Skip to main content
Log in

Externally Driven Macroscopic Systems: Dynamics Versus Thermodynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Experience collected in mesoscopic dynamic modeling of externally driven systems indicates absence of potentials that could play role of equilibrium or nonequilibrium thermodynamic potentials yet their thermodynamics-like modeling is often found to provide a good description, good understanding, and predictions that agree with results of experimental observations. This apparent contradiction is explained by noting that the dynamic and the thermodynamics-like investigations on a given mesoscopic level of description are not directly related. Their relation is indirect. They both represent two aspects of dynamic modeling on a more microscopic level of description. The thermodynamic analysis arises in the investigation of the way the more microscopic dynamics reduces to the mesoscopic dynamics (reducing dynamics) and the mesoscopic dynamic analysis in the investigation of the result of the reduction (reduced dynamics).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.: Sur la géometrie différentielle des groupes de Lie de dimension infini et ses applications dans l hydrodynamique des fluides parfaits. Annales de l Institut Fourier (1966)

  2. Beretta, C.: Steepest entropy ascent model for far-nonequilibrium thermodynamics: unified implementation of the maximum entropy production principle. Phys. Rev. E 90(4), 042113 (2014). doi:10.1103/PhysRevE.90.042113

    Article  ADS  Google Scholar 

  3. Beris, A.N., Edwards, B.J.: Thermodynamics of Flowing Systems. Oxford University Press, Oxford (1994)

    Google Scholar 

  4. Cahn, J., Hilliard, J.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  ADS  Google Scholar 

  5. Callen, H.: Thermodynamics: An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics. Wiley, Hoboken (1960)

    MATH  Google Scholar 

  6. Cattaneo, C.: Sulla conduzione del calore, Atti del Seminario Matematico e Fisico della Universita di Modena 3, 83101 (1948) (in Italian)

  7. Clebsch, A.: Über die Integration der Hydrodynamische Gleichungen. Journal für die reine und angewandte Mathematik 56, 1–10 (1859)

    Article  Google Scholar 

  8. Cross, M.C., Hohenberg, P.C.: Pattern formation outside equilibrium. Rev. Mod. Phys. 65(3), 851 (1993)

    Article  ADS  Google Scholar 

  9. Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation. Invent. Math. 159(2), 245–316 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Dzyaloshinski, I.E., Volovick, G.E.: Poisson brackets in condense matter physics. Ann. Phys. (NY) 125(1), 67–97 (1980)

    Article  ADS  Google Scholar 

  11. Favis, B.D., Chalifoux, J.P.: The effect of viscosity ratio on the morphology of polypropylene/polycarbonate blends during processing. Poly. Eng. Sci. 27, 1591–1600 (1987)

    Article  Google Scholar 

  12. Ginzburg, V., Landau, L.: On the theory of superconductivity. Zhur. Eksp. Theor. Fiz. 20, 1064–1082 (1950)

    Google Scholar 

  13. Gorban, A.N., Karlin, I.V.: Invariant Manifolds for Physical and Chemical Kinetics. Lecture Notes in Physics, vol. 660. Springer, Berlin (2005)

    MATH  Google Scholar 

  14. Gorban, A.N., Karlin, I.V.: Hilberts 6th problem: exact and approximate hydrodynamic manifolds for kinetic equations. Bull. Am. Math. Soc. 51(2), 187–246 (2014). doi:10.1090/S0273-0979-2013-01439-3

    Article  MathSciNet  MATH  Google Scholar 

  15. Grad, H.: On Boltzmanns H-theorem. J. Soc. Ind. Appl. Math. 13(1), 259–277 (1965)

    Article  MathSciNet  Google Scholar 

  16. Grmela, M.: Kinetic equation approach to phase transitions. J. Stat. Phys. 3, 347–364 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  17. Grmela, M.: Onsager’s symmetry in higher order fluid dynamics. Helv. Phys. Acta 50, 393–406 (1977)

    MathSciNet  Google Scholar 

  18. Grmela, M.: Particle and bracket formulations of kinetic equations. Contemp. Math. 28, 125–132 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grmela, M.: Bracket formulation of diffusion-convection equations. Physica D 21, 179 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Grmela, M.: Reciprocity relations in thermodynamics. Physica A 309(3), 304–328 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Grmela, M.: Multiscale equilibrium and nonequilibrium thermodynamics in chemical engineering. Adv. Chem. Eng. 39, 75 (2010)

    Article  Google Scholar 

  22. Grmela, M.: Fluctuations in extended mass-action-law dynamics. Physica D 241, 976–986 (2012)

    Article  ADS  MATH  Google Scholar 

  23. Grmela, M.: Geometry of mesoscopic nonequilibrium thermodynamics. Entropy 17, 5938–5964 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Grmela, M., Öttinger, H.C.: Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56, 6620 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  25. Grmela, M., Klika, V., Pavelka, M.: Reductions and extensions in mesoscopic dynamics. Phys. Rev. E 92(3), 032111 (2015)

    Article  ADS  Google Scholar 

  26. Jordhamo, G.M., Manson, J.A., Sperling, L.H.: Phase continuity and inversion in polymer blends and simultaneous interpenetrating networks. Poly. Eng. Sci. 26, 517–524 (1986)

    Article  Google Scholar 

  27. Jou, D., Casas-Vzquez, J., Lebon, G.: Extended Irreversible Thermodynamics, 4th edn. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  28. Kaufman, A.N.: Dissipative Hamiltonian systems: a unifying principle. Phys. Lett. A 100, 419–422 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  29. Keizer, J.: On the kinetic meaning of the second law of thermodynamics. J. Chem. Phys. 64, 4466–4474 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  30. Lucia, U., Grazzini, G.: Second law today: using maximum-minimum entropy generation. Entropy 17, 778–7797 (2015)

    Google Scholar 

  31. Marsden, J., Weinstein, A.: Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids. Physica D 7, 305–323 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Morrison, P.J.: Bracket formulation for irreversible classical fields. Phys. Lett. A 100, 423–427 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  33. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer, New York (1998)

    Book  MATH  Google Scholar 

  34. Öttinger, H.C.: Beyond Equilibrium Thermodynamics. Wiley, New York (2005)

    Book  Google Scholar 

  35. Öttinger, H.C., Grmela, M.: Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E 56, 6633 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  36. Pavelka, M., Klika, V., Grmela, M.: Time reversal in nonequilibrium thermodynamics. Phys. Rev. E 92, 032111 (2015)

    ADS  Google Scholar 

  37. Prigogine, I.: Thermodynamics of Irreversible Processes. Wiley, New York (1955)

    MATH  Google Scholar 

  38. Pëschel, T., Brilliantov, N.V. (eds.): Granular Gas Dynamics. Lecture Notes in Physics, vol. 624. Springer, Berlin (2003)

    Google Scholar 

  39. Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics Beyond the Monoatomic Gas. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Natural Sciences and Engineering Research Council of Canada. Funding was provided by Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (06504 CRSNG, 462034-2014 CRSNG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Grmela.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grmela, M. Externally Driven Macroscopic Systems: Dynamics Versus Thermodynamics. J Stat Phys 166, 282–316 (2017). https://doi.org/10.1007/s10955-016-1694-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1694-6

Keywords

Navigation