Skip to main content

A Multi-Scale Continuum View on Granular Flows

  • Chapter
  • First Online:
Views on Microstructures in Granular Materials

Part of the book series: Advances in Mechanics and Mathematics ((ACM,volume 44))

  • 428 Accesses

Abstract

We review some results related to a nonstandard view on the role of fluctuations in granular flows. The analysis underlines how we can move the boundary between what we intend to be mechanics and what we consider to be thermodynamics, depending on the details we involve in the description of body morphology and related motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Becker V., Kassner K. (2015), Protocol-independent granular temperature supported by numerical simulations, Phys. Rev. E. Stat. Nonlin. Soft Matter Phys., 92, art. 052201 (1–15).

    Google Scholar 

  2. Blumenfeld R., Edwards S. F. (2009), On granular stress statistics: compactivity, angoricity, and some open issues, J. Phys. Chem., 113, 3981–3987.

    Article  Google Scholar 

  3. Brocato M., Capriz G. (2011), Clockwork, ephemeral and hybrid continua, Phys. Mesomech., 14, 124–144.

    Google Scholar 

  4. Capriz G. (2003), Elementary preamble to a theory of granular gases, Rend. Mat. Univ. Padova, 110, 179–198.

    MathSciNet  MATH  Google Scholar 

  5. Capriz G. (2006), Pseudofluids, in Material substructures in complex bodies: from atomic level to continuum, G. Capriz and P. M. Mariano Eds, Elsevier, pp. 238–261.

    Google Scholar 

  6. Capriz G. (2008), On ephemeral continua, Phys. Mesomech., 11, 285–298.

    Article  Google Scholar 

  7. Capriz G., Giovine P. (2016), Hypocontinua, in Continuum Media with Microstructure 2, B. Albers and M. Kuczma Eds, Springer Verlag, Berlin, pp. 23–43.

    Chapter  Google Scholar 

  8. Capriz G., Giovine P. (2017), Classes of ephemeral continua, Math. Meth. Appl. Sci., 43, 1175–1196.

    MathSciNet  MATH  Google Scholar 

  9. Capriz G., Mariano P. M. (2014), Objective fluxes in a multiscale continuum description of sparse medium dynamics, Phys. A , 415, 354–365.

    Article  MathSciNet  MATH  Google Scholar 

  10. Capriz G., Mariano P. M. (2018), Multi-scale kinetic description of granular clusters: invariance, balance, and temperature, Cont. Mech. Thermodyn., 30, 1323–1342.

    Article  MathSciNet  MATH  Google Scholar 

  11. Capriz G., Mariano P. M. (2019), Interactions in a multi-scale representation of sparse media: from mechanics to thermodynamics, J. Elast., 135, 91–115.

    Article  MathSciNet  MATH  Google Scholar 

  12. Chipot M. M. (2000), Elements of nonlinear analysis, Birkhäuser Verlag, Basel, 2000.

    Google Scholar 

  13. Dafermos C. M. (2016), Hyperbolic conservation laws in continuum physics, Springer Verlag, Berlin.

    Book  MATH  Google Scholar 

  14. de Gennes P. G. (1999), Granular matter: a tentative view, Rev. Mod. Phys., 71, S374-S382.

    Article  Google Scholar 

  15. Goddard J. D. (2008), A weakly nonlocal anisotropic fluid model for inhomogeneous Stokesian suspensions, Phys. Fluids, 20, paper n. 040601-(1-16).

    Google Scholar 

  16. Edwards S. F., Oakeshott R. B. S. (1989), Theory of powders, Phys. A, 157, 1080–1090.

    Article  MathSciNet  Google Scholar 

  17. Goldhirsch I. (2008), Introduction to granular temperature, Powder Tech., 182, 130–136.

    Article  Google Scholar 

  18. Grmela M. (2017), Externally driven macroscopic systems: dynamics versus thermodynamics, J. Stat. Phys., 166, 282–316.

    Article  MathSciNet  MATH  Google Scholar 

  19. Henkes S., Chakraborty B. (2009), Statistical mechanics framework for static granular matter, Phys. Rev. E. Stat. Nonlin. Soft Matter Phys., 79, 061301-1/19.

    Article  MathSciNet  Google Scholar 

  20. Henkes S., O’Hern C. S., Chakraborty B. (2007), Entropy and temperature of a static granular assembly: an ab initio approach, Phys. Rev. Lett., 99, 038002-1/4.

    Article  Google Scholar 

  21. Mariano P. M. (2020), Flows of suspended grains: mixing a sparse phase with simple and complex continua, Int. J. Solids Struct., 187, 141–161.

    Article  Google Scholar 

  22. Naudts J., van der Straeten E. (2004), The grand canonical ensemble in generalized thermostatistics, J. Stat. Mech. Theor. Exp., P12002.

    Google Scholar 

  23. Phan-Thien N. (1995), Constitutive equation for concentrated suspensions in Newtonian liquids, J. Rheol., 39, 679–695.

    Article  Google Scholar 

  24. Truesdell C. A. (1977), A first course in rational continuum mechanics, Academic Press, New York.

    MATH  Google Scholar 

  25. Truesdell C. A., Muncaster R. G. (1980), Fundamentals of Maxwell’s kinetic theory of a simple monatomic gas. Treated as a branch of rational mechanics. Academic Press, New York-London.

    Google Scholar 

Download references

Acknowledgements

I wish to thank Gianfranco Capriz for bringing my attention toward this topic—in particular his new way of looking at the continuum modeling of sparse (dense) phase dynamics—with several illuminating discussions.

This work has been developed within the activities of the research group in “Theoretical Mechanics” of the “Centro di Ricerca Matematica Ennio De Giorgi” of the Scuola Normale Superiore in Pisa. The support of GNFM-INDAM is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Maria Mariano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mariano, P.M. (2020). A Multi-Scale Continuum View on Granular Flows. In: Giovine, P., Mariano, P.M., Mortara, G. (eds) Views on Microstructures in Granular Materials. Advances in Mechanics and Mathematics(), vol 44. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-49267-0_11

Download citation

Publish with us

Policies and ethics