Skip to main content

Translational Development and Testing of Theranostics in Combination with Immunotherapies

  • Chapter
  • First Online:
Nuclear Medicine and Immunology

Abstract

Theranostic-targeted radionuclide therapies (TRT) and immunotherapies are two growing categories of cancer treatments. While each of these has been employed in the treatment of malignancy for decades, they both have a growing footprint in contemporary cancer care. Despite such increasingly prominent roles, few preclinical or clinical studies have evaluated the potential therapeutic interaction between TRT and immunotherapies. Here, we discuss the rationale for developing and testing combined modality treatment approaches using these categories of cancer treatments. We highlight the current understanding of the immunogenic effects of radiation on tumor cells and the tumor microenvironment and review the preclinical and clinical studies that have evaluated combinations of TRT and immunotherapies. Numerous challenges emerge in these studies, and we discuss these along with approaches to overcome these limitations in future studies that seek to advance mechanistic understanding and optimization of the therapeutic interaction between TRT and immunotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Emens LA, Ascierto PA, Darcy PK, et al. Cancer immunotherapy: opportunities and challenges in the rapidly evolving clinical landscape. Eur J Cancer. 2017;81:116–29. https://doi.org/10.1016/j.ejca.2017.01.035.

    Article  CAS  PubMed  Google Scholar 

  2. Seelige R, Searles S, Jack BD. Mechanisms regulating immune surveillance of cellular stress in cancer. Cell Mol Life Sci. 2018;75:225–40. https://doi.org/10.1007/s00018-017-2597-7.

    Article  CAS  PubMed  Google Scholar 

  3. Bates JP, Derakhshandeh R, Jones L, Webb TJ. Mechanisms of immune evasion in breast cancer. BMC Cancer. https://doi.org/10.1186/s12885-018-4441-3.

  4. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22(1):329–60. https://doi.org/10.1146/annurev.immunol.22.012703.104803.

    Article  CAS  PubMed  Google Scholar 

  5. Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;18(3):197–218. https://doi.org/10.1038/s41573-018-0007-y.

    Article  CAS  PubMed  Google Scholar 

  6. Vareki SM. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors. J Immunother Cancer. https://doi.org/10.1186/s40425-018-0479-7.

  7. Murphy JB, Hussey RG, Nakahara W, Sturm E. Studies on x-ray effects: VI. Effect of the cellular reaction induced by x-rays on cancer grains. J Exp Med. 1921;33(3):299–313. https://doi.org/10.1084/jem.33.3.299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Slone HB, Peters LJ, Milas L. Effect of host immune capability on radiocurability and subsequent transplantability of a murine fibrosarcoma. J Natl Cancer Inst. 1979;63(5):1229–35. https://doi.org/10.1093/jnci/63.5.1229.

    Article  Google Scholar 

  9. Law AW, Mole RH. Direct and abscopal effects of X-radiation on the thymus of the weanling rat. Int J Radiat Biol Relat Stud Phys Chem Med. 1961;3(3):233–48. https://doi.org/10.1080/09553006114551161.

    Article  CAS  PubMed  Google Scholar 

  10. Brody JD, Ai WZ, Czerwinski DK, et al. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J Clin Oncol. 2010; https://doi.org/10.1200/JCO.2010.28.9793.

  11. Marabelle A, Tselikas L, de Baere T, Houot R. Intratumoral immunotherapy: using the tumor as the remedy. Ann Oncol. 2017; https://doi.org/10.1093/annonc/mdx683.

  12. Kinner A, Wu W, Staudt C, Iliakis G. Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res. 2008; https://doi.org/10.1093/nar/gkn550.

  13. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 2012; https://doi.org/10.1038/nrc3380.

  14. Golden EB, Apetoh L. Radiotherapy and immunogenic cell death. Semin Radiat Oncol. 2015; https://doi.org/10.1016/j.semradonc.2014.07.005.

  15. Green DR, Ferguson T, Zitvogel L, Kroemer G. Immunogenic and tolerogenic cell death. Nat Rev Immunol. 2009; https://doi.org/10.1038/nri2545.

  16. Panaretakis T, Kepp O, Brockmeier U, et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 2009;28:578–90. https://doi.org/10.1038/emboj.2009.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Golden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M, Formenti SC. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Onco Targets Ther. 2014;3(4):e28518. https://doi.org/10.4161/onci.28518.

    Article  Google Scholar 

  18. Apetoh L, Ghiringhelli F, Tesniere A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050–9. https://doi.org/10.1038/nm1622.

    Article  CAS  PubMed  Google Scholar 

  19. Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol. 2005;5(4):331–42. https://doi.org/10.1038/nri1594.

    Article  CAS  PubMed  Google Scholar 

  20. Ohshima Y, Tsukimoto M, Takenouchi T, et al. γ-Irradiation induces P2X7 receptor-dependent ATP release from B16 melanoma cells. Biochim Biophys Acta Gen Subj. 2010;1800(1):40–6. https://doi.org/10.1016/j.bbagen.2009.10.008.

    Article  CAS  Google Scholar 

  21. Ghiringhelli F, Apetoh L, Tesniere A, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1Β-dependent adaptive immunity against tumors. Nat Med. 2009;15(10):1170–8. https://doi.org/10.1038/nm.2028.

    Article  CAS  PubMed  Google Scholar 

  22. Newcomb EW, Demaria S, Lukyanov Y, et al. The combination of ionizing radiation and peripheral vaccination produces long-term survival of mice bearing established invasive GL261 gliomas. Clin Cancer Res. 2006;12(15):4730–7. https://doi.org/10.1158/1078-0432.CCR-06-0593.

    Article  CAS  PubMed  Google Scholar 

  23. Son CH, Lee HR, Koh EK, et al. Combination treatment with decitabine and ionizing radiation enhances tumor cells susceptibility of T cells. Sci Rep. 2016; https://doi.org/10.1038/srep32470.

  24. Malamas AS, Gameiro SR, Knudson KM, Hodge JW. Sublethal exposure to alpha radiation (223Ra dichloride) enhances various carcinomas’ sensitivity to lysis by antigen specific cytotoxic T lymphocytes through calreticulin-mediated immunogenic modulation. Oncotarget. 2016;7(52):86937–47. https://doi.org/10.18632/oncotarget.13520.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chakraborty M, Abrams SI, Camphausen K, et al. Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol. 2003; https://doi.org/10.4049/jimmunol.170.12.6338.

  26. Benci JL, Xu B, Qiu Y, et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade HHS public access. Cell. 2016;167(6):1540–54. https://doi.org/10.1016/j.cell.2016.11.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vanpouille-Box C, Alard A, Aryankalayil MJ, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 2017;8:15618. https://doi.org/10.1038/ncomms15618.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Di Maggio FM, Minafra L, Forte GI, et al. Portrait of inflammatory response to ionizing radiation treatment. J Inflamm (United Kingdom). 2015; https://doi.org/10.1186/s12950-015-0058-3.

  29. Liu S-Z. Nonlinear dose-response relationship in the immune system following exposure to ionizing radiation: mechanisms and implications. Nonlinearity Biol Toxicol Med. 2003; https://doi.org/10.1080/15401420390844483.

  30. Rodriguez-Ruiz ME, Garasa S, Rodriguez I, et al. Intercellular adhesion molecule-1 and vascular cell adhesion molecule are induced by ionizing radiation on lymphatic endothelium. Int J Radiat Oncol Biol Phys. 2017;97(2):389–400. https://doi.org/10.1016/j.ijrobp.2016.10.043.

    Article  CAS  PubMed  Google Scholar 

  31. Nakamura N, Kusunoki Y, Akiyama M. Radiosensitivity of CD4 or CD8 positive human T-lymphocytes by an in vitro colony formation assay. Radiat Res. 1990; https://doi.org/10.2307/3577549.

  32. Balogh A, Persa E, Bogdándi EN, et al. The effect of ionizing radiation on the homeostasis and functional integrity of murine splenic regulatory T cells. Inflamm Res. 2013; https://doi.org/10.1007/s00011-012-0567-y.

  33. Liu R, Xiong S, Zhang L, Chu Y. Enhancement of antitumor immunity by low-dose total body irradiation is associated with selectively decreasing the proportion and number of T regulatory cells. Cell Mol Immunol. 2010; https://doi.org/10.1038/cmi.2009.117.

  34. Xu J, Escamilla J, Mok S, et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. 2013; https://doi.org/10.1158/0008-5472.CAN-12-3981.

  35. Chiang CS, Fu SY, Wang SC, et al. Irradiation promotes an M2 macrophage phenotype in tumor hypoxia. Front Oncol. 2012; https://doi.org/10.3389/fonc.2012.00089.

  36. Schaue D, Ratikan JA, Iwamoto KS, McBride WH. Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys. 2012; https://doi.org/10.1016/j.ijrobp.2011.09.049.

  37. Lin AJ, Gang M, Rao YJ, et al. Association of posttreatment lymphopenia and elevated neutrophil-to-lymphocyte ratio with poor clinical outcomes in patients with human papillomavirus-negative oropharyngeal cancers. JAMA Otolaryngol Head Neck Surg. 2019;145(5):413–21. https://doi.org/10.1001/jamaoto.2019.0034.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kim DY, Kim IS, Park SG, Kim H, Choi YJ, Seol YM. Prognostic value of posttreatment neutrophil-lymphocyte ratio in head and neck squamous cell carcinoma treated by chemoradiotherapy. Auris Nasus Larynx. https://doi.org/10.1016/j.anl.2016.05.013.

  39. Abuodeh Y, Venkat P, Kim S. Systematic review of case reports on the abscopal effect. Curr Probl Cancer. 2016; https://doi.org/10.1016/j.currproblcancer.2015.10.001.

  40. Morris ZS, Guy EI, Francis DM, et al. In situ tumor vaccination by combining local radiation and tumor-specific antibody or immunocytokine treatments. Cancer Res. 2016;76(13):3929–41. https://doi.org/10.1158/0008-5472.CAN-15-2644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morris ZS, Guy EI, Werner LR, et al. Tumor-specific inhibition of in situ vaccination by distant untreated tumor sites. Cancer Immunol Res. 2018;6(7):825–34. https://doi.org/10.1158/2326-6066.CIR-17-0353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Carlson PM, Heinze C, Grudzinski J, Hernandez R, Gillies SD, Loibner H, Rakhmilevich AL, Otto M, Bednarz B, Weichert J, Sondel PM, Morris ZS. Molecular targeted radiotherapy facilitates in situ vaccination in a syngeneic murine melanoma model. J Immunother Cancer. 2017;5. https://jitc.biomedcentral.com/articles/10.1186/s40425-017-0288-4.

  43. Gomez DR, Blumenschein GR, Lee JJ, et al. Local consolidative therapy versus maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer without progression after first-line systemic therapy: a multicentre, randomised, controlled, phase 2 study. Lancet Oncol. 2016;17(12):1672–82. https://doi.org/10.1016/S1470-2045(16)30532-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gill MR, Falzone N, Du Y, Vallis KA. Review Targeted radionuclide therapy in combined-modality regimens. Lancet Oncol. 2019;18(7):e414–23. https://doi.org/10.1016/S1470-2045(17)30379-0.

    Article  Google Scholar 

  45. Divgi C. The current state of radiopharmaceutical therapy. J Nucl Med. 2018;59(11):2018–20. https://doi.org/10.2967/jnumed.118.214122.

    Article  CAS  Google Scholar 

  46. Dolgin E. Radioactive drugs emerge from the shadows to storm the market. Nat Biotechnol. 2018; https://doi.org/10.1038/nbt1218-1125.

  47. Czernin J. Molecular imaging and therapy with a purpose: a renaissance of nuclear medicine. J Nucl Med. 2017;58(1):21A–2A.

    PubMed  Google Scholar 

  48. Zukotynski K, Jadvar H, Capala J, Fahey F. Targeted radionuclide therapy: practical applications and future prospects supplementary issue: biomarkers and their essential role in the development of personalised therapies (A). Biomark Cancer. 2016;8 https://doi.org/10.4137/BiC.s31804.

  49. Hino R, Kabashima K, Kato Y, et al. Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer. 2010;116(7):1757–66. https://doi.org/10.1002/cncr.24899.

    Article  PubMed  Google Scholar 

  50. Weichert JP, Clark PA, Kandela IK, et al. Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy. Sci Transl Med. 2014;6:240ra75. https://doi.org/10.1126/scitranslmed.3007646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Patel RB, Hernandez R, Carlson P, Grudzinski J, Bates AM, Jagodinsky JC, Erbe A, Marsh IR, Arthur I, Aluicio-Sarduy E, Sriramaneni RN, Jin WJ, Massey C, Rakhmilevich AL, Vail D, Engle JW, Le T, Kim K, Bednarz B, Sondel PM, Weichert J, Morris ZS. Low-dose targeted radionuclide therapy renders immunologically cold tumors responsive to immune checkpoint blockade. Sci Transl Med. 2021;13(602). PMID: 34261797.

    Google Scholar 

  52. Patel R, Hernandez R, Carlson P, Brown R, Zangl L, Bates A, Arthur I, Jagodinsky J, Grudinski J, Erbe A, Weichert J, Sondel PM, Morris ZS. Mechanistic insights into combination low dose targeted radionuclide and checkpoint blockade treatment to turn a “cold” tumor “hot”. J Immunother Cancer. 2019;7. https://jitc.biomedcentral.com/articles/10.1186/s40425-019-0764-0.

  53. Chen H, Zhao L, Fu K, et al. Integrin αvβ3-targeted radionuclide therapy combined with immune checkpoint blockade immunotherapy synergistically enhances anti-tumor efficacy. Theranostics. 2019;9(25):7948–60. https://doi.org/10.7150/thno.39203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Choi J, Beaino W, Fecek RJ, et al. Combined VLA-4–targeted radionuclide therapy and immunotherapy in a mouse model of melanoma. J Nucl Med. 2018;59(12):1843–9. https://doi.org/10.2967/jnumed.118.209510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. ClinicalTrials.gov. Phase I study of investigational medicinal products in children with relapsed/refractory neuroblastoma. https://clinicaltrials.gov/ct2/show/NCT02914405.

  56. ClinicalTrials.gov. Study evaluating the addition of pembrolizumab to Radium-223 in mCRPC. https://clinicaltrials.gov/ct2/show/NCT03093428.

  57. ClinicaTrials.gov. Safety and tolerability of Atezolizumab in combination with Radium-223 Dichloride in metastatic castrate resistant prostate cancer progressed following treatment with an androgen pathway inhibitor. https://clinicaltrials.gov/ct2/show/NCT02814669.

  58. ClinicalTrials.gov. PRINCE (PSMA-lutetium Radionuclide Therapy and ImmuNotherapy in Prostate CancEr). https://clinicaltrials.gov/ct2/show/NCT03658447.

  59. Victor CT-S, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520(7547):373–7. https://doi.org/10.1038/nature14292.

    Article  CAS  PubMed Central  Google Scholar 

  60. Formenti SC, Rudqvist N, Golden E, et al. Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat Med. 2018;24(12):1845–51. https://doi.org/10.1038/s41591-018-0232-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dietrich A, Koi L, Zöphel K, et al. Improving external beam radiotherapy by combination with internal irradiation. Br J Radiol. 2015;88(1051):20150042. https://doi.org/10.1259/bjr.20150042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nevedomskaya E, Baumgart SJ, Haendler B. Recent advances in prostate cancer treatment and drug discovery. Int J Mol Sci. 2018;19(5):1359. https://doi.org/10.3390/ijms19051359.

    Article  CAS  PubMed Central  Google Scholar 

  63. Hall EJ, Brenner DJ. The dose-rate effect revisited: radiobiological considerations of importance in radiotherapy. Int J Radiat Oncol Biol Phys. 1991; https://doi.org/10.1016/0360-3016(91)90314-T.

  64. Dietrich A, Koi L, Sihver W, Kotzerke J, Baumann M, Krause M. Improving external beam radiotherapy by combination with internal irradiation. J Radiol. 2015;88:20150042. https://doi.org/10.1259/bjr.20150042.

    Article  CAS  Google Scholar 

  65. Jagodinsky JC, Bates AM, Hernandez R, Grudzinski JJ, Marsh IR, Chakravarty I, Arthur IA, Zangl LM, Brown RJ, Nystuen EJ, Emma SE, Kerr C, Jin WJ, Carlson PM, Engle JW, Aluicio-Sarduy E, Barnhart TE, Le T, Kim KM, Bednarz BP, Weichert JP, Patel RB, Morris ZS. Temporal analysis of type 1 interferon activation in tumor cells following external beam radiotherapy or targeted radionuclide therapy. Theranostics. 2021;11(13):6120–37. PMID: 33995649; PMCID: PMC8120207.

    Google Scholar 

  66. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015; https://doi.org/10.1038/nrd4663.

  67. Sorensen A, Mairs RJ, Braidwood L, et al. In vivo evaluation of a cancer therapy strategy combining HSV1716-mediated oncolysis with gene transfer and targeted radiotherapy. J Nucl Med. 2012;53(4):647–54. https://doi.org/10.2967/jnumed.111.090886.

    Article  CAS  PubMed  Google Scholar 

  68. Peerlinck I, Merron A, Baril P, et al. Targeted radionuclide therapy using a wnt-targeted replicating adenovirus encoding the Na/I symporter. Clin Cancer Res. 2009;15(21):6595–601. https://doi.org/10.1158/1078-0432.CCR-09-0262.

    Article  CAS  PubMed  Google Scholar 

  69. Rekoske BT, Smith HA, Olson BM, Maricque BB, McNeel DG. PD-1 or PD-L1 blockade restores antitumor efficacy following SSX2 epitope-modified DNA vaccine immunization. Cancer Immunol Res. 2015; https://doi.org/10.1158/2326-6066.CIR-14-0206.

  70. Olson BM, Johnson LE, McNeel DG. The androgen receptor: a biologically relevant vaccine target for the treatment of prostate cancer. Cancer Immunol Immunother. 2013; https://doi.org/10.1007/s00262-012-1363-9.

  71. Olson BM, McNeel DG. CD8+ T cells specific for the androgen receptor are common in patients with prostate cancer and are able to lyse prostate tumor cells. Cancer Immunol Immunother. 2011; https://doi.org/10.1007/s00262-011-0987-5.

  72. Potluri H, Hernandez R, Zahm C, Grudzinski J, Massey C, Jamey Weichert DM. Molecularly targeted radionuclide therapy modulates the composition of the murine prostate cancer microenvironment. J Immunother Cancer. 2019;7. https://jitc.biomedcentral.com/articles/10.1186/s40425-019-0764-0.

  73. Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010; https://doi.org/10.1056/NEJMoa1001294.

  74. Small EJ, Schellhammer PF, Higano CS, et al. Placebo-controlled phase III trial of immunologic therapy with Sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol. 2006; https://doi.org/10.1200/JCO.2005.04.5252.

  75. ClinicalTrials.gov. Study of Sipuleucel-T with or without Radium-223 in men with asymptomatic or minimally symptomatic MCRPC. https://clinicaltrials.gov/ct2/show/NCT02463799.

  76. Pouget JP, Lozza C, Deshayes E, Boudousq V, Navarro-Teulon I. Introduction to radiobiology of targeted radionuclide therapy. Front Med. 2015;2(MAR):12. https://doi.org/10.3389/fmed.2015.00012.

    Article  Google Scholar 

  77. Jadvar H. Targeted radionuclide therapy: an evolution toward precision cancer treatment. Am J Roentgenol. 2017;209(2):277–88. https://doi.org/10.2214/AJR.17.18264.

    Article  Google Scholar 

  78. Lassmann M, Chiesa C, Flux G, Bardiès M. EANM Dosimetry Committee guidance document: good practice of clinical dosimetry reporting. Eur J Nucl Med Mol Imaging. 2011; https://doi.org/10.1007/s00259-010-1549-3.

  79. Besemer AE, Yang YM, Grudzinski JJ, Hall LT, Bednarz BP. Development and validation of RAPID: a patient-specific Monte Carlo three-dimensional internal dosimetry platform. Cancer Biother Radiopharm. 2018;33(4):155–65. https://doi.org/10.1089/cbr.2018.2451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bednarz B, Grudzinski J, Marsh I, et al. Murine-specific internal dosimetry for preclinical investigations of imaging and therapeutic agents. Health Phys. 2018;114(4):450–9. https://doi.org/10.1097/HP.0000000000000789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Carlson P, Mohan M, Patel R, Nettenstrom L, Sheerar D, Fox K, Rodriguez M, Hoefges A, Hernandez R, Zahm C, McNeel D, Weichert J, Morris Z, Sondel P. Labeling method for flow cytometric analysis of radioactive tumors following immunotherapy and molecular targeted radionuclide therapy (mTRT): demonstration of augmented immune infiltrate. In: 34th Annual Meeting of the Society for Immunotherapy of Cancer; 2019. https://jitc.biomedcentral.com/track/pdf/10.1186/s40425-019-0764-0.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary S. Morris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carlson, P.M., Morris, Z.S. (2022). Translational Development and Testing of Theranostics in Combination with Immunotherapies. In: Harsini, S., Alavi, A., Rezaei, N. (eds) Nuclear Medicine and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-81261-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81261-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81260-7

  • Online ISBN: 978-3-030-81261-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics