Skip to main content

Studying Effects of Contaminants on Aquatic-Terrestrial Subsidies: Experimental Designs Using Outdoor and Indoor Mesocosms and Microcosms

  • Chapter
  • First Online:
Contaminants and Ecological Subsidies

Abstract

Research on the subsidy of terrestrial ecosystems by resources of aquatic origin has increased over the last few decades. Only a few studies, however, assess this cross-boundary linkage with specific consideration of contaminant-induced effects. This data gap might be attributed to the complexity required for experimental designs to adequately assess the impacts of chemical stressors on aquatic ecosystems’ ability to subsidise adjacent terrestrial food webs. In this book chapter, we discuss experimental designs using both outdoor and indoor mesocosms and microcosms to explicitly address hypotheses related to chemical stress in aquatic ecosystems and their consequences for the subsidy of adjacent terrestrial (e.g. riparian) ecosystems. We, moreover, highlight the importance of characterising not only the quantity but also the quality of these subsidies and discuss the potential of stable isotope analysis for disentangling trophic interactions within and among aquatic and terrestrial ecosystems.

In the spirit of science, there really is no such thing as a ‘failed experiment’. Any test that yields valid data is a valid test.

Adam Savage

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bärlocher F (1985) The role of fungi in the nutrition of stream invertebrates. Bot J Linn Soc 91:83–94

    Article  Google Scholar 

  • Bassères A, Tramier B (2001) Characterisation of the impact of aqueous industrial waste in mesocosms: biological indicators and pilot streams. Water Sci Technol 44:135–143

    Article  PubMed  Google Scholar 

  • Bayona Y, Roucaute M, Cailleaud K, Lagadic L, Bassères A, Caquet T (2015) Effect of thiram and of a hydrocarbon mixture on freshwater macroinvertebrate communities in outdoor stream and pond mesocosms: I. study design, chemicals fate and structural responses. Ecotoxicology 24:1976–1995

    Article  CAS  PubMed  Google Scholar 

  • Breneman DH, Pontasch KW (1994) Stream microcosm toxicity tests: Predicting the effects of fenvalerate on riffle insect communities. Environ Toxicol Chem 13 (3):381–387

    Google Scholar 

  • Bundschuh M, Schulz R (2011) Population response to ozone application in wastewater: an on-site microcosm study with Gammarus fossarum (Crustacea: Amphipoda). Ecotoxicology 20(2):466–473

    Article  CAS  PubMed  Google Scholar 

  • Burdon FJ (2019) Anthropogenic influences alter the association between benthic insects and riparian predators in forested streams. In: Kraus JM, Walters DM, Mills MA (eds) Contaminants and ecological subsidies: applying spatial food web ecology at the land-water interface. Springer

    Google Scholar 

  • Chikaraishi Y, Ogawa NO, Kashiyama Y, Takano Y, Suga H, Tomitani A, Miyashita H, Kitazato H, Ohkouchi N (2009) Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol Oceanogr-Methods 7:740–750

    Article  CAS  Google Scholar 

  • Compson ZG, Hungate BA, Koch GW, Hart SC, Maestas JM, Adams KJ, Whitham TG, Marks JC (2015) Closely related tree species differentially influence the transfer of carbon and nitrogen from leaf litter up the aquatic food web. Ecosystems 18:186–201

    Article  CAS  Google Scholar 

  • Connell D, Lam P, Richardson B, Wu R (1999) Introduction to ecotoxicology. Blacknell Science, Oxford

    Google Scholar 

  • Cristol DA, Brasso RL, Condon AM, Fovargue RE, Friedman SL, Hallinger KK, Monroe AP, White AE (2008) The movement of aquatic mercury through terrestrial food webs. Science 320(5874):335–335

    Article  CAS  PubMed  Google Scholar 

  • DeNiro MJ, Epstein S (1976) You are what you eat (plus a few per mil): the carbon isotope cycle in food chains. Geol Socf Am Abstracts 8:834–835

    Google Scholar 

  • Ek C, Gerdes Z, Garbaras A, Adolfsson-Erici M, Gorokhova E (2016) Growth retardation and altered isotope composition as delayed effects of PCB exposure in Daphnia magna. Environ Sci Technol 50:8296–8304

    Article  CAS  PubMed  Google Scholar 

  • Elsaesser D, Stang C, Bakanov N, Schulz R (2013) The Landau stream Mesocosm facility: pesticide mitigation in vegetated flow-through streams. Bull Environ Contam Toxicol 90(6):640–645

    Article  CAS  PubMed  Google Scholar 

  • Feckler A, Goedkoop W, Zubrod JP, Schulz R, Bundschuh M (2016) Exposure pathway-dependent effects of the fungicide epoxiconazole on a decomposer-detritivore system. Sci Total Environ 571:992–1000

    Article  CAS  PubMed  Google Scholar 

  • Fernandez D, Voss K, Bundschuh M, Zubrod JP, Schäfer RB (2015) Effects of fungicides on decomposer communities and leaf decomposition in vineyard streams. Sci Total Environ 533:40–48

    Article  CAS  PubMed  Google Scholar 

  • Gergs R, Koester M, Schulz RS, Schulz R (2014) Potential alteration of cross-ecosystem resource subsidies by an invasive aquatic macroinvertebrate: implications for the terrestrial food web. Freshw Biol 59(12):2645–2655

    Article  Google Scholar 

  • Gergs R, Steinberger N, Beck B, Basen T, Yohannes E, Schulz R, Martin-Creuzburg D (2015) Compound-specific C-13 analyses reveal sterol metabolic constraints in an aquatic invertebrate. Rapid Commun Mass Spectrom 29(19):1789–1794

    Article  CAS  PubMed  Google Scholar 

  • Graney RL, Giesy JP (1986) Effects of long-term exposure to pentachlorophenol on the free amino acid pool and energy reserves of the freshwater amphipod Gammarus pseudolimnaeus Bousfield (Crustacea, Amphipoda). Ecotoxicol Environ Saf 12:233–251

    Article  CAS  PubMed  Google Scholar 

  • Guisande C, Maneiro I, Riveiro I (1999) Homeostasis in the essential amino acid composition of the marine copepod Euterpina acutifrons. Limnol Oceanogr 44:691–696

    Article  CAS  Google Scholar 

  • Gustavsson M, Kreuger J, Bundschuh M, Backhaus T (2017) Pesticide mixtures in the Swedish streams: environmental risks, contributions of individual compounds and consequences of single-substance oriented risk mitigation. Sci Total Environ 598:973–983

    Article  CAS  PubMed  Google Scholar 

  • Hoppe PD, Rosi-Marshall EJ, Bechtold HA (2012) The antihistamine cimetidine alters invertebrate growth and population dynamics in artificial streams. Freshw Sci 31(2):378–388

    Article  Google Scholar 

  • Jackson JK (1988) Diel emergence, swarming and longevity of selected adult aquatic insects from a Sonoran desert stream. Am Midl Nat 119(2):344–352

    Article  Google Scholar 

  • Jungmann D, Brust K, Licht O, Mahlmann J, Schmidt J, Nagel R (2001) Artificial indoor streams as a method to investigate the impact of chemicals on lotic communities. Environ Sci Pollut R 8(1):49–55

    Article  CAS  Google Scholar 

  • Kaenel BR, Uehlinger U (1999) Aquatic plant management: ecological effects in two streams of the Swiss plateau. Hydrobiologia 415:257–263

    Article  Google Scholar 

  • Kalcounis-Rueppell MC, Payne VH, Huff SR, Boyko AL (2007) Effects of wastewater treatment plant effluent on bat foraging ecology in an urban stream system. Biol Conserv 138(1–2):120–130

    Article  Google Scholar 

  • Karlson AML, Reutgard M, Garbaras A, Gorokhova E (2018) Isotopic niche reflects stress-induced variability in physiological status. Roy Soc Open Sci 5(2). ARTN17139810.1098/rsos.171398

  • King RS, Brain RA, Back JA, Becker C, Wright MV, Toteu Djomte V, Scott WC, Virgil SR, Brooks BW, Hosmer AJ, Chambliss CK (2016) Effects of pulsed atrazine exposures on autotrophic community structure, biomass, and production in field-based stream mesocosms. Environ Toxicol Chem 35:660–675

    Article  CAS  PubMed  Google Scholar 

  • Knillmann S, Orlinskiy P, Kaske O, Foit K, Liess M (2018) Indication of pesticide effects and recolonization in streams. Sci Total Environ 630:1619–1627

    Article  CAS  PubMed  Google Scholar 

  • Kraus J (2016) Aquatic insect emergence and pesticide flux from wetlands to terrestrial food webs in the prairie pothole region. SETAC, Orlando

    Google Scholar 

  • Kraus JM, Vonesh JR (2012) Fluxes of terrestrial and aquatic carbon by emergent mosquitoes: a test of controls and implications for cross-ecosystem linkages. Oecologia 170(4):1111–1122

    Article  PubMed  Google Scholar 

  • Larsen S, Muehlbauer JD, Marti E (2016) Resource subsidies between stream and terrestrial ecosystems under global change. Glob Change Biol 22(7):2489–2504

    Article  Google Scholar 

  • Liess M, Beketov M (2011) Traits and stress: keys to identify community effects of low levels of toxicants in test systems. Ecotoxicology 20(6):1328–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mezek T, Simcic T, Arts MT, Brancelj A (2010) Effect of fasting on hypogean (Niphargus stygius) and epigean (Gammarus fossarum) amphipods: a laboratory study. Aquat Ecol 44(2):397–408

    Article  CAS  Google Scholar 

  • Mohr S, Feibicke M, Ottenströer T, Meinecke S, Berghahn R, Schmidt R (2005) Enhanced experimental flexibility and control in ecotoxicological mesocosm experiments: a new outdoor and indoor pond and stream system. Environ Sci Pollut R 12:5–7

    Article  Google Scholar 

  • Moy NJ, Dodson J, Tassone SJ, Bukaveckas PA, Bulluck LP (2016) Biotransport of algal toxins to riparian food webs. Environ Sci Technol 50(18):10007–10014

    Article  CAS  PubMed  Google Scholar 

  • Orlinskiy P, Munze R, Beketov M, Gunold R, Paschke A, Knillmann S, Liess M (2015) Forested headwaters mitigate pesticide effects on macroinvertebrate communities in streams: mechanisms and quantification. Sci Total Environ 524:115–123

    Article  PubMed  CAS  Google Scholar 

  • Phillips DL, Inger R, Bearhop S, Jackson AL, Moore JW, Parnell AC, Semmens BX, Ward EJ (2014) Best practices for use of stable isotope mixing models in food-web studies. Can J Zool 92:823–835

    Article  Google Scholar 

  • Polis GA, Hurd SD (1996) Linking marine and terrestrial food webs: allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am Nat 147(3):396–423

    Article  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Poulin B, Lefebvre G, Paz L (2010) Red flag for green spray: adverse trophic effects of Bti on breeding birds. J Appl Ecol 47(4):884–889

    Article  Google Scholar 

  • Pusey B, Arthington A, Flanders T (1994) An outdoor replicated artificial stream system: design, operating conditions, and initial invertebrate colonization. Ecotoxicol Environ Saf 27:177–191

    Article  CAS  PubMed  Google Scholar 

  • Richardson JS, Sato T (2015) Resource subsidy flows across freshwater–terrestrial boundaries and influence on processes linking adjacent ecosystems. Ecohydrology 8:406–415

    Article  Google Scholar 

  • Rogers HA, Schmidt TS, Dabney BL, Hladik ML, Mahler BJ, Van Metres PC (2016) Bifenthrin causes trophic cascade and altered insect emergence in mesocosms: implications for small streams. Environ Sci Technol 50(21):11974–11983

    Article  CAS  PubMed  Google Scholar 

  • Scharnweber K, Vanni MJ, Hilt S, Syväranta J, Mehner T (2014) Boomerang ecosystem fluxes: organic carbon inputs from land to lakes are returned to terrestrial food webs via aquatic insects. Oikos 123(12):1439–1448

    Article  CAS  Google Scholar 

  • Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004) Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Anal Bioanal Chem 378(2):283–300

    Article  CAS  PubMed  Google Scholar 

  • Schmidt TS, Rogers HA, Miller JL, Mebane CA, Balistrieri LS (2018) Understanding the captivity effect on invertebrate communities transplanted into an experimental stream laboratory. Environ Toxicol Chem 37(11):2820–2834

    Article  CAS  PubMed  Google Scholar 

  • Schreiner VC, Szöcs E, Bhowmik AK, Vijver MG, Schäfer RB (2016) Pesticide mixtures in streams of several European countries and the USA. Sci Total Environ 573:680–689

    Article  CAS  PubMed  Google Scholar 

  • Schulz R, Bundschuh M (2019) Pathways of pollutant transport across the aquatic terrestrial interface: implications for risk assessment and management. In: Kraus JM, Walters DM, Mills MA (eds) Contaminants and ecological subsidies: applying spatial food web ecology at the land-water interface. Springer

    Google Scholar 

  • Schulz R, Liess M (2001a) Acute and chronic effects of particle-associated fenvalerate on stream macroinvertebrates: a runoff simulation study using outdoor microcosms. Arch Environ Contam Toxicol 40:481–488

    Article  CAS  PubMed  Google Scholar 

  • Schulz R, Liess M (2001b) Runoff simulation with particle-bound fenvalerate in multispecies stream microcosms: importance of biological interactions. Environ Toxicol Chem 20(4):757–762

    Article  CAS  PubMed  Google Scholar 

  • Schulz R, Liess M (2001c) Toxicity of aqueous-phase and suspended particle-associated fenvalerate: chronic effects after pulse-dosed exposure of Limnephilus lunatus (Trichoptera). Environ Toxicol Chem 20(1):185–190

    Article  CAS  PubMed  Google Scholar 

  • Schulz R, Thiere G, Dabrowski JM (2002) A combined microcosm and field approach to evaluate the aquatic toxicity of azinphosmethyl to stream communities. Environ Toxicol Chem 21(10):2172–2178

    Article  CAS  PubMed  Google Scholar 

  • Schulz R, Bundschuh M, Gergs R, Brühl CA, Diehl D, Entling M, Fahse L, Frör O, Jungkunst HF, Lorke A, Schäfer RB, Schaumann GE, Schwenk K (2015) Review on environmental alterations propagating from aquatic to terrestrial ecosystems. Sci Total Environ 538:246–261

    Article  CAS  PubMed  Google Scholar 

  • Soininen J, Bartels P, Heino J, Luoto M, Hillebrand H (2015) Toward more integrated ecosystem research in aquatic and terrestrial environments. Bioscience 65(2):174–182

    Article  Google Scholar 

  • Stang C, Elsaesser D, Bundschuh M, Ternes TA, Schulz R (2013) Mitigation of biocide and fungicide concentrations in flow-through vegetated stream mesocosms. J Environ Qual 42(6):1889–1895

    Article  CAS  PubMed  Google Scholar 

  • Stang C, Wieczorek MV, Noss C, Lorke A, Scherr F, Goerlitz G, Schulz R (2014) Role of submerged vegetation in the retention processes of three plant protection products in flow-through stream mesocosms. Chemosphere 107:13–22

    Article  CAS  PubMed  Google Scholar 

  • van Gestel CA (2011) Mixture toxicity– linking approaches from ecological and human toxicology. CRC Press, Boca Raton

    Google Scholar 

  • Wacker A, von Elert E (2001) Polyunsaturated fatty acids: evidence for non-substitutable biochemical resources in Daphnia galeata. Ecology 82(9):2507–2520

    Article  Google Scholar 

  • Walters DM, Fritz KM, Otter RR (2008) The dark side of subsidies: adult stream insects export organic contaminants to riparian predators. Ecol Appl 18(8):1835–1841

    Article  PubMed  Google Scholar 

  • Walters DM, Mills MA, Fritz KM, Raikow DF (2010) Spider-mediated flux of PCBs from contaminated sediments to terrestrial ecosystems and potential risks to arachnivorous birds. Environ Sci Technol 44(8):2849–2856

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Seiwert B, Kastner M, Miltner A, Schaffer A, Reemtsma T, Yang Q, Nowak KM (2016) (Bio)degradation of glyphosate in water-sediment microcosms – a stable isotope co-labeling approach. Water Res 99:91–100

    Article  CAS  PubMed  Google Scholar 

  • Wieczorek MV, Kötter D, Gergs R, Schulz R (2015) Using stable isotope analysis in stream mesocosms to study potential effects of environmental chemicals on aquatic-terrestrial subsidies. Environ Sci Pollut R 22:12892–12901

    Article  CAS  Google Scholar 

  • Wieczorek MV, Bakanov N, Stang C, Bilancia D, Lagadic L, Bruns E, Schulz R (2016) Reference scenarios for exposure to plant protection products and invertebrate communities in stream mesocosms. Sci Total Environ 545–546:308–319

    Article  PubMed  CAS  Google Scholar 

  • Wieczorek MV, Bakanov N, Lagadic L, Bruns E, Schulz R (2017) Response and recovery of the macrophytes Elodea canadensis and Myriophyllum spicatum following a pulse exposure to the herbicide iofensulfuron-sodium in outdoor stream mesocosms. Environ Toxicol Chem 36(4):1090–1100

    Article  CAS  PubMed  Google Scholar 

  • Wieczorek MV, Bakanov N, Bilancia D, Szöcs E, Stehle S, Bundschuh M, Schulz R (2018) Structural and functional effects of a short-term pyrethroid pulse exposure on invertebrates in outdoor stream mesocosms. Sci Total Environ 610–611:810–819

    Article  PubMed  CAS  Google Scholar 

  • Zubrod JP, Englert D, Wolfram J, Rosenfeldt RR, Feckler A, Bundschuh R, Seitz F, Konschak M, Baudy P, Lüderwald S, Fink P, Lorke A, Schulz R, Bundschuh M (2017) Long-term effects of fungicides on leaf-associated microorganisms and shredder populations – an artificial stream study. Environ Toxicol Chem 36(8):2178–2189

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Figure 1 was adapted with permission from Schulz, R., Bundschuh, M., Gergs, R., Brühl, C.A., Diehl, D., Entling, M., Fahse, L., Frör, O., Jungkunst, H.F., Lorke, A., Schäfer, R.B., Schaumann, G.E. and Schwenk, K. (2015) (Review on environmental alterations propagating from aquatic to terrestrial ecosystems. Science of the Total Environment 538, 246–261. Copyright 2015 Elsevier). Figures 3, 4 and 7 were reprinted with permission from Wieczorek, M.V., Kötter, D., Gergs, R. and Schulz, R. (2015) (Using stable isotope analysis in stream mesocosms to study potential effects of environmental chemicals on aquatic-terrestrial subsidies. Environmental Science and Pollution Research 22, 12892–12901. Copyright 2015 Springer Nature). Figure 6 was redrawn with permission from Bundschuh, M. and Schulz, R. (2011) (Population response to ozone application in wastewater: an on-site microcosm study with Gammarus fossarum (Crustacea: Amphipoda) Ecotoxicology 20(2), 466–473. Copyright 2011 Springer Nature). We acknowledge discussions with colleagues from the iES Landau, Institute for Environmental Sciences, at the University of Koblenz-Landau, Germany, on this topic. This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 326210499/GRK2360 SYSTEMLINK. Moreover, we acknowledge the invitation for a contribution and detailed feedback by the editors of this book.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirco Bundschuh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bundschuh, M., Zubrod, J.P., Wieczorek, M.V., Schulz, R. (2020). Studying Effects of Contaminants on Aquatic-Terrestrial Subsidies: Experimental Designs Using Outdoor and Indoor Mesocosms and Microcosms. In: Kraus, J.M., Walters, D.M., Mills, M.A. (eds) Contaminants and Ecological Subsidies. Springer, Cham. https://doi.org/10.1007/978-3-030-49480-3_12

Download citation

Publish with us

Policies and ethics