Skip to main content

Preclinical Strategies for Testing of Targeted Radiosensitizers

  • Chapter
  • First Online:
Molecular Targeted Radiosensitizers

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Use of radiation for cancer therapy began shortly after the discovery of X-rays in 1895. Technological advances over the ensuing 120 years have enabled the development of sophisticated treatment systems, and radiation therapy remains an important component of cancer treatment, with more than 50% of all cancer patients receiving radiation therapy at some point in the course of the disease. In the 1960s and 1970s, combining chemotherapy with radiation was found to have synergistic anti-cancer effects for patients with advanced cancer. In more recent years, the advent of molecular biology has facilitated the development of specific drugs for molecular targets involved in neoplastic processes, giving rise to targeted therapy. Although the radiosensitization capabilities of some targeted agents have led to improved clinical outcomes in some cases, numerous clinical trials of targeted therapies with radiation have failed to demonstrate such improvements. One reason for this failure may be the use of poorly designed and reported preclinical studies as the rationale for undertaking large, expensive, and ultimately unsuccessful clinical trials. In this chapter, we introduce current preclinical screening methods for radiosensitizers, review current guidelines and recommendations for the standardization of preclinical studies, and discuss future opportunities in the era of precision radiation oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed MM, Narendra A, Prasanna P, Coleman CN, Krishnan S (2016) Current insights in radiation combination therapies: influence of omics and novel targeted agents in defining new concepts in radiation biology and clinical radiation oncology. In: Seminars in radiation oncology. vol. 26, no. 4. WB Saunders Ltd, pp 251–253

    Google Scholar 

  • Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR (1988) Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 48(3):589–601

    CAS  PubMed  Google Scholar 

  • Barnett GC, West CM, Dunning AM, Elliott RM, Coles CE, Pharoah PD, Burnet NG (2009) Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer 9(2):134–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begg AC, Stewart FA, Vens C (2011) Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer 11(4):239–253

    Article  CAS  PubMed  Google Scholar 

  • Begley CG, Ellis LM (2012) Raise standards for preclinical cancer research. Nature 483(7391):531–533

    Article  CAS  PubMed  Google Scholar 

  • Ben-David U, Siranosian B, Ha G, Tang H, Oren Y, Hinohara K, Strathdee CA, Dempster J, Lyons NJ, Burns R, Nag A (2018) Genetic and transcriptional evolution alters cancer cell line drug response. Nature 560(7718):325–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentzen SM, Harari PM, Bernier J (2007) Exploitable mechanisms for combining drugs with radiation: concepts, achievements and future directions. Nat Rev Clin Oncol 4(3):172

    Article  Google Scholar 

  • Bibby MC (2004) Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages. Eur J Cancer 40(6):852–857

    Article  CAS  PubMed  Google Scholar 

  • Bristow RG, Alexander B, Baumann M, Bratman SV, Brown JM, Camphausen K, Choyke P, Citrin D, Contessa JN, Dicker A, Kirsch DG (2018) Combining precision radiotherapy with molecular targeting and immunomodulatory agents: a guideline by the American Society for Radiation Oncology. Lancet Oncol 19(5):e240–e251

    Article  PubMed  Google Scholar 

  • Brown JM, Wouters BG (1999) Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res 59(7):1391–1399

    CAS  PubMed  Google Scholar 

  • Chen YJ, Tsai TH, Wang LY, Hsieh CH (2017) Local radiotherapy affects drug pharmacokinetics—exploration of a neglected but significant uncertainty of cancer therapy. Technol Cancer Res Treat 16(6):705–716

    Article  PubMed  PubMed Central  Google Scholar 

  • Coleman CN, Lawrence TS, Kirsch DG (2014) Enhancing the efficacy of radiation therapy: premises, promises, and practicality. J Clin Oncol 32(26):2832

    Article  PubMed  PubMed Central  Google Scholar 

  • Desrosiers M, DeWerd L, Deye J, Lindsay P, Murphy MK, Mitch M, Macchiarini F, Stojadinovic S, Stone H (2013) The importance of dosimetry standardization in radiobiology. J R Natl Inst Standard Technol 118:403

    Article  Google Scholar 

  • Dixit A, Parnas O, Li B, Chen J, Fulco CP, Jerby-Arnon L, Marjanovic ND, Dionne D, Burks T, Raychowdhury R, Adamson B (2016) Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167(7):1853–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eke I, Zong D, Aryankalayil MJ, Sandfort V, Bylicky MA, Rath BH, Graves EE, Nussenzweig A, Coleman CN (2020) 53BP1/RIF1 signaling promotes cell survival after multifractionated radiotherapy. Nucleic Acids Res 48(3):1314–1326

    Article  PubMed  CAS  Google Scholar 

  • Ford E, Deye J (2016) Current instrumentation and technologies in modern radiobiology research—opportunities and challenges. In: Seminars in radiation oncology, vol. 26, no. 4. WB Saunders, pp 349–355

    Google Scholar 

  • Franken NA, Rodermond HM, Stap J, Haveman J, Van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protocol 1(5):2315

    Article  CAS  Google Scholar 

  • Goglia AG, Delsite R, Luz AN, Shahbazian D, Salem AF, Sundaram RK, Chiaravalli J, Hendrikx PJ, Wilshire JA, Jasin M, Kluger HM (2015) Identification of novel radiosensitizers in a high-throughput, cell-based screen for DSB repair inhibitors. Mol Cancer Ther 14(2):326–342

    Article  CAS  PubMed  Google Scholar 

  • Hansen K, Khanna C (2004) Spontaneous and genetically engineered animal models: use in preclinical cancer drug development. Eur J Cancer 40(6):858–880

    Article  CAS  PubMed  Google Scholar 

  • Harrington KJ, Billingham LJ, Brunner TB, Burnet NG, Chan CS, Hoskin P, Mackay RI, Maughan TS, Macdougall J, McKenna WG, Nutting CM (2011) Guidelines for preclinical and early phase clinical assessment of novel radiosensitisers. Br J Cancer 105(5):628–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Mælandsmo GM, Roman-Roman S (2014) Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov 4(9):998–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins GS, Prevo R, Lee YF, Helleday T, Muschel RJ, Taylor S, Yoshimura M, Hickson ID, Bernhard EJ, McKenna WG (2010) A small interfering RNA screen of genes involved in DNA repair identifies tumor-specific radiosensitization by POLQ knockdown. Cancer Res 70(7):2984–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahn J, Tofilon PJ, Camphausen K (2012) Preclinical models in radiation oncology. Radiat Oncol 7(1):223

    Article  PubMed  PubMed Central  Google Scholar 

  • Kazi AM, MacVittie TJ, Lasio G, Lu W, Prado KL (2014) The MCART radiation physics core: the quest for radiation dosimetry standardization. Health Phys 106(1):97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirsch DG, Diehn M, Kesarwala AH, Maity A, Morgan MA, Schwarz JK, Bristow R et al (2018) The future of radiobiology. J Natl Cancer Inst 110(4):329–340

    Article  CAS  PubMed  Google Scholar 

  • Kunos CA, Coleman CN (2018) Current and future initiatives for radiation oncology at the National Cancer Institute in the era of precision medicine. Int J Radiat Oncol Biol Phys 102(1):18–25

    Article  PubMed  Google Scholar 

  • Lally BE, Geiger GA, Kridel S, Arcury-Quandt AE, Robbins ME, Kock ND, Wheeler K, Peddi P, Georgakilas A, Kao GD, Koumenis C (2007) Identification and biological evaluation of a novel and potent small molecule radiation sensitizer via an unbiased screen of a chemical library. Cancer Res 67(18):8791–8799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW, Crystal RG, Darnell RB, Ferrante RJ, Fillit H, Finkelstein R (2012) A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490(7419):187–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence YR, Vikram B, Dignam JJ, Chakravarti A, Machtay M, Freidlin B, Takebe N, Curran WJ Jr, Bentzen SM, Okunieff P, Coleman CN (2013) NCI–RTOG translational program strategic guidelines for the early-stage development of radiosensitizers. J Natl Cancer Inst 105(1):11–24

    Article  CAS  PubMed  Google Scholar 

  • Liauw SL, Connell PP, Weichselbaum RR (2013) New paradigms and future challenges in radiation oncology: an update of biological targets and technology. Sci Transl Med 5(173):173sr2–173sr2

    Google Scholar 

  • Lin SH, George TJ, Ben-Josef E, Bradley J, Choe KS, Edelman MJ, Guha C, Krishnan S, Lawrence TS, Le QT, Lu B (2013) Opportunities and challenges in the era of molecularly targeted agents and radiation therapy. J Natl Cancer Inst 105(10):686–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SH, Zhang J, Giri U, Stephan C, Sobieski M, Zhong L, Mason KA, Molkentine J, Thames HD, Yoo SS, Heymach JV (2014) A high content clonogenic survival drug screen identifies MEK inhibitors as potent radiation sensitizers for KRAS mutant non–small-cell lung cancer. J Thorac Oncol 9(7):965–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Wang M, Kern AM, Khaled S, Han J, Yeap BY, Hong TS, Settleman J, Benes CH, Held KD, Efstathiou JA, Willers H (2015) Adapting a drug screening platform to discover associations of molecular targeted radiosensitizers with genomic biomarkers. Mol Cancer Res 13(4):713–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moding EJ, Kastan MB, Kirsch DG (2013) Strategies for optimizing the response of cancer and normal tissues to radiation. Nat Rev Drug Discov 12(7):526–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore RJ, Stanley D (2016) Experimental design considerations in microbiota/inflammation studies. Clin Transl Immunol 5(7):e92

    Article  CAS  Google Scholar 

  • Morgan MA, Parsels LA, Maybaum J, Lawrence TS (2014) Improving the efficacy of chemoradiation with targeted agents. Cancer Discov 4(3):280–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orth M, Lauber K, Niyazi M, Friedl AA, Li M, Maihöfer C, Schüttrumpf L, Ernst A, Niemöller OM, Belka C (2014) Current concepts in clinical radiation oncology. Radiat Environ Biophys 53(1):1–29

    Article  CAS  PubMed  Google Scholar 

  • Pitts TM, Tan AC, Kulikowski GN, Tentler JJ, Brown AM, Flanigan SA, Leong S, Coldren CD, Hirsch FR, Varella-Garcia M, Korch C (2010) Development of an integrated genomic classifier for a novel agent in colorectal cancer: approach to individualized therapy in early development. Clin Cancer Res 16(12):3193–3204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharpless NE, DePinho RA (2006) The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov 5(9):741–754

    Article  CAS  PubMed  Google Scholar 

  • Srivatsan SR, McFaline-Figueroa JL, Ramani V, Saunders L, Cao J, Packer J, Pliner HA, Jackson DL, Daza RM, Christiansen L, Zhang F (2020) Massively multiplex chemical transcriptomics at single-cell resolution. Science 367(6473):45–51

    Article  CAS  PubMed  Google Scholar 

  • Steel GG, Peckham MJ (1979) Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Int J Radiat Oncol Biol Phys 5(1):85–91

    Article  CAS  PubMed  Google Scholar 

  • Stone HB, Bernhard EJ, Coleman CN, Deye J, Capala J, Mitchell JB, Brown JM (2016) Preclinical data on efficacy of 10 drug-radiation combinations: evaluations, concerns, and recommendations. Transl Oncol 9(1):46–56

    Article  PubMed  PubMed Central  Google Scholar 

  • Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, Arcaroli JJ, Messersmith WA, Eckhardt SG (2012) Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 9(6):338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thariat J, Hannoun-Levi JM, Myint AS, Vuong T, Gérard JP (2013) Past, present, and future of radiotherapy for the benefit of patients. Nat Rev Clin Oncol 10(1):52

    Article  CAS  PubMed  Google Scholar 

  • Tiwana GS, Prevo R, Buffa FM, Yu S, Ebner DV, Howarth A, Folkes LK, Budwal B, Chu KY, Durrant L, Muschel RJ (2015) Identification of vitamin B1 metabolism as a tumor-specific radiosensitizing pathway using a high-throughput colony formation screen. Oncotarget 6(8):5978

    Article  PubMed  PubMed Central  Google Scholar 

  • Venditti JM (1981) Preclinical drug development: rationale and methods. Semin Oncol 8(4):349–361

    CAS  PubMed  Google Scholar 

  • Wallner PE, Anscher MS, Barker CA, Bassetti M, Bristow RG, Cha YI, Dicker AP, Formenti SC, Graves EE, Hahn SM, Hei TK (2014) Current status and recommendations for the future of research, teaching, and testing in the biological sciences of radiation oncology: report of the American Society for Radiation Oncology Cancer Biology/Radiation Biology Task Force, executive summary. Int J Radiat Oncol Biol Phys 88(1):11–17

    Article  PubMed  Google Scholar 

  • Wang Y, Li N, Jiang W, Deng W, Ye R, Xu C, Qiao Y, Sharma A, Zhang M, Hung MC, Lin SH (2018) Mutant LKB1 confers enhanced radiosensitization in combination with Trametinib in KRAS-mutant non–small cell lung cancer. Clin Cancer Res 24(22):5744–5756

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liu ZG, Yuan H, Deng W, Li J, Huang Y, Kim BY, Story MD, Jiang W (2019) The reciprocity between radiotherapy and cancer immunotherapy. Clin Cancer Res 25(6):1709–1717

    Article  CAS  PubMed  Google Scholar 

  • Yoshizumi T, Brady SL, Robbins ME, Bourland JD (2011) Specific issues in small animal dosimetry and irradiator calibration. Int J Radiat Biol 87(10):1001–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven H. Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, S.H., Ye, R., Wang, Y. (2020). Preclinical Strategies for Testing of Targeted Radiosensitizers. In: Willers, H., Eke, I. (eds) Molecular Targeted Radiosensitizers. Cancer Drug Discovery and Development. Humana, Cham. https://doi.org/10.1007/978-3-030-49701-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49701-9_5

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-49700-2

  • Online ISBN: 978-3-030-49701-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics