessments and implications for food security and trade. FAO, Rome. http://www.fao.org/3/a-i4332e.pdf. Accessed on 29 Aug 2019

  • FAO (The Food and Agriculture Organization of the United Nations) (2015b) FAOSTAT. FAO, Rome. http://faostat3.fao.org/home/E. Accessed on 29 Aug 2019

  • FAO and ITPS (2015) Status of the World’s Soil Resources (SWSR). Main report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome. http://ext-ftp.fao.org/nr/Data/Upload/SWSR_MATTEO/Main_report/Pdf/web_Soil_Report_Main_001.pdf. Accessed on 29 Aug 2019

  • FAO/AGL (2000) Extent and causes of salt-affected soils in participating countries. FAO/AGL- global network on integrated soil management for sustainable use of salt-affected lands. http://www.fao.org/ag/agl/agll/spush/topic2.htm. Accessed on 29 Aug 2019

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C (2011) Solutions for a cultivated planet. Nature 478(7369):337–342

    Article  CAS  PubMed  Google Scholar 

  • Fonte SJ, Vanek SJ, Oyarzun P, Parsa S, Quintero DC, Rao IM, Lavelle P (2012) Pathways to agroecological intensification of soil fertility management by smallholder farmers in the Andean highlands. In: Advances in agronomy, vol 116. Academic, London, pp 125–184

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2017) FAOSTAT. Retrieved from http://www.fao.org/faostat/es/#data/TP. Accessed on 29 Aug 2019

  • Franzaring J, Hrenn С, Schumm A (2006) Environmental monitoring of fluoride emission using precipitation, dust, plant and soil. Environ Pollut 3(1):158–165

    Article  CAS  Google Scholar 

  • Galvani A (2007) The challenge of the food sufficiency through salt tolerant crops. Rev Environ Sci Biotechnol 6(1–3):3–16

    Article  CAS  Google Scholar 

  • Gao J, Liu Y (2010) Determination of land degradation causes in Tongyu County, Northeast China via land cover change detection. Int J Appl Earth Obs Geoinf 12(1):9–16

    Article  Google Scholar 

  • Gardi C, Jeffery S, Saltelli A (2013) An estimate of potential threats levels to soil biodiversity in EU. Glob Chang Biol 19(5):1538–1548

    Article  PubMed  Google Scholar 

  • Gardi C, Panagos P, Van Liedekerke M, Bosco C, De Brogniez D (2015) Land take and food security: assessment of land take on the agricultural production in Europe. J Environ Plan Manag 58(5):898–912

    Google Scholar 

  • Gardner CM, Laryea KB, Unger PW (1999) Soil physical constraints to plant growth and crop production. Land and Water Development Division, Food and Agriculture Organization. https://pdfs.semanticscholar.org/8dc3/f09583443adcb37d380bde37398f479386ba.pdf. Accessed on 29 Aug 2019

  • Garnett ST, Appleby MC, Balmford A, Bateman IJ, Bloomer P, Burlingame B, Dawkins M, Dolan L, Fraser D, Herreto M, Hoffman I, Smith P, Thornton PK, Toulmin C, Vermeulen SJ, Godfray HCJ (2013) Sustainable intensification in agriculture: premises and policies. Science 341:33–34

    Article  CAS  PubMed  Google Scholar 

  • Gazey C, Azam G (2017) Causes of soil acidity. Government of Western Australia. 3 Baron-Hay Court, South Perth WA 6151, Locked Bag 4 Bentley Delivery Centre, WA 6983. https://www.agric.wa.gov.au/soil-acidity/causes-soil-acidity. Accessed on 29 Aug 2019

  • Gelfand I, Sahajpal R, Zhang X, Izaurralde RC, Gross KL, Robertson GP (2013) Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493(7433):514–517

    Article  CAS  PubMed  Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. UNSW Press/CAB International, Sydney/Wallingford

    Google Scholar 

  • Gibbs HK, Salmon JM (2015) Mapping the world’s degraded lands. Appl Geogr 57:12–21. https://doi.org/10.1016/j.apgeog.2014.11.024

    Article  Google Scholar 

  • Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, Foley JA (2010) Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. PNAS 107:16732–16737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godfray C, Beddington J, Crute I, Haddad L, Lawrence D, Muir J, Pretty J, Robinson S, Thomas S, Toulmin C (2010) Food security: the challenge of feeding nine billion people. Science 27:812–818

    Article  CAS  Google Scholar 

  • Gomiero T (2016) Soil degradation, land scarcity and food security: reviewing a complex challenge. Sustainability 8(3):281. https://doi.org/10.3390/su8030281

    Article  Google Scholar 

  • Grimm M, Jones RJ, Rusco E, Montanarella L (2003) Soil erosion risk in Italy: a revised USLE approach. Euro Soil Bureau Res Rep 11:23

    Google Scholar 

  • Guevara JT, Milla DV (2007) Successful experiences of sustainable land use in hyperarid, arid and semiarid zones from Peru. In: Sivakumar MVK, Ndiang’ui N (eds) Climate and land degradation. Environmental science and engineering (Environmental science). Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-540-72438-4_28

    Chapter  Google Scholar 

  • Guillon F, Larre C, Petipas F, Berger A, Moussawi J, Rogniaux H, Santoni A, Saulnier L, Jamme F, Miquel M, Lepiniec L (2012) A comprehensive overview of grain development in Brachypodium distachyon variety Bd21. J Exp Bot 63(2):739–755

    Article  CAS  PubMed  Google Scholar 

  • Guimarães DV, Gonzaga MIS, Da Silva TO, Da Silva TL, Da Silva-Dias N, Matias MIS (2013) Soil organic matter pools and carbon fractions in soil under different land uses. Soil Till Res 126:177-182

    Google Scholar 

  • Gullan PJ, Cranston PS (2010) The insects: an outline of entomology, 4th edn. Blackwell Publishing, London, 584 pp

    Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327(5968):1008–1010

    Article  CAS  PubMed  Google Scholar 

  • Hailemariam S, Soromessa T, Teketay D (2015) Land use and land cover change in the Bale Mountain Eco-Region of Ethiopia during 1985 to 2015. Land 5(4):41. https://doi.org/10.3390/land5040041

    Article  Google Scholar 

  • Hamon R, McLaughlin M (2003) Food crop edibility on the Ok Tedi/Fly River Flood Plain: report for OK Tedi Mining Ltd. CSIRO Australian Centre for Environmental Contaminants Research A One-CSIRO Centre, 44p. http://www.oktedi.com/attachments/246_030815_Food%20Crop%20Edibility_Hammon%20&%20McLaughlin_CSIRO_FINAL.pdf. Accessed on 29 Aug 2019

  • Hanson C (2015) If croplands expand, where should they go? World Resource Institute, Washington, DC. https://www.wri.org/blog/2015/10/if-croplands-expand-where-should-they-go. Accessed on 29 Aug 2019

  • Harter RD (2007) Acid soils of the tropics. ECHO technical note. ECHO. http://courses.umass.edu/psoil370/Syllabus-files/Acid_Soils_of_the_Tropics.pdf. Accessed on 29 Aug 2019

  • Haug A (1983) Molecular aspects of aluminium toxicity. Crit Rev Plant Sci 1:345-373

    Google Scholar 

  • Heckrath G, Brookes PC, Poulton PR, Goulding KWT (1995) Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment. J Environ Qual 24(5):904–910

    Article  CAS  Google Scholar 

  • Hede AR, Skovmand B, López-Cesati J (2001) Acid soils and aluminum toxicity. In: Reynolds MP, Ortiz-Monasterio JI, McNab A (eds) Application of physiology in wheat breeding. CIMMYT, Mexico, pp 172–182. http://www.plantstress.com/articles/toxicity_m/acidsoil_chapter.pdf. Accessed on 29 Aug 2019

  • Herawati N, Suzuki S, Hayashi K, Rivai IF, Koyama H (2000) Cadmium, copper, and zinc levels in rice and soil of Japan, Indonesia, and China by soil type. Bull Environ Contam Toxicol 64:33–39

    Article  CAS  PubMed  Google Scholar 

  • Hillel D (1991) Out of the earth: civilization and the life of the soil. University of California Press, Berkeley

    Google Scholar 

  • Hooke RL (2000) On the history of humans as geomorphic agents. Geology 28(9):843–846

    Article  Google Scholar 

  • Howden SM, Soussana JF, Tubiello FN, Chhetri N, Dunlop M, Meinke H (2007) Adapting agriculture to climate change. Proc Natl Acad Sci 104(50):19691–19696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugo G (2006) Trends in land degradation in South America. In: Management of natural and environmental resources for sustainable agricultural development 2006. WHO, Washington, DC, p 127

    Google Scholar 

  • IPCC (2019) Final government distribution: chapter 4 – land degradation (IPCC SRCCL). https://www.ipcc.ch/site/assets/uploads/2019/08/2e.-Chapter-4_FINAL.pdf. Accessed on 29 Aug 2019

  • IRRI (2009) Revitalizing the rice wheat cropping systems of the Indo-Gangetic Plains: adaptation and adoption of resource conserving technologies in India, Bangladesh, and Nepal. Final report (IRRI Ref. No. DPPC2007–100). International Rice Research Institute

    Google Scholar 

  • Irshad M, Inoue M, Ashraf M, Delower HK, Tsunekawa A (2007) Land desertification-an emerging threat to environment and food security of Pakistan. J Appl Sci 7(8):1199–11205

    Article  Google Scholar 

  • Ismayilov A (2013) Soil resources of Azerbaijan. In: Yigini Y, Panagos P, Montanarella L (eds) Soil resources of Mediterranean and Caucasus countries. Office for Official Publications of the European Communities, Luxembourg, pp 16–36

    Google Scholar 

  • Jaramillo-Mejía MC, Chernichovsky D (2019) Impact of desertification and land degradation on Colombian children. Int J Public Health 64:67. https://doi.org/10.1007/s00038-018-1144-0

    Article  PubMed  Google Scholar 

  • Joint FAO and IAEA (2000) Management and conservation of tropical acid soils for sustainable crop production. In: Proceedings of a consultants meeting (No. IAEA-TECDOC--1159). Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. https://www-pub.iaea.org/MTCD/publications/PDF/te_1159_prn.pdf. Accessed on 29 Aug 2019

  • Jones A, Panagos P, Barcelo S, Bouraoui F, Bosco C, Dewitte O, Gardi C, Erhard M, Hervás J, Hiederer R, Jeffery S, Lükewille A, Marmo L, Montanarella L, Olazábal C, Petersen J-E, Penizek V, Strassburger T, Tóth G, Van Den Eeckhaut M, Van Liedekerke M, Verheijen F, Viestova E, Yigini Y (2011) The state of soil in Europe. Publications Office of the European Union, Luxembourg, 71 pp

    Google Scholar 

  • Ju XT, Kou CL, Christie P, Dou ZX, Zhang FS (2007) Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environ Pollut 145(2):497–506

    Article  CAS  PubMed  Google Scholar 

  • Karlen D, Rice C (2015) Soil degradation: will humankind ever learn? Sustainability 7(9):12490–12501. https://doi.org/10.3390/su70912490

    Article  CAS  Google Scholar 

  • Kaspar TC, Singer JW (2011)The use of cover crops to manage soil. Soil management: Building a stable base for agriculture. Am Soci Agron Soil Sci Soci Am. 25:321-37. https://doi.org/10.2136/2011.soilmanagement.c21

  • Kebbede G, Jacob MJ (1988) Drought, famine and the political economy of environmental degradation in Ethiopia. Geography 73(1):65–70

    Google Scholar 

  • Kibblewhite M Jones RJA, Baritz R Huber S, Arrouays D, Michéli E, Dufour MJD (2005) Environmental assessment of soil for monitoring. European Commission Desertification meeting, Brussels, 12–13 October

    Google Scholar 

  • Kirchmann H, Johnston AEJ, Bergstrom LF (2002) Possibilities for reducing nitrate leaching from agricultural land. Ambio 31:404–408

    Article  PubMed  Google Scholar 

  • Kirui OK, Mirzabaev A (2014) Economics of land degradation in Eastern Africa. ZEF working paper series. https://www.eld-initiative.org/fileadmin/pdf/ZEF_Working_Paper_128_complete_02.pdf. Accessed on 29 Aug 2019

  • Kong XB (2014) China must protect high-quality arable land. Nature 506:7. https://doi.org/10.1038/506007a

    Article  CAS  PubMed  Google Scholar 

  • Köpe S (2019) The political ecology of drylands: drought, development and environmental conflict. LIT Verlag Münster, Zurich

    Google Scholar 

  • Kuziev RK, Sektimenko VE (2009) The soils of Uzbekistan. Extremum Press, Tashkent, 351 pp [in Russian]

    Google Scholar 

  • Laktionova TM, Medvedev VV, Savchenko KV, Bihun, Shejko SM, Nakisko SG (2010) Structure and the order of data base using soils properties of Ukraine. (Instruction). Kharkiv, Apostrophe, 96 pp [in Ukranian]

    Google Scholar 

  • Lal R (1994) Tillage effects on soil degradation, soil resilience, soil quality, and sustainability. Soil Tillage Res 27:1–8

    Article  Google Scholar 

  • Lal R (1997) Degradation and resilience of soils. Philos Trans R Soc Lond B 352:997–1010

    Article  Google Scholar 

  • Lal R (2015) Restoring soil quality to mitigate soil degradation. Sustainability 7(5):5875–5895. https://doi.org/10.3390/su7055875

    Article  CAS  Google Scholar 

  • Lal R, Stewart BA (1990) Need for action: research and development priorities. In: Lal R, Stewart BA (eds) Soil degradation. Advances in soil science 11. Springer, New York, pp 331–336

    Chapter  Google Scholar 

  • Lambin EF, Meyfroidt P (2011) Global land use change, economic globalization, and the looming land scarcity. Proc Natl Acad Sci 108(9):3465–3472. https://doi.org/10.1073/pnas.1100480108

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambin EF, Gibbs HK, Ferreira L, Grau R, Mayaux P, Meyfroidt P (2013) Estimating the world’s potentially available cropland using a bottom-up approach. Glob Environ Chang 23(5):892–901. https://doi.org/10.1016/j.gloenvcha.2013.05.005

    Article  Google Scholar 

  • Landis WG, Sofield RM, Yu M-H (2000) Introduction to environmental toxicology: molecular substructures to ecological landscapes, 4th edn. CRC Press, Boca Raton, p 269

    Google Scholar 

  • Leah T (2012) Land resources management and soil degradation factors in the Republic of Moldova. In: The 3rd international symposium, Agrarian economy and rural development – realities and perspectives for Romania, 11–13 October 2012, Romania, Bucharest, pp 194–200

    Google Scholar 

  • Lehman R, Cambardella C, Stott D, Acosta-Martinez V, Manter D, Buyer J, Maul J, Smith J, Collins H, Halvorson J, Kremer R (2015) Understanding and enhancing soil biological health: the solution for reversing soil degradation. Sustainability 7(1):988–1027

    Article  CAS  Google Scholar 

  • Linder MC (1991) Nutritional biochemistry and metabolism. Appleton metabolism. Appleton & Lange, New York. http://www.amazon.com/gp/customer-media/product-gallery/0838570844/ref=cm_ciu_pdp_images_all. Accessed on 29 Aug 2019

  • Lowdermilk WC (1953) Conquest of the land through 7,000 years. US Department of Agriculture, Washington, DC

    Google Scholar 

  • Luo YM, Teng Y (2006) Status of soil pollution-caused degradation and countermeasures in China (in Chinese). Soil 38:505–508

    Google Scholar 

  • Ma H, Ju H (2007) Status and trends in land degradation in Asia. In: Sivakumar MVK, Ndiang’ui N (eds) Climate and land degradation. Environmental science and engineering (Environmental science). Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-540-72438-4_3

    Chapter  Google Scholar 

  • Maglinao AR, Santoso D (2000) Frits Penning de, network approach in soil management research: IWMI’s experience in southeast Asia. http://www.infoagro.net/sites/default/files/migrated_documents/attachment/Maglinao.pdf. Accessed on 29 Aug 2019

  • Maglinao AR, Santoso D, Penning F (2003) Network approach in soil management research: IWMI’s experience in Southeast Asia. International conference on impacts of agricultural research and development: why has impact assessment research not made more of a difference? In: International conference on impacts of agricultural research and development: why has impact assessment research not made more of a difference? A. Watson, DJ, A Mexico, DF (Mexico)^ BCIMMYT^ C2003 2003 (No. 338.91 WAT. CIMMYT)

    Google Scholar 

  • Maji AK, Reddy GPO, Sarkar D (2010) Degraded and waste-lands of India: status and spatial distribution. Indian Council of Agricultural Sciences, New Delhi, p 158

    Google Scholar 

  • Mandal AK, Sharma RC, Singh G, Dagar JC (2010) Computerized data base on salt affected soils in India. Technical bulletin no.2/2010. Central Soil Salinity Research Institute, Karnal, l28p

    Google Scholar 

  • Mando A (2000) Integrated soil management for sustainable agriculture and food security. Country case study: Burkina Faso. FAO, Accra, pp 1–32

    Google Scholar 

  • Marshall TJ, Holmes JW (1988) Soil physics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Masoom H, Courtier-Murias D, Farooq H, Soong R, Kelleher BP, Zhang C, Maas WE, Fey M, Kumar R, Monette M, Stronks HJ (2016) Soil organic matter in its native state: unravelling the most complex biomaterial on earth. Environ Sci Technol 50(4):1670–1680

    Article  CAS  PubMed  Google Scholar 

  • Massoud FI (1977) Basic principles for prognosis and monitoring of salinity and sodicity. In: Proceedings of the international conference on managing saline water for irrigation. Texas Tech University, Lubbock, Texas, 16–20 August 1976, pp 432–454

    Google Scholar 

  • Mauser W, Klepper G, Zabel F, Delzeit R, Hank T, Putzenlechner B, Calzadilla A (2015) Global biomass production potentials exceed expected future demand without the need for cropland expansion. Nat Commun 6:8946

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin L (1991) Soil conservation planning in the People’s Republic of China: an alternative approach. Ph.D. Thesis, Cornell University, Ithaca, NY, USA

    Google Scholar 

  • McLaughlin D, Shapley R, Shelley M, Wielaard J (2000) A neuronal network model of macaque primary visual cortex (v1): orientation selectivity and dynamics in the input layer 4Cα. Proc Natl Acad Sci U S A 97:8087–8092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merten G (1996) Erosión actual en el estado de Paraná, Brazil: sus causas y consecuencias económicas

    Google Scholar 

  • Metternicht GI, Zinck JA (2003) Remote sensing of soil salinity: potentials and constraints. Remote Sens Environ 85(1):1–20

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island, Washington, DC

    Google Scholar 

  • Ministry of Natural Resources (2006) State report on the state and protection of environment in Russian Federation in 2005. Land resources of Russian Federation for the 1st of January 2006, Moscow, 45 pp [in Russian]

    Google Scholar 

  • Miyan MA (2015) Droughts in Asian least developed countries: vulnerability and sustainability. Weather Clim Extrem 7:8–23. https://doi.org/10.1016/j.wace.2014.06.003

    Article  Google Scholar 

  • Montgomery DR (2007) Soil erosion and agricultural sustainability. PNAS 104:13268–13272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Msangi JP (2007) Land degradation management in Southern Africa. In: Sivakumar MVK, Ndiang’ui N (eds) Climate and land degradation. Environmental science and engineering (Environmental science). Springer, Berlin/Heidelberg

    Google Scholar 

  • Nachtergaele FO, Petri M, Biancalani R, van Lynden G, van Velthuizen H, Bloise M (2011) Global Land Degradation Information System (GLADIS), an information database for land degradation assessment at global level. Version 1.0. LADA Technical report n. 17. FAO, Rome.

    Google Scholar 

  • Narro L, Pandey S, Leon CD, Salazar F, Arias MP (2001) Implication of soil-acidity tolerant maize cultivars to increase production in developing countries. In: Ae N, Arihara J, Okada K, Srinivasan A (eds) Plant nutrient acquisition: new perspectives. Springer, Tokyo, pp 447–463

    Chapter  Google Scholar 

  • Nearing MA, Xie Y, Liu B, Ye Y (2017) Natural and anthropogenic rates of soil erosion. Int Soil Water Conserv Res 5(2):77–84

    Article  Google Scholar 

  • Nicol AM, Kennedy SM (2008) Assessment of pesticide exposure control practices among men and women on fruit-growing farms in British Columbia. J Occup Environ Hyg 5(4):217–226

    Article  CAS  PubMed  Google Scholar 

  • Nielen MWF, Marvin HJP (2008) Challenges in chemical food contaminants and residue analysis. In: Picó Y (ed) Food contaminants and residue analysis. Elsevier, Oxford, pp 1–28

    Google Scholar 

  • Nizeyimana EL, Petersen GW, Imhoff ML, Sinclair HR, Waltman SW, Reed-Margetan DS, Levine ER, Russo JM (2001) Assessing the impact of land conversion to urban use on soils of different productivity levels in the USA. Soil Sci Soc Am J 65:391–402

    Article  CAS  Google Scholar 

  • Nkonya E, Mirzabaev A, Von Braun J (eds) (2016) Economics of land degradation and improvement: a global assessment for sustainable development. Springer Open, Cham. https://doi.org/10.1007/978-3-319-19168-3

    Book  Google Scholar 

  • No¨sberger J, Geiger HH, Struik PC (2001) Crop science: progress and prospects/edited by p. cm. Papers presented at the third international crop science congress in Hamburg, Germany

    Google Scholar 

  • Novikova AV (2009) The study of saline and solonetz soils: their genesis, melioration, and ecology. Kharkiv, Dkukarnya, 720 pp [in Russian]

    Google Scholar 

  • OCHA (United Nations Office for the Coordination of Humanitarian Affairs) (2016) Global humanitarian overview 2017. http://reliefweb.int/report/world/global-humanitarian-overview-2017-enarch. Accessed on 29 Aug 2019

  • Oldeman LR (1994) The global extent of land degradation. In: Land DJG, Szaboks I (eds) Land resilence and sustainable land use. CABI, Wallingford, pp 99–118

    Google Scholar 

  • Oldeman LR (1998) Soil degradation: a threat of food security. Report 98/01. International Soil Reference and Information Centre, Wageningen

    Google Scholar 

  • Oldeman LR, Hakkeling T, Sombroek WG (1991) World map of the status of human induced soil degradation: an explanatory note. International Centre and United Nations Environment Programme, Wageningen/Nairobi

    Google Scholar 

  • Ouedraogo I, Tigabu M, Savadogo P, Compaoré H, Odén PC, Ouadba JM (2010) Land cover change and its relation with population dynamics in Burkina Faso, West Africa. Land Degrad Dev 21(5):453–462

    Article  Google Scholar 

  • Owen E, Jayasuriya MC (1989) Use of crop residues as animal feeds in developing countries. Res Dev Agric 6(3):129–138

    Google Scholar 

  • Oyegun CU (1990) The management of coastal zone erosion in Nigeria. Ocean Shoreline Manag 14(3):215–228

    Article  Google Scholar 

  • Pankova EI (1992) Genesis of salinization in the soils of deserts. Dokuchaev Soil Science Institute Publication, Moscow, 136 pp (In Russian)

    Google Scholar 

  • Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41(8–9):665–1677

    Google Scholar 

  • Perez P (1994) Genese du ruissellement sur les sols cultivés du sud Saloum (Sénégal). Du diagnostic a l’aménagement de parcelle. Thèse de doctorat ENSA Montpellier, 250 pp

    Google Scholar 

  • Pimental D, Harvey C, Resosudarmo P, Sinclair K, Kurz D, McNair M, Crist S, Shprit ZL, Fitton L, Saffouri R, Blair R (1995) Environmental and economic costs of soil erosion and conservation benefits. Science 267:1117–1124

    Article  Google Scholar 

  • Pimentel D (2006) Soil erosion: a food and environmental threat. Environ Dev Sustain 8:119–137

    Article  Google Scholar 

  • Pimentel D, Burgess M (2013) Soil erosion threatens food production. Agriculture 3(3):443–463. https://doi.org/10.3390/agriculture3030443

    Article  Google Scholar 

  • Pimentel D, Allen J, Beers A, Guinand L, Linder R, McLaughlin P, Meer B, Musonda D, Perdue D, Poisson S, Siebert S (1987) World agriculture and soil erosion. Bioscience 37(4):277–283

    Article  Google Scholar 

  • RAE Aliev ZH (2018) Irrigated agriculture problems in Azerbaijan and its development prospects. Biomed J Sci & Tech Res 7(5):6110-6113. https://doi.org/10.26717/BJSTR.2018.07.001558

  • Rakhmatullaev S, Huneau F, Kazbekov J, Celle-Jeanton H, Motelica-Heino M, Coustumer P, Jumanov J (2012) Groundwater resources of Uzbekistan: an environmental and operational overview. Open Geosci 4(1):67–80

    Article  Google Scholar 

  • Rao I, Zeigler R, Vera R, Sarkarung S (1993) Selection and breeding for acid-soil tolerance in crops. Bioscience 43(7):454–465. https://doi.org/10.2307/1311905

    Article  Google Scholar 

  • Rao CS, Gopinath KA, Rao CR, Raju BM, Rejani R, Venkatesh G, Kumari VV (2016) Dryland agriculture in South Asia: experiences, challenges and opportunities. In: Innovations in dryland agriculture. Springer, Cham, pp 345–392

    Google Scholar 

  • Raven PH, Johnson GB, Mason KA, Losos JB, Singer SR (2014) Acids and bases. In: Biology, 10th edn, AP edn. McGraw-Hill, New York, pp 29–30

    Google Scholar 

  • Ravindran KC, Venkatesan K, Balakrishnan V, Chellappan KP, Balasubramanian T (2007) Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem 39:2661–2664

    Article  CAS  Google Scholar 

  • Reece JB, Urry LA, Cain ML, Wasserman SA, Minorsky PV, Jackson RB (2011) Acidic and basic conditions affect living organisms. In: Campbell biology, 10th edn. Pearson, San Francisco, p 51

    Google Scholar 

  • Reich P, Eswaran H, Beinroth F (1999) Global dimensions of vulnerability to wind and water erosion. In: Stott DE, Mohtar RH, Steinhardt GC (eds) Sustaining the global farm. Selected Papers from the 10th international soil conservation organization meeting, Purdue University and USDA-ARS National Soil Erosion Research Laboratory, 24 May 1999, pp 838–846

    Google Scholar 

  • Rekacewicz P (2008) Global soil degradation. UNEP/GRID-Arendal – from collection: IAASTD – International Assessment of Agricultural Science and Technology for Development. Available online: http://www.grida.no/graphicslib/detail/global-soil-degradation_9aa7. Accessed on 29 Aug 2019

  • Reynolds JF, Smith DM, Lambin EF, Turner BL, Mortimore M, Batterbury SP, Downing TE, Dowlatabadi H, Fernández RJ, Herrick JE, Huber-Sannwald E (2007) Global desertification: building a science for dryland development. Science 2007(316):847–851

    Article  CAS  Google Scholar 

  • Rozanov BG, Targulian V, Orlov DS (1990) The earth as transformed by human action. Global and regional changes in the biosphere over the past 300 years. For Ecol Manag 55:341–342

    Google Scholar 

  • Rozena J, Flowers T (2008) Crops for a salinized world. Science 322:1478–1480

    Article  Google Scholar 

  • Saiko VF (1995) Problems of rational agricultural land use in the Ukraine. CARD working papers 208. https://lib.dr.iastate.edu/card_workingpapers/208

  • Santibáñez F, Santibáñez P (2007) Trends in land degradation in Latin America and the Caribbean, the role of climate change. In: Sivakumar MVK, Ndiang’ui N (eds) Climate and land degradation. Environmental science and engineering (Environmental science). Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-540-72438-4_4

    Chapter  Google Scholar 

  • Scherr SJ (1999) Soil degradation: a threat to developing-country food security by 2020? Volume 27 of food, agriculture, and the environment discussion paper. International Food Policy Research Institute, 63p

    Google Scholar 

  • Schils R, Kuikman P, Liski J, Van Oijen M, Smith P, Webb J, Alm J, Somogyi Z, Van den Akker J, Billett M, Emmett B (2008) Review of existing information on the interrelations between soil and climate change (ClimSoil). Final report. http://nora.nerc.ac.uk/id/eprint/6452/1/climsoil_report_dec_2008.pdf. Accessed on June 2019

  • Searchinger T, Waite R, Hanson C, Ranganathan J, Dumas P, Matthews F (2019) World resources final report 2019: creating a sustainable food future – a menu of solutions to feed nearly 10 billion people by 2050. Final report 2019. World Resource Institute, pp 564. https://wrr-food.wri.org/sites/default/files/2019-07/WRR_Food_Full_Report_0.pdf. Accessed on 29 Aug 2019

  • Selby MJ (1993) Hillslope materials and processes. Oxford University Press, Oxford

    Google Scholar 

  • Senol S, Bayramin I (2013) Soil resources of Turkey. In: Yigini Y, Panagos P, Montanarella L (eds) Soil resources of Mediterranean and Caucasus countries. Office for Official Publications of the European Communities, Luxembourg, pp 225–237

    Google Scholar 

  • Shahid SA, Zaman M, Heng L (2018) Introduction to soil salinity, sodicity and diagnostics techniques. In: Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer, Cham, pp 1–42. https://doi.org/10.1007/978-3-319-96190-3_1

    Chapter  Google Scholar 

  • Shaler NS (1905) Man and the earth. Fox, Duffield

    Google Scholar 

  • Shaxson F, Alder J, Jackson T, Hunter N (2014a) Land husbandry: an agro-ecological approach to land use and management Part 1: considerations of landscape conditions. Int Soil Water Conserv Res 2(3):22–35

    Article  Google Scholar 

  • Shaxson TF, Williams AR, Kassam AH (2014b) Land husbandry: an agro-ecological approach to land use and management Part 2: consideration of soil conditions. Int Soil Water Conserv Res 2(4):64–80

    Article  Google Scholar 

  • Shoba SA, Alyabina IO, Kolesnikova VM, Molchanov EN, Rojkov VA, Stolbovoi VS, Urusevskaya IS, Sheremet BV, Konyushkov DE (2010) Soil resources of Russia. Soil-geographic database. GEOS, Moscow [in Russian]

    Google Scholar 

  • Silvertooth JC (2001) Saline and sodic soil identification and management for cotton. Extension agronomist – cotton. College of Agriculture, The University of Arizona. Publication no. az1199. https://cals.arizona.edu/crop/cotton/soilmgt/saline_sodic_soil.html#table2. Accessed on 15 July 2019

  • Simmons CS, Perz S, Pedlowski MA, Silva LG (2002) The changing dynamics of land conflict in the Brazilian Amazon: the rural-urban complex and its environmental implications. Urban Ecosyst 6(1–2):99–121

    Article  Google Scholar 

  • Sivakumar MV, Ndiang’Ui N (eds) (2007) Climate and land degradation. Springer, 623pp. https://doi.org/10.1007/978-3-540-72438-4

  • Sivakumar MVK, Stefanski R (2007) Climate and land degradation – an overview. In: Sivakumar MVK, Ndiang’ui N (eds) Climate and land degradation. Environmental science and engineering (Environmental science). Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-540-72438-4_6

    Chapter  Google Scholar 

  • Smith P, House JI, Bustamante M, Sobocká J, Harper R, Pan G, West PC, Clark JM, Adhya T, Rumpel C, Paustian K (2016) Global change pressures on soils from land use and management. Glob Chang Biol 22(3):1008–1028

    Article  PubMed  Google Scholar 

  • Sonneveld BGJS (2002) Land under pressure: the impact of water erosion on food production in Ethiopia. PhD dissertation, Shaker Publishing, Netherlands

    Google Scholar 

  • Sterk G (1996) Wind erosion in the Sahelian zone of Niger: processes, models, and control techniques. Tropical resource management papers 15, 151 pp

    Google Scholar 

  • Sullivan P (2004) Sustainable soil management: soil systems guide. Appropriate Technology Transfer for Rural Areas (ATTRA) FairettevilleA.R.72702, National Centre for Appropriate Technology

    Google Scholar 

  • Syvitski JP, Vörösmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308(5720):376–380

    Article  CAS  PubMed  Google Scholar 

  • Szabolcs I (1974) Salt affected soils in Europe. Martinus Nijhoff, The Hague, 63 p

    Book  Google Scholar 

  • Tapia-Armijos MF, Homeier J, Espinosa CI, Leuschner C, de la Cruz M (2015) Deforestation and forest fragmentation in South Ecuador since the 1970s–losing a hotspot of biodiversity. PLoS One 10(9):e0133701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tavakkoli E, Rengasamy P, McDonald GK (2010) High concentrations of Na+ and Cl–ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61(15):4449–4459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl–ions on barley growth under salinity stress. J Exp Bot 62(6):2189–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiombiano L, Tourino-Soto I (2007) Status and trends in land degradation in Africa. In: Sivakumar MVK, Ndiang’ui N (eds) Climate and land degradation. Environmental science and engineering (Environmental science). Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-540-72438-4_2

    Chapter  Google Scholar 

  • Thomas RP (2011) Proceedings of the Global Forum on Salinization and Climate Change (GFSCC2010). Valencia, 25–29 October 2010. Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/uploads/media/BOOK_printing.pdf. Accessed on 26 Aug 2019

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294(5543):843e845. https://doi.org/10.1126/science.1060391

    Article  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. PNAS 2011(108):20260–20264

    Article  Google Scholar 

  • Timsina J, Wolf J, Guilpart N, Van Bussel LG, Grassini P, Van Wart J, Hossain A, Rashid H, Islam S, Van Ittersum MK (2018) Can Bangladesh produce enough cereals to meet future demand? Agric Syst 163:36–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trimble SW, Crosson P (2000) US soil erosion rates – myth and reality. Science 289(5477):248–250

    Article  CAS  PubMed  Google Scholar 

  • Troeh FR, Hobbs JA, Donahue RL (1999) Soil and water conservation, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Troeh FR, Hobbs JA, Donahue RL (2004) Soil and Water Conservation for Productivity and Environmental Protection. Prentice Hall, Upper Saddle River, 45 pp

    Google Scholar 

  • Trofimova TA, Hossain A, da Silva JA (2012) The ability of medical halophytes to phytoremediate soil contaminated by salt and heavy metals in Lower Volga, Russia. Asian Australas J Plant Sci Biotechnol 6(Special Issue 1):108–114

    Google Scholar 

  • UBA (German Environment Agency) (2015) Ten million hectares of arable land worldwide are ‘lost’ every year. Joint press release by the German Environment Agency and the Federal Ministry for Economic Cooperation and Development. Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany. http://www.umweltbundesamt.de/en/press/pressinformation/ten-million-hectares-of-arable-land-worldwide-are. Accessed on 29 Aug 2019

  • Uddin MT, Fatema K (2016) Rice crop residue management and its impact on farmers livelihood-an empirical study. Progress Agric 27(2):189–199

    Article  Google Scholar 

  • Uddin MT, Goswami A (2016) An economic study on maize residue practices in Dinajpur district. J Bangladesh Agric Univ 14(2):209–218

    Article  Google Scholar 

  • UN (United Nations) (2015) World population prospects 2015. Office of the Director, Population Division, United Nations, 2 United Nations Plaza, Room DC2-1950, New York, NY, 10017 USA

    Google Scholar 

  • UNEP (1992) World atlas of desertification. Edward Arnold, London

    Google Scholar 

  • UNISDR AF (United Nations Office for Disaster Risk Reduction – Regional Office for Africa) (2015) Tackling poverty and drought in Uganda. http://www.unisdr.org/archive/45188. Accessed on 15 July 2019

  • UNNC (United Nations News Centre) (2015) More than 850,000 people face acute food insecurity in Somalia, UN food assessment shows. http://www.un.org/apps/news/story.asp?NewsID=51757#.WIdweBt942x. Accessed on 29 Aug 2019

  • UNO (2012) United Nations convention to combat desertification: zero net land degradation. http://www.unccd.int/Lists/SiteDocumentLibrary/Rio+20/UNCCD_PolicyBrief_ZeroNetLandDegradation.pdf. Accessed on 29 Aug 2019

  • Ursic SJ, Dendy FE (1965) Proceedings of the federal inter-agency sedimentation conference, 1963. US Department of Agriculture, Washington, DC, pp 47–52

    Google Scholar 

  • US-EPA (United States Environmental Protection Agency) (2006) Environmental databases: ecotoxicity database. Pesticides: science and policy. U.S. Environmental Protection Agency, Office of Water (4100T), Washington, DC 20460. https://www.epa.gov/pesticides. Accessed on 15 July 2019

  • Utuk IO, Daniel EE (2015) Land degradation: a threat to food security: a global assessment. J Environ Earth Sci IISTE 5:13–21

    Google Scholar 

  • Van Breemen N, Mulder J, Driscoll CT (1983) Acidification and alkalinization of soils. Plant Soil 75(3):283–308

    Article  Google Scholar 

  • Van Wambeke A (1976) Formation, distribution and consequences of acid soils in agricultural development. In: Wright MJ (ed) Plant adaptation to mineral stress in problem soils. Cornell University Press, Ithaca, pp 15–24

    Google Scholar 

  • Verheijen FG, Jones RJ, Rickson RJ, Smith CJ (2009) Tolerable versus actual soil erosion rates in Europe. Earth Sci Rev 94(1–4):23–38

    Article  Google Scholar 

  • Von Uexkull H, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

    Article  Google Scholar 

  • Wang WX, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. https://doi.org/10.1007/s00425-003-1105-5

    Article  CAS  PubMed  Google Scholar 

  • Warren A, Batterbury S, Osbahr H (2001) Soil erosion in the West African Sahel: a review and an application of a “local political ecology” approach in South West Niger. Glob Environ Chang 11(1):79–95

    Article  Google Scholar 

  • Warren A, Osbahr H, Batterbury S, Chappell A (2003) Indigenous views of soil erosion at Fandou Béri, southwestern Niger. Geoderma 111(3–4):439–456

    Article  Google Scholar 

  • Wei CY, Chen TB (2001) Hyper accumulators and phytoremediation of heavy metal contaminated soil: a review of studies in China and abroad. Acta Ecol Sin 21:1196–1203

    Google Scholar 

  • Weisskopf MG, Moisan F, Tzourio C, Rathouz PJ, Elbaz A (2013) Pesticide exposure and depression among agricultural workers in France. Am J Epidemiol 178(7):1051–1058

    Article  PubMed  Google Scholar 

  • White and Maldonado (1991) Erosion processes in tropical watersheds: a preliminary assessment of measurement methods, action strategies, and information availability in the Dominican Republic, Ecuador, and Honduras. Development strategies for Fragile Lands. Agency for International Development, Washington, DC

    Google Scholar 

  • Wichelns D (2016) Managing water and soils to achieve adaptation and reduce methane emissions and arsenic contamination in Asian rice production. Water 8(4):141

    Article  CAS  Google Scholar 

  • Williams WD (1999) Salinisation: a major threat to water resources in the arid and semi-arid regions of the world. Lakes Reserv Res Manag 4(3–4):85–91

    Article  Google Scholar 

  • Wolman MG (1967) A cycle of sedimentation and erosion in urban river channels. Geogr Ann Ser A Phys Geogr 49:385–395

    Article  Google Scholar 

  • Woods RG (ed) (2019) Future dimensions of world food and population. CRC Press, Boulder, 414p

    Google Scholar 

  • World Economic Forum (2012) What if the world’s soil runs out? http://world.time.com/2012/12/14/what-if-the-worlds-soil-runs-out/. Accessed on 29 Aug 2019

  • WWF (World Wildlife Fund) (2016) Overview. World Wildlife Fund, Washington, DC 20037. http://www.worldwildlife.org/threats/water-scarcity. Accessed on 15 July 2019

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10(12):615–620

    Article  CAS  PubMed  Google Scholar 

  • Young A (1999) Is there really spare land? A critique of estimates of available cultivable land in developing countries. Environ Dev Sustain 1:3–18

    Article  Google Scholar 

  • Young ARM, Young RW (2001) Soils in the Australian landscape. Oxford University Press, Melbourne. http://agris.fao.org/agris-search/search.do?recordID=US201300069965

  • Zambrano-Monserrate MA, Carvajal-Lara C, Urgilés-Sanchez R, Ruano MA (2018) Deforestation as an indicator of environmental degradation: analysis of five European countries. Ecol Indic 90:1–8

    Article  Google Scholar 

  • Zeidler J, Chunga R (2007) Drought hazard and land management in the drylands of Southern Africa. In: Sivakumar MVK, Ndiang’ui N (eds) Climate and land degradation. Environmental science and engineering (Environmental science). Springer, Berlin/Heidelberg

    Google Scholar 

  • Zekri S, Al-Rawahy SA, Naifer A (2010) Socio-economic considerations of salinity: descriptive statistics of the Batinah sampled farms. In: Mushtaque A, Al-Rawahi SA, Hussain N (eds) Monograph on management of salt-affected soils and water for sustainable agriculture. Sultan Qaboos University, Muscat, pp 99–113

    Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71

    Article  CAS  PubMed  Google Scholar 

  • Zia-ur-Rehman M, Murtaza G, Qayyum MF, Rizwan M, Ali S, Akmal F, Khalid H (2016) Degraded soils: origin, types and management. In: Soil science: agricultural and environmental prospectives. Springer, Cham, pp 23–65

    Chapter  Google Scholar 

Download references

Financial Support

This is an international collaborative work. A portion of the time allocated by TJK has been covered by the USAID and BMGF supported Cereal Systems Initiative for South Asia (CSISA) project and the MAIZE CGIAR Research Program (MAIZE CRP). The results of this research do not necessarily reflect the views of USAID, the MAIZE CRP, the United States Government, or the BMGF.

Conflict of interest

Authors declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, A. et al. (2020). Agricultural Land Degradation: Processes and Problems Undermining Future Food Security. In: Fahad, S., et al. Environment, Climate, Plant and Vegetation Growth. Springer, Cham. https://doi.org/10.1007/978-3-030-49732-3_2

Download citation

Publish with us

Policies and ethics