Skip to main content

Molecular Biology of CCM

  • Chapter
  • First Online:
Cavernomas of the CNS

Abstract

Cerebral cavernous malformations (CCMs) are slow-flow neurovascular anomalies of the central nervous system characterized by collections of enlarged and structurally irregular capillaries which exhibit dilated, thin and leaky walls. CCMs can occur either sporadically or as a familial autosomal disorder caused by a germline mutation with variable clinical and neuroradiological penetrance. Despite similar neurological manifestations, prevalence of patients harboring multiple cavernous malformations is much higher in the inherited form. Familial CCMs in humans result from loss-of-function mutations in any one of the three CCM genes encoding KRIT1 (also known as CCM1), CCM2 (also known as MGC4607 or malcaverin), or PDCD10 (also known as CCM3). The proteins encoded by the CCM genes are partly co-localized in a trimeric complex involved in number of partially interconnected signaling pathways controlling endothelial permeability and angiogenesis. Additionally, each of the CCM proteins have their own biological roles in a range of basic cellular processes including apoptosis, migration, polarization, and cell adhesion. Mutations in PDCD10 tend to result in a more aggressive form of the disease than those in KRIT1 or CCM2 suggesting potential differences in the signaling pathways in which PDCD10 is involved. No doubt the discovery of the CCM protein architectures has been invaluable towards the understanding of the CCM biology. However, to gain deeper insight into their cellular functions, interaction patterns, and cross-talks, further studies are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Draheim KM, Fisher OS, Boggon TJ, Calderwood DA. Cerebral cavernous malformation proteins at a glance. J Cell Sci. 2014;127:701–7. https://doi.org/10.1242/jcs.138388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cavalcanti DD, Kalani MYS, Martirosyan NL, Eales J, Spetzler RF, Preul MC. Cerebral cavernous malformations: from genes to proteins to disease. J Neurosurg. 2012;116:122–32. https://doi.org/10.3171/2011.8.JNS101241.

    Article  CAS  PubMed  Google Scholar 

  3. Fischer A, Zalvide J, Faurobert E, Albiges-Rizo C, Tournier-Lasserve E. Cerebral cavernous malformations: from CCM genes to endothelial cell homeostasis. Trends Mol Med. 2013;19:302–8. https://doi.org/10.1016/j.molmed.2013.02.004.

    Article  CAS  PubMed  Google Scholar 

  4. Tanriover G, Sozen B, Seker A, Kilic T, Gunel M, Demir N. Ultrastructural analysis of vascular features in cerebral cavernous malformations. Clin Neurol Neurosurg. 2013;115:438–44. https://doi.org/10.1016/j.clineuro.2012.06.023.

    Article  PubMed  Google Scholar 

  5. Flemming KD, Graff-Radford J, Aakre J, Kantarci K, Lanzino G, Brown RD, Mielke MM, Roberts RO, Kremers W, Knopman DS, Petersen RC, Jack CR. Population-based prevalence of cerebral cavernous malformations in older adults: Mayo Clinic Study of Aging. JAMA Neurol. 2017;74:801–5. https://doi.org/10.1001/jamaneurol.2017.0439.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rocco CD, Iannelli A, Tamburrini G. Cavernous angiomas of the brain stem in children. Pediatr Neurosurg. 1997;27:92–9. https://doi.org/10.1159/000121233.

    Article  PubMed  Google Scholar 

  7. Giombini S, Morello G. Cavernous angiomas of the brain. Account of fourteen personal cases and review of the literature. Acta Neurochir. 1978;40:61–82.

    Article  CAS  Google Scholar 

  8. Lonjon M, Roche JL, George B, Mourier KL, Paquis P, Lot G, Grellier P. Intracranial cavernoma. 30 cases. Presse Med. 1993;22:990–4.

    CAS  PubMed  Google Scholar 

  9. Moriarity N, Wetzel N, Clatterbuck N, Javedan N, Sheppard N, Hoenig-Rigamonti N, Crone N, Breiter N, Lee N, Rigamonti N. The natural history of cavernous malformations: a prospective study of 68 patients. Neurosurgery. 1999;44:1166–71.. discussion 1172–1173

    CAS  PubMed  Google Scholar 

  10. Fisher OS, Zhang R, Li X, Murphy JW, Demeler B, Boggon TJ. Structural studies of cerebral cavernous malformations 2 (CCM2) reveal a folded helical domain at its C-terminus. FEBS Lett. 2013;587:272–7. https://doi.org/10.1016/j.febslet.2012.12.011.

    Article  CAS  PubMed  Google Scholar 

  11. Haasdijk RA, Cheng C, Maat-Kievit AJ, Duckers HJ. Cerebral cavernous malformations: from molecular pathogenesis to genetic counselling and clinical management. Eur J Hum Genet. 2012;20:134–40. https://doi.org/10.1038/ejhg.2011.155.

    Article  CAS  PubMed  Google Scholar 

  12. Labauge P, Denier C, Bergametti F, Tournier-Lasserve E. Genetics of cavernous angiomas. Lancet Neurol. 2007;6:237–44. https://doi.org/10.1016/S1474-4422(07)70053-4.

    Article  CAS  PubMed  Google Scholar 

  13. Revencu N, Vikkula M. Cerebral cavernous malformation: new molecular and clinical insights. J Med Genet. 2006;43:716–21. https://doi.org/10.1136/jmg.2006.041079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dashti SR, Hoffer A, Hu YC, Selman WR. Molecular genetics of familial cerebral cavernous malformations. Neurosurg Focus. 2006;21:e2.

    Article  Google Scholar 

  15. Felbor U, Sure U, Grimm T, Bertalanffy H. Genetics of cerebral cavernous angioma. Zentral-blatt Fur Neurochirurgie. 2006;67:110–6. https://doi.org/10.1055/s-2006-933537.

    Article  CAS  Google Scholar 

  16. Dubovsky J, Zabramski JM, Kurth J, Spetzier RF, Rich SS, Orr HT, Weber JL. A gene responsible for cavernous malformations of the brain maps to chromosome 7q. Hum Mol Genet. 1995;4:453–8. https://doi.org/10.1093/hmg/4.3.453.

    Article  CAS  PubMed  Google Scholar 

  17. Kurth JH, Zabramski JM, Dubovsky J. Genetic linkage of the familial cavernous malformation (CM) gene to chromosome 7q. Am J Hum Genet. 1994;55:211–20.

    Google Scholar 

  18. Marchuk DA, Gallione CJ, Morrison LA, Clericuzio CL, Hart BL, Kosofsky BE, Louis DN, Gusella JF, Davis LE, Prenger VL. A locus for cerebral cavernous malformations maps to chromosome 7q in two families. Genomics. 1995;28:311–4.

    Article  CAS  Google Scholar 

  19. Gil-Nagel A, Dubovsky J, Wilcox KJ, Stewart JM, Anderson VE, Leppik IE, Orr HT, Johnson EW, Weber JL, Rich SS. Familial cerebral cavernous angioma: a gene localized to a 15-cM interval on chromosome 7q. Ann Neurol. 1996;39:807–10. https://doi.org/10.1002/ana.410390619.

    Article  CAS  PubMed  Google Scholar 

  20. Gaijnel M, Awad IA, Anson J, Lifton RP. Mapping a gene causing cerebral cavernous malformation to 7q11.2-q21. Proc Natl Acad Sci U S A. 1995;92:6620–4.

    Article  Google Scholar 

  21. Green ED, Green P. Sequence-tagged site (STS) content mapping of human chromosomes: theoretical considerations and early experiences. PCR Methods Appl. 1991;1:77–90.

    Article  CAS  Google Scholar 

  22. Green ED, Braden VV, Fulton RS, Lim R, Ueltzen MS, Peluso DC, Mohr-Tidwell RM, Idol JR, Smith LM, Chumakov I. A human chromosome 7 yeast artificial chromosome (YAC) resource: construction, characterization, and screening. Genomics. 1995;25:170–83.

    Article  CAS  Google Scholar 

  23. Johnson EW, Iyer LM, Rich SS, Orr HT, Gil-Nagel A, Kurth JH, Zabramski JM, Marchuk DA, Weissenbach J, Clericuzio CL, Davis LE, Hart BL, Gusella JF, Kosofsky BE, Louis DN, Morrison LA, Green ED, Weber JL. Refined localization of the cerebral cavernous malformation gene (CCM1) to a 4-cM interval of chromosome 7q contained in a well-defined YAC contig. Genome Res. 1995;5:368–80.

    Article  CAS  Google Scholar 

  24. Bouffard GG, Idol JR, Braden VV, Iyer LM, Cunningham AF, Weintraub LA, Touchman JW, Mohr-Tidwell RM, Peluso DC, Fulton RS, Ueltzen MS, Weis-senbach J, Magness CL, Green ED. A physical map of human chromosome 7: an integrated YAC contig map with average STS spacing of 79 kb. Genome Res. 1997;7:673–92.

    Article  CAS  Google Scholar 

  25. Kere J, Ruutu T, Davies KA, Roninson IB, Watkins PC, Winqvist R, de la Chapelle A. Chromosome 7 long arm deletion in myeloid disorders: a narrow breakpoint region in 7q22 defined by molecular mapping. Blood. 1989;73:230–4.

    Article  CAS  Google Scholar 

  26. Nibert M, Heim S. Uterine leiomyoma cytogenetics. Genes Chromosom Cancer. 1990;2:3–13.

    Article  CAS  Google Scholar 

  27. Sahoo T, Johnson EW, Thomas JW, Kuehl PM, Jones TL, Dokken CG, Touch-man JW, Gallione CJ, Lee-Lin SQ, Kosofsky B, Kurth JH, Louis DN, Mettler G, Morrison L, Gil-Nagel A, Rich SS, Zabramski JM, Boguski MS, Green ED, Marchuk DA. Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1). Hum Mol Genet. 1999;8:2325–33.

    Article  CAS  Google Scholar 

  28. Laberge-le Couteulx S, Jung HH, Labauge P, Houtteville JP, Lescoat C, Cecillon M, Marechal E, Joutel A, Bach JF, Tournier-Lasserve E. Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas. Nat Genet. 1999;23:189–93. https://doi.org/10.1038/13815.

    Article  CAS  PubMed  Google Scholar 

  29. Eerola I, McIntyre B, Vikkula M. Identification of eight novel 5′-exons in cerebral capillary malformation gene-1 (CCM1) encoding KRIT1. Biochim Biophys Acta. 2001;1517:464–7.

    Article  CAS  Google Scholar 

  30. Cavai-Riant F, Denier C, Labauge P, Caicillon M, Maciazek J, Joutel A, Laberge-Le Couteulx S, Tournier-Lasserve E. Spectrum and expression analysis of KRIT1 mutations in 121 consecutive and unrelated patients with cerebral cavernous malformations. Eur J Hum Genet. 2002;10:733–40. https://doi.org/10.1038/sj.ejhg.5200870.

    Article  CAS  Google Scholar 

  31. Sahoo T, Goenaga-Diaz E, Serebriiskii IG, Thomas JW, Kotova E, Cuellar JG, Peloquin JM, Golemis E, Beitinjaneh F, Green ED, Johnson EW, Marchuk DA. Computational and experimental analyses reveal previously undetected coding exons of the KRIT1 (CCM1) gene. Genomics. 2001;71:123–6. https://doi.org/10.1006/geno.2000.6426.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang J, Clatterbuck RE, Rigamonti D, Chang DD, Dietz HC. Interaction between krit1 and icap1alpha infers perturbation of integrin beta1-mediated angiogenesis in the pathogenesis of cerebral cavernous malformation. Hum Mol Genet. 2001;10:2953–60.

    Article  CAS  Google Scholar 

  33. Davenport WJ, Siegel AM, Dichgans J, Drigo P, Mammi I, Pereda P, Wood NW, Rouleau GA. CCM1 gene mutations in families segregating cerebral cavernous malformations. Neurology. 2001;56:540–3.

    Article  CAS  Google Scholar 

  34. Verlaan DJ, Siegel AM, Rouleau GA. Krit1 missense mutations Lead to splicing errors in cerebral cavernous malformation. Am J Hum Genet. 2002;70:1564–7.

    Article  CAS  Google Scholar 

  35. Stuppia L, Antonucci I, Palka G, Gatta V. Use of the MLPA assay in the molecular diagnosis of gene copy number alterations in human genetic diseases. Int J Mol Sci. 2012;13:3245–76. https://doi.org/10.3390/ijms13033245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002;30:e57.

    Article  Google Scholar 

  37. Gaetzner S, Stahl S, Saijraijcaij O, Schaafhausen A, Halliger-Keller B, Bertalanffy H, Sure U, Felbor U. CCM1 gene deletion identified by MLPA in cerebral cavernous malformation. Neurosurg Rev. 2007;30:155–9. https://doi.org/10.1007/s10143-006-0057-1.. discussion 159–160

    Article  PubMed  Google Scholar 

  38. Liquori CL, Berg MJ, Squitieri F, Leedom TP, Ptacek L, Johnson EW, Marchuk DA. Deletions in CCM2 are a common cause of cerebral cavernous malformations. Am J Hum Genet. 2007;80:69–75. https://doi.org/10.1086/510439.

    Article  CAS  PubMed  Google Scholar 

  39. Liquori CL, Berg MJ, Squitieri F, Ottenbacher M, Sorlie M, Leedom TP, Cannella M, Maglione V, Ptacek L, Johnson EW, Marchuk DA. Low frequency of PDCD10 mutations in a panel of CCM3 probands: potential for a fourth CCM locus. Hum Mutat. 2006;27:118. https://doi.org/10.1002/humu.9389.

    Article  PubMed  Google Scholar 

  40. Liquori CL, Penco S, Gault J, Leedom TP, Tassi L, Esposito T, Awad IA, Frati L, Johnson EW, Squitieri F, Marchuk DA, Gianfrancesco F. Different spectra of genomic deletions within the CCM genes between Italian and American CCM patient cohorts. Neurogenetics. 2008;9:25–31. https://doi.org/10.1007/s10048-007-0109-x.

    Article  CAS  PubMed  Google Scholar 

  41. Pagenstecher A, Stahl S, Sure U, Felbor U. A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of CCM1, CCM2 or CCM3 in affected endothelial cells. Hum Mol Genet. 2009;18:911–8. https://doi.org/10.1093/hmg/ddn420.

    Article  CAS  PubMed  Google Scholar 

  42. Knudson AG. Two genetic hits (more or less) to cancer. Nat Rev Cancer. 2001;1:157–62. https://doi.org/10.1038/35101031.

    Article  CAS  PubMed  Google Scholar 

  43. Strenger V, Sovinz P, Lackner H, Dornbusch HJ, Lingitz H, Eder HG, Moser A, Urban C. Intracerebral cavernous hemangioma after cranial irradiation in childhood. Incidence and risk factors. Strahlentherapie Und Onkologie: Organ Der Deutschen Rontgengesellschaft. 2008;184:276–80. https://doi.org/10.1007/s00066-008-1817-3.

    Article  Google Scholar 

  44. Gault J, Shenkar R, Recksiek P, Awad IA. Biallelic somatic and germ line CCM1 trun-cating mutations in a cerebral cavernous malformation lesion. Stroke. 2005;36:872–4. https://doi.org/10.1161/01.STR.0000157586.20479.fd.

    Article  PubMed  Google Scholar 

  45. Craig HD, GÃijnel M, Cepeda O, Johnson EW, Ptacek L, Steinberg GK, Ogilvy CS, Berg MJ, Crawford SC, Scott RM, Steichen-Gersdorf E, Sabroe R, Kennedy CTC, Mettler G, Beis MJ, Fryer A, Awad IA, Lifton RP. Multilocus linkage identifies two new loci for a mendelian form of stroke, cerebral cavernous malformation, at 7p15âĂẞ13 and 3q25.2âĂβ27. Hum Mol Genet. 1998;7:1851–8. https://doi.org/10.1093/hmg/7.12.1851.

  46. Liquori CL, Berg MJ, Siegel AM, Huang E, Zawistowski JS, Stoffer T, Verlaan D, Balogun F, Hughes L, Leedom TP, Plummer NW, Cannella M, Maglione V, Squitieri F, Johnson EW, Rouleau GA, Ptacek L, Marchuk DA. Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. Am J Hum Genet. 2003;73:1459–64. https://doi.org/10.1086/380314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Denier C, Goutagny S, Labauge P, Krivosic V, Arnoult M, Cousin A, Benabid A, Comoy J, Frerebeau P, Gilbert B, Houtteville J, Jan M, Lapierre F, Loiseau H, Menei P, Mercier P, Moreau J, Nivelon-Chevallier A, Parker F, Redondo A, Scara-bin J, Tremoulet M, Zerah M, Maciazek J, Tournier-Lasserve E. Mutations within the MGC4607 gene cause cerebral cavernous malformations. Am J Hum Genet. 2004;74:326–37. https://doi.org/10.1086/381718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bergametti F, Denier C, Labauge P, Arnoult M, Boetto S, Clanet M, Coubes P, Echenne B, Ibrahim R, Irthum B, Jacquet G, Lonjon M, Moreau JJ, Neau JP, Parker F, Tremoulet M, Tournier-Lasserve E. SociÃľtÃľ FranÃğaise de Neurochirurgie, mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am J Hum Genet. 2005;76:42–51. https://doi.org/10.1086/426952.

    Article  CAS  PubMed  Google Scholar 

  49. Denier C, Labauge P, Bergametti F, Marchelli F, Riant F, Arnoult M, Maciazek J, Vicaut E, Brunereau L, Tournier-Lasserve E. Sociatat Franangaise de Neurochirurgie, genotype-phenotype correlations in cerebral cavernous malformations patients. Ann Neurol. 2006;60:550–6. https://doi.org/10.1002/ana.20947.

    Article  PubMed  Google Scholar 

  50. Akers AL, Johnson E, Steinberg GK, Zabramski JM, Marchuk DA. Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis. Hum Mol Genet. 2009;18:919–30. https://doi.org/10.1093/hmg/ddn430.

    Article  CAS  PubMed  Google Scholar 

  51. Dammann P, Hehr U, Weidensee S, Zhu Y, Gerlach R, Sure U. Two-hit mechanism in cerebral cavernous malformation? A case of monozygotic twins with a CCM1/KRIT1 germline mutation. Neurosurg Rev. 2013;36:483–6. https://doi.org/10.1007/s10143-013-0456-z.

    Article  PubMed  Google Scholar 

  52. Stahl S, Gaetzner S, Voss K, Brackertz B, Schleider E, SÃijrÃijcÃij O, Kunze E, Net-zer C, Korenke C, Finckh U, Habek M, Poljakovic Z, Elbracht M, Rudnik-SchÃűneborn S, Bertalanffy H, Sure U, Felbor U. Novel CCM1, CCM2, and CCM3 mutations in pa-tients with cerebral cavernous malformations: in-frame deletion in CCM2 prevents formation of a CCM1/CCM2/CCM3 protein complex. Hum Mutat. 2008;29:709–17. https://doi.org/10.1002/humu.20712.

    Article  CAS  PubMed  Google Scholar 

  53. Boulday G, BlÃľcon A, Petit N, Chareyre F, Garcia LA, Niwa-Kawakita M, Giovan-nini M, Tournier-Lasserve E. Tissue-specific conditional CCM2 knockout mice establish the essential role of endothelial CCM2 in angiogenesis: implications for human cerebral cavernous malformations. Dis Model Mech. 2009;2:168–77. https://doi.org/10.1242/dmm.001263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang J, Clatterbuck RE, Rigamonti D, Dietz HC. Mutations in KRIT1 in familial cerebral cavernous malformations. Neurosurgery. 2000;46:1272–7;. discussion 1277–1279. https://doi.org/10.1097/00006123-200005000-00064.

    Article  CAS  PubMed  Google Scholar 

  55. Gunel M, Awad IA, Finberg K, Anson JA, Steinberg GK, Batjer HH, Kopitnik TA, Morrison L, Giannotta SL, Nelson-Williams C, Lifton RP. A founder mutation as a cause of cerebral cavernous malformation in Hispanic Americans. N Engl J Med. 1996;334:946–51. https://doi.org/10.1056/NEJM199604113341503.

    Article  CAS  PubMed  Google Scholar 

  56. Liu W, Draheim KM, Zhang R, Calderwood DA, Boggon TJ. Mechanism for KRIT1 release of ICAP1-mediated suppression of integrin activation. Mol Cell. 2013;49:719–29. https://doi.org/10.1016/j.molcel.2012.12.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li X, Zhang R, Draheim KM, Liu W, Calderwood DA, Boggon TJ. Structural basis for small G protein effector interaction of Ras-related protein 1 (Rap1) and adaptor protein Krev interaction trapped 1 (KRIT1). J Biol Chem. 2012;287:22317–27. https://doi.org/10.1074/jbc.M112.361295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gingras AR, Liu JJ, Ginsberg MH. Structural basis of the junctional anchorage of the cerebral cavernous malformations complex. J Cell Biol. 2012;199:39–48. https://doi.org/10.1083/jcb.201205109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bairaud-Dufour S, Gautier R, Albiges-Rizo C, Chardin P, Faurobert E. Krit 1 interactions with microtubules and membranes are regulated by Rap1 and integrin cy-toplasmic domain associated protein-1. FEBS J. 2007;274:5518–32. https://doi.org/10.1111/j.1742-4658.2007.06068.x.

    Article  CAS  Google Scholar 

  60. Padarti A, Zhang J. Recent advances in cerebral cavernous malformation research. Vessel Plus. 2018;2:1–23. https://doi.org/10.20517/2574-1209.2018.34.

    Article  CAS  Google Scholar 

  61. Zhang J, Clatterbuck RE, Rigamonti D, Dietz HC. Cloning of the murine Krit1 cDNA reveals novel mammalian 5′ coding exons. Genomics. 2000;70:392–5. https://doi.org/10.1006/geno.2000.6410.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang J, Basu S, Rigamonti D, Dietz HC, Clatterbuck RE. Krit1 modulates beta 1-integrin-mediated endothelial cell proliferation. Neurosurgery. 2008;63:571–8;. discussion 578. https://doi.org/10.1227/01.NEU.0000325255.30268.B0.

    Article  PubMed  Google Scholar 

  63. Zhang J, Dubey P, Padarti A, Zhang A, Patel R, Patel V, Cistola D, Badr A. Novel functions of CCM1 delimit the relationship of PTB/PH domains. Biochim Biophys Acta, Proteins Proteomics. 2017;1865:1274–86. https://doi.org/10.1016/j.bbapap.2017.07.002.

    Article  CAS  PubMed  Google Scholar 

  64. Pecqueur L, Duellberg C, Dreier B, Jiang Q, Wang C, PlÃijckthun A, Surrey T, Gigant B, Knossow M. A designed ankyrin repeat protein selected to bind to tubulin caps the microtubule plus end. Proc Natl Acad Sci U S A. 2012;109:12011–6. https://doi.org/10.1073/pnas.1204129109.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhang R, Li X, Boggon TJ. Structural analysis of the KRIT1 ankyrin repeat and FERM domains reveals a conformationally stable ARD-FERM interface. J Struct Biol. 2015;192:449–56. https://doi.org/10.1016/j.jsb.2015.10.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fisher OS, Boggon TJ. Signaling pathways and the cerebral cavernous malformations proteins: lessons from structural biology. Cell Mol Life Sci. 2014;71:1881–92. https://doi.org/10.1007/s00018-013-1532-9.

    Article  CAS  PubMed  Google Scholar 

  67. Francalanci F, Avolio M, De Luca E, Longo D, Menchise V, Guazzi P, SgrÚ F, Marino M, Goitre L, Balzac F, Trabalzini L, Retta SF. Structural and functional differences between KRIT1A and KRIT1B isoforms: a framework for understanding CCM pathogenesis. Exp Cell Res. 2009;315:285–303. https://doi.org/10.1016/j.yexcr.2008.10.006.

    Article  CAS  PubMed  Google Scholar 

  68. Faurobert E, Albiges-Rizo C. Recent insights into cerebral cavernous malformations: a complex jigsaw puzzle under construction. FEBS J. 2010;277:1084–96. https://doi.org/10.1111/j.1742-4658.2009.07537.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Glading A, Han J, Stockton RA, Ginsberg MH. KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cellâĂẞcell junctions. J Cell Biol. 2007;179:247–54. https://doi.org/10.1083/jcb.200705175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zawistowski JS, Stalheim L, Uhlik MT, Abell AN, Ancrile BB, Johnson GL, Marchuk DA. CCM1 and CCM2 protein interactions in cell signaling: implications for cerebral cavernous malformations pathogenesis. Hum Mol Genet. 2005;14:2521–31. https://doi.org/10.1093/hmg/ddi256.

    Article  CAS  PubMed  Google Scholar 

  71. Guzeloglu-Kayisli O, Amankulor NM, Voorhees J, Luleci G, Lifton RP, Gunel M. KRIT1/cerebral cavernous malformation 1 protein localizes to vascular endothelium, astrocytes, and pyramidal cells of the adult human cerebral cortex. Neurosurgery. 2004;54:943–9. https://doi.org/10.1227/01.NEU.0000114512.59624.A5.

    Article  PubMed  Google Scholar 

  72. Serebriiskii I, Estojak J, Sonoda G, Testa JR, Golemis EA. Association of Krev-1/Rap1a with Krit1, a novel ankyrin repeat-containing protein encoded by a gene mapping to 7q21-22. Oncogene. 1997;15:1043–9. https://doi.org/10.1038/sj.onc.1201268.

    Article  CAS  PubMed  Google Scholar 

  73. Frische EW, Zwartkruis FJT. Rap1, a mercenary among the Ras-like GTPases. Dev Biol. 2010;340:1–9. https://doi.org/10.1016/j.ydbio.2009.12.043.

    Article  CAS  PubMed  Google Scholar 

  74. Gingras AR, Puzon-McLaughlin W, Ginsberg MH. The structure of the ternary complex of Krev interaction trapped 1 (KRIT1) bound to both the Rap1 GTPase and the heart of glass (HEG1) cytoplasmic tail. J Biol Chem. 2013;288:23639–49. https://doi.org/10.1074/jbc.M113.462911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu JJ, Stockton RA, Gingras AR, Ablooglu AJ, Han J, Bobkov AA, Ginsberg MH. A mechanism of Rap1-induced stabilization of endothelial cell–cell junctions. Mol Biol Cell. 2011;22:2509–19. https://doi.org/10.1091/mbc.E11-02-0157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Millon-Fraumillon A, Bouvard D, Grichine A, Manet-DupÃľ S, Block MR, Albiges-Rizo C. Cell adaptive response to extracellular matrix density is controlled by ICAP-1âĂẞdependent Κ1-integrin affinity. J Cell Biol. 2008;180:427–41. https://doi.org/10.1083/jcb.200707142.

    Article  CAS  Google Scholar 

  77. Chang DD, Wong C, Smith H, Liu J. ICAP-1, a novel beta1 integrin cytoplasmic domain-associated protein, binds to a conserved and functionally important NPXY sequence motif of beta1 integrin. J Cell Biol. 1997;138:1149–57. https://doi.org/10.1083/jcb.138.5.1149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Faurobert E, Rome C, Lisowska J, Manet-Dupai S, Boulday G, Malbouyres M, Bal-land M, Bouin A-P, KÃľramidas M, Bouvard D, Coll J-L, Ruggiero F, Tournier-Lasserve E, Albiges-Rizo C. CCM1âĂẞICAP-1 complex controls Κ1 integrinâĂẞdependent endothelial contractility and fibronectin remodeling. J Cell Biol. 2013;202:545–61. https://doi.org/10.1083/jcb.201303044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. WÃijstehube J, Bartol A, Liebler SS, BrÃijtsch R, Zhu Y, Felbor U, Sure U, Au-gustin HG, Fischer A. Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA-NOTCH signaling. Proc Natl Acad Sci U S A. 2010;107:12640–5. https://doi.org/10.1073/pnas.1000132107.

    Article  Google Scholar 

  80. Liu H, Rigamonti D, Badr A, Zhang J. Ccm1 regulates microvascular morphogenesis during angiogenesis. J Vasc Res. 2011;48:130–40. https://doi.org/10.1159/000316851.

    Article  CAS  PubMed  Google Scholar 

  81. Liu H, Rigamonti D, Badr A, Zhang J. Ccm1 assures microvascular integrity during angio-genesis. Transl Stroke Res. 2010;1:146–53. https://doi.org/10.1007/s12975-010-0010-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Goitre L, Balzac F, Degani S, Degan P, Marchi S, Pinton P, Retta SF. KRIT1 regulates the homeostasis of intracellular reactive oxygen species. PLoS One. 2010;5:e11786. https://doi.org/10.1371/journal.pone.0011786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Guazzi P, Goitre L, Ferro E, Cutano V, Martino C, Trabalzini L, Retta SF. Identification of the Kelch family protein Nd1-L as a novel molecular interactor of KRIT1. PLoS One. 2012;7:e44705. https://doi.org/10.1371/journal.pone.0044705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Choquet H, Pawlikowska L, Lawton MT, Kim H. Genetics of cerebral cavernous mal-formations: current status and future prospects. J Neurosurg Sci. 2015;59:211–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Riant F, Bergametti F, Ayrignac X, Boulday G, Tournier-Lasserve E. Recent insights into cerebral cavernous malformations: the molecular genetics of CCM. FEBS J. 2010;277:1070–5. https://doi.org/10.1111/j.1742-4658.2009.07535.x.

    Article  CAS  PubMed  Google Scholar 

  86. Petit N, Baicon A, Denier C, Tournier-Lasserve E. Patterns of expression of the three cerebral cavernous malformation (CCM) genes during embryonic and postnatal brain development. Gene Expr Patterns. 2006;6:495–503. https://doi.org/10.1016/j.modgep.2005.11.001.

    Article  CAS  PubMed  Google Scholar 

  87. Seker A, Pricola KL, Guclu B, Ozturk AK, Louvi A, Gunel M. CCM2 expression parallels that of CCM1. Stroke. 2006;37:518–23. https://doi.org/10.1161/01.STR.0000198835.49387.25.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang J, Rigamonti D, Dietz HC, Clatterbuck RE. Interaction between krit1 and malcavernin: implications for the pathogenesis of cerebral cavernous malformations. Neurosurgery. 2007;60:353–9;. discussion 359. https://doi.org/10.1227/01.NEU.0000249268.11074.83.

    Article  PubMed  Google Scholar 

  89. Zhang J, Carr C, Badr A. The cardiovascular triad of dysfunctional angiogenesis. Transl Stroke Res. 2011;2:339–45. https://doi.org/10.1007/s12975-011-0065-5.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hilder TL, Malone MH, Bencharit S, Colicelli J, Haystead TA, Johnson GL, Wu CC. Proteomic identification of the cerebral cavernous malformation signaling complex. J Proteome Res. 2007;6:4343–55. https://doi.org/10.1021/pr0704276.

    Article  CAS  PubMed  Google Scholar 

  91. Stockton RA, Shenkar R, Awad IA, Ginsberg MH. Cerebral cavernous malformations proteins inhibit rho kinase to stabilize vascular integrity. J Exp Med. 2010;207:881–96. https://doi.org/10.1084/jem.20091258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Uhlik MT, Temple B, Bencharit S, Kimple AJ, Siderovski DP, Johnson GL. Structural and evolutionary division of phosphotyrosine binding (PTB) domains. J Mol Biol. 2005;345:1–20. https://doi.org/10.1016/j.jmb.2004.10.038.

    Article  CAS  PubMed  Google Scholar 

  93. Harel L, Costa B, Tcherpakov M, Zapatka M, Oberthuer A, Hansford LM, Vojvodic M, Levy Z, Chen Z-Y, Lee FS, Avigad S, Yaniv I, Shi L, Eils R, Fischer M, Brors B, Kaplan DR, Fainzilber M. CCM2 mediates death signaling by the TrkA receptor tyrosine kinase. Neuron. 2009;63:585–91. https://doi.org/10.1016/j.neuron.2009.08.020.

    Article  CAS  PubMed  Google Scholar 

  94. Costa B, Kean MJ, Ast V, Knight JDR, Mett A, Levy Z, Ceccarelli DF, Badillo BG, Eils R, Kaunig R, Gingras A-C, Fainzilber M. STK25 protein mediates TrkA and CCM2 protein-dependent death in pediatric tumor cells of neural origin. J Biol Chem. 2012;287:29285–9. https://doi.org/10.1074/jbc.C112.345397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Uhlik MT, Abell AN, Johnson NL, Sun W, Cuevas BD, Lobel-Rice KE, Horne EA, Dell’Acqua ML, Johnson GL. Rac–MEKK3–MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nat Cell Biol. 2003;5:1104–10. https://doi.org/10.1038/ncb1071.

    Article  CAS  PubMed  Google Scholar 

  96. Zhou X, Izumi Y, Burg MB, Ferraris JD. Rac1/osmosensing scaffold for MEKK3 contributes via phospholipase C-ẟ1 to activation of the osmoprotective transcription factor NFAT5. Proc Natl Acad Sci. 2011;108:12155–60. https://doi.org/10.1073/pnas.1108107108.

    Article  PubMed  Google Scholar 

  97. Whitehead KJ, Chan AC, Navankasattusas S, Koh W, London NR, Ling J, Mayo AH, Drakos SG, Jones CA, Zhu W, Marchuk DA, Davis GE, Li DY. The cerebral cavernous malformation signaling pathway promotes vascular integrity via rho GTPases. Nat Med. 2009;15:177–84. https://doi.org/10.1038/nm.1911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li X, Zhang R, Zhang H, He Y, Ji W, Min W, Boggon TJ. Crystal structure of CCM3, a cerebral cavernous malformation protein critical for vascular integrity. J Biol Chem. 2010;285:24099–107. https://doi.org/10.1074/jbc.M110.128470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Berman JR, Kenyon C. Germ-cell loss extends C. elegans life span through regula-tion of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell. 2006;124:1055–68. https://doi.org/10.1016/j.cell.2006.01.039.

    Article  CAS  PubMed  Google Scholar 

  100. Lant B, Pal S, Chapman EM, Yu B, Witvliet D, Choi S, Zhao L, Albiges-Rizo C, Faurobert E, Derry WB. Interrogating the ccm-3 Gene Network. Cell Rep. 2018;24:2857–2868.e4. https://doi.org/10.1016/j.celrep.2018.08.039.

    Article  CAS  PubMed  Google Scholar 

  101. Rehain-Bell K, Love A, Werner ME, MacLeod I, Yates JR, Maddox AS. A sterile 20 family kinase and its co-factor CCM-3 regulate contractile ring proteins on germline inter-cellular bridges. Curr Biol. 2017;27:860–7. https://doi.org/10.1016/j.cub.2017.01.058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kean MJ, Ceccarelli DF, Goudreault M, Sanches M, Tate S, Larsen B, Gibson LCD, Derry WB, Scott IC, Pelletier L, Baillie GS, Sicheri F, Gingras A-C. Structure-function analysis of core Stripak proteins a signaling complex implicated in Golgi polarization. J Biol Chem. 2011;286:25065–75. https://doi.org/10.1074/jbc.M110.214486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Voss K, Stahl S, Schleider E, Ullrich S, Nickel J, Mueller TD, Felbor U. CCM3 interacts with CCM2 indicating common pathogenesis for cerebral cavernous malformations. Neurogenetics. 2007;8:249–56. https://doi.org/10.1007/s10048-007-0098-9.

    Article  CAS  PubMed  Google Scholar 

  104. Sugden PH, McGuffin LJ, Clerk A. SOcK, MiSTs, MASK and STicKs: the GCKIII (germinal Centre kinase III) kinases and their heterologous protein-protein interactions. Biochem J. 2013;454:13–30. https://doi.org/10.1042/BJ20130219.

    Article  CAS  PubMed  Google Scholar 

  105. Zhang M, Dong L, Shi Z, Jiao S, Zhang Z, Zhang W, Liu G, Chen C, Feng M, Hao Q, Wang W, Yin M, Zhao Y, Zhang L, Zhou Z. Structural mechanism of CCM3 heterodimerization with GCKIII kinases. Structure. 2013;21:680–8. https://doi.org/10.1016/j.str.2013.02.015.

    Article  CAS  PubMed  Google Scholar 

  106. Fidalgo M, Fraile M, Pires A, Force T, Pombo C, Zalvide J. CCM3/PDCD10 stabilizes GCKIII proteins to promote Golgi assembly and cell orientation. J Cell Sci. 2010;123:1274–84. https://doi.org/10.1242/jcs.061341.

    Article  CAS  PubMed  Google Scholar 

  107. Xu X, Wang X, Zhang Y, Wang D-C, Ding J. Structural basis for the unique heterodimeric assembly between cerebral cavernous malformation 3 and germinal center kinase III. Structure. 2013;21:1059–66. https://doi.org/10.1016/j.str.2013.04.007.

    Article  CAS  PubMed  Google Scholar 

  108. Zhang Y, Tang W, Zhang H, Niu X, Xu Y, Zhang J, Gao K, Pan W, Boggon TJ, Toomre D, Min W, Wu D. A network of interactions enables CCM3 and STK24 to coordinate UNC13D-driven vesicle exocytosis in neutrophils. Dev Cell. 2013;27:215–26. https://doi.org/10.1016/j.devcel.2013.09.021.

    Article  CAS  PubMed  Google Scholar 

  109. Dibble CF, Horst JA, Malone MH, Park K, Temple B, Cheeseman H, Barbaro JR, Johnson GL, Bencharit S. Defining the functional domain of programmed cell death 10 through its interactions with phosphatidylinositol-3,4,5-trisphosphate. PLoS One. 2010;5:e11740. https://doi.org/10.1371/journal.pone.0011740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li X, Ji W, Zhang R, Folta-Stogniew E, Min W, Boggon TJ. Molecular recognition of leucine-aspartate repeat (LD) motifs by the focal adhesion targeting homology domain of cerebral cavernous malformation 3 (CCM3). J Biol Chem. 2011;286:26138–47. https://doi.org/10.1074/jbc.M110.211250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Goudreault M, DAmbrosio LM, Kean MJ, Mullin MJ, Larsen BG, Sanchez A, Chaudhry S, Chen GI, Sicheri F, Nesvizhskii AI, Aebersold R, Raught B, Gingras A-C. A PP2A phosphatase high density interaction network identifies a novel Striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol Cell Proteomics. 2009;8:157–71. https://doi.org/10.1074/mcp.M800266-MCP200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. He Y, Zhang H, Yu L, Gunel M, Boggon TJ, Chen H, Min W. Stabilization of VEGFR2 signaling by cerebral cavernous malformation 3 is critical for vascular development. Sci Signal. 2010;3:ra26. https://doi.org/10.1126/scisignal.2000722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fidalgo M, Guerrero A, Fraile M, Iglesias C, Pombo CM, Zalvide J. Adaptor protein cerebral cavernous malformation 3 (CCM3) mediates phosphorylation of the cytoskeletal proteins Ezrin/radixin/Moesin by mammalian Ste20-4 to protect cells from oxidative stress. J Biol Chem. 2012;287:11556–65. https://doi.org/10.1074/jbc.M111.320259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Leiling C, Gamze T, Hiroko Y, Robert F, Angeliki L, Murat G. Apoptotic functions of PDCD10/CCM3, the gene mutated in cerebral cavernous malformation 3. Stroke. 2009;40:1474–81. https://doi.org/10.1161/STROKEAHA.108.527135.

    Article  Google Scholar 

  115. Lin C, Meng S, Zhu T, Wang X. PDCD10/CCM3 acts downstream of Îẟ-Protocadherins to regulate neuronal survival. J Biol Chem. 2010;285:41675–85. https://doi.org/10.1074/jbc.M110.179895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhu Y, Wu Q, Xu J-F, Miller D, Sandalcioglu IE, Zhang J-M, Sure U. Differential angiogenesis function of CCM2 and CCM3 in cerebral cavernous malformations. Neurosurg Focus. 2010;29:E1. https://doi.org/10.3171/2010.5.FOCUS1090.

    Article  PubMed  Google Scholar 

  117. Louvi A, Chen L, Two AM, Zhang H, Min W, GÃijnel M. Loss of cerebral cavernous malformation 3 (Ccm3) in neuroglia leads to CCM and vascular pathology. Proc Natl Acad Sci. 2011;108:3737–42. https://doi.org/10.1073/pnas.1012617108.

    Article  PubMed  Google Scholar 

  118. You C, Sandalcioglu IE, Dammann P, Felbor U, Sure U, Zhu Y. Loss of CCM3 impairs DLL4-Notch signalling: implication in endothelial angiogenesis and in inherited cerebral cavernous malformations. J Cell Mol Med. 2013;17:407–18. https://doi.org/10.1111/jcmm.12022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondřej Bradáč .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mládek, A., Skalický, P., Beneš, V., Bradáč, O. (2020). Molecular Biology of CCM. In: Bradáč, O., Beneš, V. (eds) Cavernomas of the CNS. Springer, Cham. https://doi.org/10.1007/978-3-030-49406-3_3

Download citation

Publish with us

Policies and ethics