Skip to main content

Abstract

This chapter presents the characteristics of the metaheuristic algorithms used to solve the transmission network expansion planning (TNEP) problem. The algorithms used to handle single or multiple objectives are discussed on the basis of selected literature contributions. Besides the main objective given by the costs of the transmission system infrastructure, various other objectives are taken into account, representing generation, demand, reliability and environmental aspects. In the single-objective case, many metaheuristics have been proposed, in general without making strong comparisons with other solution methods and without providing superior results with respect to classical mathematical programming. In the multi-objective case, there is a better convenience of using metaheuristics able to handle conflicting objectives, in particular with a Pareto front-based approach. In all cases, improvements are still expected in the definition of benchmark functions, benchmark networks and robust comparison criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Augera, J. Bader, D. Brockhoff, E. Zitzler, Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications. Theor. Comput. Sci. 425, 75–103 (2012)

    MathSciNet  MATH  Google Scholar 

  2. S. Benedict, V. Vasudevan, Fuzzy-Pareto-dominance and its application in evolutionary multi-objective optimization. Proc. 3rd Int. Conf. Evol. Multi-Criterion Optim. (EMO), Berlin, Germany, 399–412 (2005)

    Google Scholar 

  3. D. Brockhoff, J. Bader, L. Thiele, E. Zitzler, Directed multiobjective optimization based on the weighted Hypervolume Indicator. J. Multicrit. Decis. Anal. 20, 291–317 (2013)

    Article  Google Scholar 

  4. Chicco G, Mazza A (2013) An Overview of the Probability-based Methods for Optimal Electrical Distribution System Reconfiguration. Proc. 4th International Symposium on Electrical and Electronics Engineering (ISEEE 2013), Galati, Romania, 10–12 October 2013

    Google Scholar 

  5. G. Chicco, A. Mazza, Heuristic optimization of electrical energy systems: Refined metrics to compare the solutions. Sustain. Energy GridsNetworks 17, 100197 (2019)

    Google Scholar 

  6. Christie R: Power Systems Test Case Archive. [Accessed June 20, 2019]. Available: http://www.ee.washington.edu/research/pstca/pf30/pg_tca30bus.htm (1993)

  7. S. Chung, K.K. Lee, G.J. Chen, J.D. Xie, G.Q. Tang, Multi-objective transmission network planning by a hybrid GA approach with fuzzy decision analysis. Elect. Power Energy Syst. 25, 187–192 (2003)

    Article  Google Scholar 

  8. M. Costeira da Rocha, J. Tomé Saraiva, A multiyear dynamic transmission expansion planning model using a discrete based EPSO approach. Electr. Power Syst. Res. 93, 83–92 (2012)

    Article  Google Scholar 

  9. M. Costeira da Rocha, J. Tomé Saraiva, A discrete evolutionary PSO based approach to the multiyear transmission expansion planning problem considering demand uncertainties. Int. J. Electr. Power Energy Syst. 45(1), 427–442 (2013)

    Article  Google Scholar 

  10. E.L. Da Silva, H.A. Gil, J.M. Areiza, Transmission network expansion planning under an improved genetic algorithm. IEEE Trans. Power Syst. 15(3), 1168–1174 (2000)

    Article  Google Scholar 

  11. K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms (Wiley, New York, 2001)

    MATH  Google Scholar 

  12. K. Deb, T. Goel, Controlled elitist non-dominated sorting genetic algorithm for better convergence, in Proc. of ACM First International Conference on Evolutionary Multi-Criterion Optimization, (2001), pp. 67–81

    Chapter  Google Scholar 

  13. K. Deb, A. Pratap, A. Agarwal, Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  14. A.O. Ekwue, B.J. Cory, Transmission system expansion planning by interactive methods. IEEE Trans. Power Syst. 103(7), 1583–1591 (1984)

    Article  Google Scholar 

  15. A.H. Escobar, R.A. Gallego, R. Romero, Multistage and coordinated planning of the expansion of transmission systems. IEEE Trans. Power Syst. 19(2), 735–744 (2004)

    Article  Google Scholar 

  16. L. Gacitua, P. Gallegos, R. Henriquez-Auba, Á. Lorca, M. Negrete-Pincetic, D. Olivares, A. Valenzuela, G. Wenzel, A comprehensive review on expansion planning: Models and tools for energy policy analysis. Renew. Sust. Energ. Rev. 98, 346–360 (2018)

    Article  Google Scholar 

  17. R.A. Gallego, A.B. Alves, A. Monticelli, R. Romero, Parallel simulated annealing applied to long term transmission network expansion planning. IEEE Trans. Power Syst. 12(1), 181–188 (1997)

    Article  Google Scholar 

  18. L.A. Gallego, L.P. Garcés, M. Rahmani, R.A. Romero, High-performance hybrid genetic algorithm to solve transmission network expansion planning. IET Generation Trans. Distrib. 11(5), 1111–1118 (2017)

    Article  Google Scholar 

  19. L.L. Garver, Transmission network estimation using linear programming. IEEE Trans. Power Apparatus Syst. PAS-89(7), 1688–1697 (1970)

    Article  Google Scholar 

  20. P.S. Georgilakis, Market-based transmission expansion planning by improved differential evolution. Int. J. Electr. Power Energy Syst. 32(5), 450–456 (2010)

    Article  Google Scholar 

  21. H.A. Gil, E.L. da Silva, A reliable approach for solving the transmission network expansion planning problem using genetic algorithms. Electr. Power Syst. Res. 58(1), 45–51 (2001)

    Article  Google Scholar 

  22. A.P. Guerreiro, C.M. Fonseca, Computing and updating Hypervolume contributions in up to four dimensions. IEEE Trans. Evol. Comput. 22(3), 449–463 (2018)

    Article  Google Scholar 

  23. N. Gupta, R. Shekhar, P.K. Kalra, Congestion management based roulette wheel simulation for optimal capacity selection: Probabilistic transmission expansion planning. Int. J. Electr. Power Energy Syst. 43, 1259–1266 (2012)

    Article  Google Scholar 

  24. N. Gupta, R. Shekhar, P.K. Kalra, Computationally efficient composite transmission expansion planning: A Pareto optimal approach for techno-economic solution. Int. J. Electr. Power Energy Syst. 63, 917–926 (2014)

    Article  Google Scholar 

  25. R. Hemmati, R.A. Hooshmand, A. Khodabakhshian, State-of-the-art of transmission expansion planning: Comprehensive review. Renew. Sust. Energ. Rev. 23, 312–319 (2013)

    Article  Google Scholar 

  26. R. Hemmati, R.A. Hooshmand, A. Khodabakhshian, Coordinated generation and transmission expansion planning in deregulated electricity market considering wind farms. Renew. Energy 85, 620–630 (2016)

    Article  Google Scholar 

  27. V.H. Hinojosa, N. Galleguillos, B. Nuques, A simulated rebounding algorithm applied to the multi-stage security-constrained transmission expansion planning in power systems. Int. J. Electr. Power Energy Syst. 47, 168–180 (2013)

    Article  Google Scholar 

  28. K. Hiroki, H. Mori, An efficient multi-objective Meta-heuristic method for probabilistic transmission network planning. Proc. Comput. Sci. 36, 446–453 (2014)

    Article  Google Scholar 

  29. R.A. Hooshmand, R. Hemmati, M. Parastegari, Combination of AC transmission expansion planning and reactive power planning in the restructured power system. Energy Convers. Manag. 55, 26–35 (2012)

    Article  Google Scholar 

  30. Illinois Institute of Technology, IEEE 118 Bus Test System. Available: http://motor.ece.iit. edu/Data

  31. Y. Hu, Z. Bie, T. Ding, Y. Lin, An NSGA-II based multi-objective optimization for combined gas and electricity network expansion planning. Appl. Energy 167, 280–293 (2016)

    Article  Google Scholar 

  32. C.L. Hwang, K. Yoon, Multiple Attribute Decision Making: Methods and Applications (Springer-Verlag, New York, 1981)

    Book  MATH  Google Scholar 

  33. M. Jadidoleslam, A. Ebrahimi, M.A. Latify, Probabilistic transmission expansion planning to maximize the integration of wind power. Renew. Energy 114(B), 866–878 (2017)

    Article  Google Scholar 

  34. G.R. Kamyab, M. Fotuhi-Firuzabad, M. Rashidinejad, A PSO based approach for multi-stage transmission expansion planning in electricity markets. Int. J. Electr. Power Energy Syst. 54, 91–100 (2014)

    Article  Google Scholar 

  35. T.S. Kishore, S.K. Singal, Optimal economic planning of power transmission lines: A review. Renew. Sust. Energ. Rev. 39, 949–974 (2014)

    Article  Google Scholar 

  36. A.M. Leite da Silva, L.S. Rezende, L.A. da Fonseca Manso, L.C. de Resende, Reliability worth applied to transmission expansion planning based on ant colony system. Int. J. Electr. Power Energy Syst. 32(10), 1077–1084 (2010)

    Article  Google Scholar 

  37. A.M. Leite da Silva, M.R. Freire, L.H. Honório, Transmission expansion planning optimization by adaptive multi-operator evolutionary algorithms. Electr. Power Syst. Res. 133, 173–181 (2016)

    Article  Google Scholar 

  38. S. Lumbreras, A. Ramos, The new challenges to transmission expansion planning. Survey of recent practice and literature review. Electr. Power Syst. Res. 134, 19–29 (2016)

    Article  Google Scholar 

  39. P. Maghouli, S.H. Hosseini, M.O. Buygi, M. Shahidehpour, A multi-objective framework for transmission expansion planning in deregulated environments. IEEE Trans. Power Syst. 24(2), 1051–1061 (2009)

    Article  Google Scholar 

  40. M. Mahdavi, H. Shayeghi, A. Kazemi, DCGA based evaluating role of bundle lines in TNEP considering expansion of substations from voltage level point of view. Energy Convers. Manag. 50(8), 2067–2073 (2009)

    Article  Google Scholar 

  41. A. Mazza, G. Chicco, A. Russo, Optimal multi-objective distribution system reconfiguration with multi criteria decision making-based solution ranking and enhanced genetic operators. Int. J. Electr. Power Energy Syst. 54, 255–267 (2014)

    Article  Google Scholar 

  42. I. Miranda de Mendonça, I. Chaves Silva Junior, B. Henriques Dias, A.L.M. Marcato, Identification of relevant routes for static expansion planning of electric power transmission systems. Electr. Power Syst. Res. 140, 769–775 (2016)

    Article  Google Scholar 

  43. V. Miranda, N. Fonseca, EPSO - best-of-two-worlds meta-heuristic applied to power system problems, in Proc. of the 2002 Congress on Evolutionary Computation (CEC'02), vol. 2, (2002), pp. 1081–1085

    Google Scholar 

  44. M. Moeini-Aghtaie, A. Abbaspour, M. Fotuhi-Firuzabad, Incorporating large-scale distant wind farms in probabilistic transmission expansion planning; part I: Theory and algorithm. IEEE Trans. Power Syst. 27, 1585–1593 (2012a)

    Article  Google Scholar 

  45. M. Moeini-Aghtaie, A. Abbaspour, M. Fotuhi-Firuzabad, Incorporating large-scale distant wind farms in probabilistic transmission expansion planning. Part II: Case studies. IEEE Trans. Power Syst. 27, 1594–1601 (2012b)

    Article  Google Scholar 

  46. M. Moradi, H. Abdi, S. Lumbreras, A. Ramos, S. Karimi, Transmission expansion planning in the presence of wind farms with a mixed AC and DC power flow model using an imperialist competitive algorithm. Electr. Power Syst. Res. 140, 493–506 (2016)

    Article  Google Scholar 

  47. E. Mortaz, L.F. Fuerte-Ledezma, G. Gutiérrez-Alcaraz, J. Valenzuela, Transmission expansion planning using multivariate interpolation. Electr. Power Syst. Res. 126, 87–99 (2015)

    Article  Google Scholar 

  48. R.P.B. Poubel, E.J. De Oliveira, L.A.F. Manso, L.M. Honório, L.W. Oliveira, Tree searching heuristic algorithm for multi-stage transmission planning considering security constraints via genetic algorithm. Electr. Power Syst. Res. 142, 290–297 (2017)

    Article  Google Scholar 

  49. G. Qu, H. Cheng, L. Yao, Z. Ma, Z. Zhu, Transmission surplus capacity based power transmission expansion planning. Electr. Power Syst. Res. 80(1), 19–27 (2010)

    Article  Google Scholar 

  50. H.K. Rad, Z. Moravej, An approach for simultaneous distribution, sub-transmission, and transmission networks expansion planning. Int. J. Electr. Power Energy Syst. 91, 166–182 (2017)

    Article  Google Scholar 

  51. A. Rastgou, J. Moshtagh, Improved harmony search algorithm for transmission expansion planning with adequacy–security considerations in the deregulated power system. Int. J. Electr. Power Energy Syst. 60, 153–164 (2014)

    Article  Google Scholar 

  52. A. Rastgou, J. Moshtagh, Application of firefly algorithm for multi-stage transmission expansion planning with adequacy-security considerations in deregulated environments. Appl. Soft Comput. 41, 373–389 (2016)

    Article  Google Scholar 

  53. C. Rathore, R. Roy, A novel modified GBMO algorithm based static transmission network expansion planning. Int. J. Electr. Power Energy Syst. 62, 519–531 (2014)

    Article  Google Scholar 

  54. C. Rathore, R. Roy, Impact of wind uncertainty, plug-in-electric vehicles and demand response program on transmission network expansion planning. Int. J. Electr. Power Energy Syst. 75, 59–73 (2016)

    Article  Google Scholar 

  55. Reliability Test System Task Force, The IEEE reliability test system-1996. IEEE Trans. Power Syst. 14, 1010–1020 (1999)

    Article  Google Scholar 

  56. M.J. Rider, A.V. Garcia, R. Romero, Power system transmission network expansion planning using AC model. IET Gener, Trans Distrib. 1, 731–742 (2007)

    Article  Google Scholar 

  57. J.H. Roh, M. Shahidehpour, L. Wu, Market-based generation and transmission planning with uncertainties. IEEE Trans. Power Syst. 24(3), 1587–1598 (2009)

    Article  Google Scholar 

  58. R. Romero, A. Monticelli, A hierarchical decomposition approach for transmission network expansion planning. IEEE Trans. Power Syst. 9(1), 373–380 (1994)

    Article  Google Scholar 

  59. R. Romero, A. Monticelli, A zero-one implicit enumeration method for optimizing investments in transmission expansion planning. IEEE Trans. Power Syst. 9(3), 1385–1391 (1994b)

    Article  Google Scholar 

  60. Romero R., Gallego R.A., Monticelli A (1995) Transmission System Expansion Planning by Simulated Annealing, Power Industry Computer Applications - PICA 95, Salt Lake City, May 1995

    Google Scholar 

  61. R. Romero, A. Monticelli, A. García, S. Haffner, Test systems and mathematical models for transmission network expansion planning. IEE Proc-Gener Transm Distrib. 149(1), 27–36 (2002)

    Article  Google Scholar 

  62. T.L. Saaty, A scaling method for priorities in hierarchical structures. J. Math Psychol. 15(3), 234–281 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  63. A. Sadegheih, P.R. Drake, System network planning expansion using mathematical programming, genetic algorithms and tabu search. Energy Convers. Manag. 49(6), 1557–1566 (2008)

    Article  Google Scholar 

  64. Schott JR: Fault Tolerant Design Using Single and Multi-Criteria Genetic Algorithm Optimization. Master’s Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA (1995)

    Google Scholar 

  65. H. Shayeghi, M. Mahdavi, A. Bagheri, An improved DPSO with mutation based on similarity algorithm for optimization of transmission lines loading. Energy Convers. Manag. 51(12), 2715–2723 (2010)

    Article  Google Scholar 

  66. H. Shayeghi, M. Mahdavi, A. Bagheri, Discrete PSO algorithm based optimization of transmission lines loading in TNEP problem. Energy Convers. Manag. 51(1), 112–121 (2010b)

    Article  Google Scholar 

  67. M. Shivaie, M.T. Ameli, Strategic multiyear transmission expansion planning under severe uncertainties by a combination of melody search algorithm and Powell heuristic method. Energy 115(1), 338–352 (2016)

    Article  Google Scholar 

  68. K. Sörensen, Metaheuristics—The metaphor exposed. Int. Trans. Oper. Res. 22(1), 3–18 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  69. A.S. Sousa, E.N. Asada, Long-term transmission system expansion planning with multi-objective evolutionary algorithm. Electr. Power Syst. Res. 119, 149–156 (2015)

    Article  Google Scholar 

  70. N. Srinivas, K. Deb, Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  71. Y. Sun, C. Kang, Q. Xia, Q. Chen, N. Zhang, Y. Cheng, Analysis of transmission expansion planning considering consumption-based carbon emission accounting. Appl. Energy 193, 232–242 (2017)

    Article  Google Scholar 

  72. S.P. Torres, C.A. Castro, Specialized differential evolution technique to solve the alternating current model based transmission expansion planning problem. Int. J. Electr. Power Energy Syst. 68, 243–251 (2015)

    Article  Google Scholar 

  73. P. Verma, K. Sanyal, D. Srinivsan, K.S. Swarup, Information exchange based clustered differential evolution for constrained generation-transmission expansion planning. Swarm Evol. Comput. 44, 863–875 (2019)

    Article  Google Scholar 

  74. X. Wang, J.R. McDonald, Modern Power System Planning (McGraw-Hill International, London, 1994)

    Google Scholar 

  75. Y. Wang, H. Cheng, C. Wang, Z. Hu, L. Yao, Z. Ma, Z. Zhu, Pareto optimality-based multi-objective transmission planning considering transmission congestion. Electric Power Syst. Res. 78(9), 1619–1626 (2008)

    Article  Google Scholar 

  76. Z. Xu, Z.Y. Dong, K.P. Wong, A hybrid planning method for transmission networks in a deregulated environment. IEEE Trans. Power Syst. 21(2), 925–929 (2006)

    Article  Google Scholar 

  77. E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  78. E. Zitzler, M. Laumanns, L. Thiele, in SPEA2: Improving the Strength Pareto Evolutionary Algorithm, ed. by Swiss Federal Institute of Technology, (2001) Technical Report

    Google Scholar 

  79. E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V. Grunert da Fonseca, Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

  80. E. Zitzler, J. Knowles, L. Thiele, Quality assessment of Pareto set approximations, in Multiobjective Optimization: Interactive and Evolutionary Approaches, ed. by J. Branke, K. Deb, K. Miettinen, R. Slowinski, (Springer, Berlin Heidelberg, 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Chicco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chicco, G., Mazza, A. (2021). Metaheuristics for Transmission Network Expansion Planning. In: Lumbreras, S., Abdi, H., Ramos, A. (eds) Transmission Expansion Planning: The Network Challenges of the Energy Transition. Springer, Cham. https://doi.org/10.1007/978-3-030-49428-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49428-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49427-8

  • Online ISBN: 978-3-030-49428-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics