Skip to main content

Crystallization and Rheological Properties of Milk Fat

  • Chapter
  • First Online:
Advanced Dairy Chemistry, Volume 2

Abstract

Milk fat is semi-solid in nature due to the presence of a large proportion of high melting triacylglycerols (TAGs). These TAGs form crystalline structures at room temperature, resulting in a network that confines the lower melting TAGs (in liquid state) within. Milk fat contains many different TAG species, each with its own melting temperature, resulting in a wide range of plasticity where both solid and liquid fats are present. The principal determinant of the consistency of semi-solid fats is the ratio of solid to liquid fat at a given temperature. Also important are the microstructure of the milk fat crystals and the spatial distribution of the solids within the network. These variables can be used to describe the rheological behaviour of milk fat and the differences that occur when samples have different compositions, are tested at different temperatures, or after modifying processing parameters, such as cooling rate or the application of shear. More variables must also be accounted for when discussing milk fat contained within food matrices, including ice cream, cheeses and baked goods. Overall, studying the relationships between milk fat composition, crystallization, structure, rheology and texture allows for a greater understanding of milk fat and containing products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Acevedo, N. C. & Marangoni, A. G. (2010). Characterization of the nanoscale in triacylglycerol crystal networks. Crystal Growth & Design, 10, 3327–3333.

    Article  CAS  Google Scholar 

  • Acevedo, N. C., Block, J. M. & Marangoni, A. G. (2012). Critical laminar shear-temperature effects on the nano- and mesoscale structure of a model fat and its relationship to oil binding and rheological properties. Faraday Discussions, 158, 171–194.

    Article  CAS  PubMed  Google Scholar 

  • AOCS. (2017a). Official methods and recommended practices of the American Oil Chemists’ Society (7th ed.). Urbana: AOCS Press. Method Cc16-60.

    Google Scholar 

  • AOCS. (2017b). Official methods and recommended practices of the American Oil Chemists’ Society (7th ed.). Urbana: AOCS Press. Method Cd 16b-93.

    Google Scholar 

  • Arul, J., Boudreau, A., Makhlouf, J., Tardif, R. & Bellavia, T. (1988). Fractionation of anhydrous milk fat by short-path distillation. Journal of the American Oil Chemists' Society, 65, 1642–1646.

    Article  CAS  Google Scholar 

  • Ashes, J. R., Gulati, S. K. & Scott, T. W. (1997). Potential to Alter the content and composition of milk fat through nutrition. Journal of Dairy Science, 80, 2204–2212.

    Article  CAS  PubMed  Google Scholar 

  • Awad, T.S., Rogers, M.A. & Marangoni, A.G. (2004). Scaling behavior of the elastic modulus in colloidal networks of fat crystals. Journal of Physical Chemistry B, 108, 171–179.

    Google Scholar 

  • Balcao, V. M. & Malcata, F. X. (1998). Lipase catalyzed modification of milkfat. Biotechnology Advances, 16, 309–341.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin, R. R., Baldry, R. P. & Johansen, R. G. (1972). Fat systems for bakery products. Journal of the American Oil Chemists’ Society, 49, 473–477.

    Article  CAS  Google Scholar 

  • Beaulieu, A. & Palmquist, D. (1995). Differential effects of high fat diets on fatty acid composition in milk of Jersey and Holstein cows. Journal of Dairy Science, 78, 1336–1344.

    Article  CAS  PubMed  Google Scholar 

  • Berti, J., Grosso, N. R., Fernandez, H., Pramparo, C. & Gayol, M. F. (2018). Sensory quality of milk fat with low cholesterol content fractioned by molecular distillation. Journal of the Science of Food and Agriculture, 98, 3478–3484.

    Article  CAS  PubMed  Google Scholar 

  • Boistelle, R. (1988). Fundamentals of nucleation and crystal growth. In N. Garti & K. Sato (Eds.), Crystallization and polymorphism of fats and fatty acids (pp. 189–226). New York: Marcel Dekker.

    Google Scholar 

  • Breitschuh, B. & Windhab, E. J. (1998). Parameters influencing cocrystallization and polymorphism in milk fat. Journal of the American Oil Chemists’ Society, 75, 897–904.

    Article  CAS  Google Scholar 

  • Brighenti, M., Govindasamy-Lucey, S., Lim, K., Nelson, K. & Lucey, J. A. (2008). Characterization of the rheological, textural, and sensory properties of samples of commercial US cream cheese with different fat contents. Journal of Dairy Science, 91, 4501–4517.

    Article  CAS  PubMed  Google Scholar 

  • Buldo, P. & Wiking, L. (2012). The role of mixing temperature on microstructure and rheological properties of butter blends. Journal of the American Oil Chemists’ Society, 89, 787–795.

    Article  CAS  Google Scholar 

  • Buldo, P., Kirkensgaard, J. J. K. & Wiking, L. (2013). Crystallization mechanisms in cream during ripening and initial butter churning. Journal of Dairy Science, 96, 6782–6791.

    Article  CAS  PubMed  Google Scholar 

  • Campos, R., Narine, S. S. & Marangoni, A. G. (2002). Effect of cooling rate on the structure and mechanical properties of milk fat and lard. Food Research International, 35, 971–981.

    Article  CAS  Google Scholar 

  • Campos, R. J., Litwinenko, J. W. & Marangoni, A. G. (2003). Fractionation of milk fat by short-path distillation. Journal of Dairy Science, 86, 735–745.

    Article  CAS  PubMed  Google Scholar 

  • Caroprese, M., Marzano, A., Marino, R., Gliatta, G., Muscio, A. & Sevi, A. (2010). Flaxseed supplementation improves fatty acid profile of cow milk. Journal of Dairy Science, 93, 2580–2588.

    Article  CAS  PubMed  Google Scholar 

  • Chapman, D. (1961). The polymorphism of glycerides. Chemical Reviews, 62, 433–456.

    Article  Google Scholar 

  • Cisneros, A., Mazzanti, G., Campos, R. & Marangoni, A. G. (2006). Polymorphic transformation in mixtures of high- and low-melting fractions of milk fat. Journal of Agricultural and Food Chemistry, 54, 6030–6033.

    Article  CAS  PubMed  Google Scholar 

  • Collomb, M., Ueli, B., Sieber, R., Jeangros, B. & Bosset, J. (2002). Composition of fatty acids in cow’s milk fat produced in the lowlands, mountains and highlands of Switzerland using high-resolution gas chromatography. International Dairy Journal, 12, 649–659.

    Article  CAS  Google Scholar 

  • Coupland, J. N. (2002). Crystallization in emulsions. Current Opinion in Colloid & Interface Science, 7, 445–450.

    Article  CAS  Google Scholar 

  • de Man, J. M. & Wood, F. (1959). Hardness of butter II. Influence of setting. Journal of Dairy Science, 42, 56–61.

    Article  Google Scholar 

  • De, B. K., Hakimji, M., Patel, A., Sharma, D., Desai, H. & Kumar, T. (2007). Plastic fats and margarines through fractionation, blending and interesterification of milk fat. European Journal of Lipid Science and Technology, 109, 32–37.

    Article  CAS  Google Scholar 

  • DeMan, J. M. & Beers, A. M. (1987). Fat crystal networks: Structure and rheological properties. Journal of Texture Studies, 18, 303–318.

    Article  Google Scholar 

  • DeMan, L., DeMan, J. M. & Blackman, B. (1991). Physical and textural characteristics of some North American shortenings. Journal of the American Oil Chemists’ Society, 68, 63–69.

    Article  CAS  Google Scholar 

  • Diener, R. G. & Heldman, D. R. (1968). Methods of determining rheological properties of butter. Transactions of ASAE, 11, 444–447.

    Article  Google Scholar 

  • Dixon, B. & Williams, T. (1977). Measurement of butter firmness by sectility testing. Australian Journal of Dairy Technology, 32, 177–179.

    Google Scholar 

  • Elliott, J. & Ganz, A. (1971). Modification of food characteristics with cellulose hydrocolloids. I: Rheological characterization of an organoleptic property (unctuousness). Journal of Texture Studies, 2, 220–229.

    Article  CAS  PubMed  Google Scholar 

  • Elliott, J. & Green, C. (1972). Modification of food characteristics with cellulose hydrocolloids. II: The modified bingham body – A useful rheological model. Journal of Texture Studies, 3, 194–205.

    Article  Google Scholar 

  • Fredrick, E., Van de Walle, D., Walstra, P., Zijtveld, J. H., Fischer, S., Van Der Meeren, P. & Dewettinck, K. (2011). Isothermal crystallization behaviour of milk fat in bulk and emulsified state. International Dairy Journal, 21, 685–695.

    Article  CAS  Google Scholar 

  • Frydenberg R.P., Hammershøj M., Andersen U. & Wiking L. (2013). Ultrasonication affects crystallization mechanisms and kinetics of anhydrous milk fat. Crystal growth & design, 13, 5375–5382.

    Google Scholar 

  • Garside, J. (1987). General principles of crystallization. In J. M. W. Blanshard & P. Lillford (Eds.), Food structure and behavior; food and technology: A series of monographs. Cambridge, MA: Academic.

    Google Scholar 

  • Gliguem, H., Ghorbel, D., Lopez, C., Michon, C., Ollivon, M. & Lesieur, P. (2009). Crystallization and polymorphism of triacylglycerols contribute to the rheological properties of processed cheese. Journal of Agriculture and Food Research, 57, 3195–3203.

    CAS  Google Scholar 

  • Gliguem, H., Lopez, C., Michon, C., Lesieur, P. & Ollivon, M. (2011). The viscoelastic properties of processed cheeses depend on their thermal history and fat polymorphism. Journal of Agricultural and Food Chemistry, 59, 3125–3134.

    Article  CAS  PubMed  Google Scholar 

  • Grall, D. S. & Hartel, R. W. (1992). Kinetics of butterfat crystallization. Journal of the American Oil Chemists’ Society, 69, 741–747.

    Article  CAS  Google Scholar 

  • Haighton, A. (1959). The measurement of the hardness of margarine and fats with cone penetrometers. Journal of the American Oil Chemists’ Society, 36, 345–348.

    Article  CAS  Google Scholar 

  • Hayakawa, M. & DeMan, J. (1982). Interpretation of cone penetrometer consistency measurements of fats. Journal of Texture Studies, 13, 201–210.

    Article  CAS  Google Scholar 

  • Heck, J. M. L., van Valenberg, H. J. F., Dijkstra, J. & van Hooijdonk, A. C. M. (2009). Seasonal variation in the Dutch bovine raw milk composition. Journal of Dairy Science, 92, 4745–4755.

    Article  CAS  PubMed  Google Scholar 

  • Herrera, M. L. & Hartel, R. W. (2000a). Effect of processing conditions on physical properties of a milk fat model system: Microstructure. Journal of the American Oil Chemists’ Society, 77, 1197–1205.

    Article  CAS  Google Scholar 

  • Herrera, M. L. & Hartel, R. W. (2000b). Effect of processing conditions on physical properties of a milk fat model system: Rheology. Journal of the American Oil Chemists’ Society, 77, 1189–1196.

    Article  CAS  Google Scholar 

  • Herrera, M. L. & Hartel, R. W. (2000c). Effect of processing conditions on crystallization kinetics of a milk fat model system. Journal of the American Oil Chemists’ Society, 77, 1177–1188.

    Article  CAS  Google Scholar 

  • Herrera, M. L., de Leon Gatti, M. & Hartel, R. W. (1999). A kinetic analysis of crystallization of a milk fat model system. Food Research International, 32, 289–298.

    Article  CAS  Google Scholar 

  • Himawan, C., Starov, V. M. & Stapley, A. G. F. (2006). Thermodynamic and kinetic aspects of fat crystallization. Advances in Colloid and Interface Science, 122, 3–33.

    Article  CAS  PubMed  Google Scholar 

  • Hurtaud, C. & Peyraud, J. L. (2007). Effects of feeding Camelina (seeds or meal) on milk fatty acid composition and butter spreadability. Journal of Dairy Science, 90, 5134–5145.

    Article  CAS  PubMed  Google Scholar 

  • Hyun, K., Wilhelm, M., Klein, C. O., Soo Cho, K., Gun Nam, J., Hyun Ahn, K., Jong Lee, S., Ewoldt, R. H. & McKinley, G. H. (2011). A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Progress in Polymer Science, 36, 1697–1753.

    Article  CAS  Google Scholar 

  • Illingworth, D. (2002). Fractionation of fats. In A. G. Marangoni & S. S. Narine (Eds.), Physical properties of lipids (pp. 411–447). New York: Marcel Dekker.

    Google Scholar 

  • Jensen, R. G. (2002). The composition of bovine milk lipids: January 1995 to December 2000. Journal of Dairy Science, 85, 295–350.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, R. G., Ferris, A. M. & Lammi-Keefe, C. J. (1991). The composition of milk fat. Journal of Dairy Science, 74, 3228–3243.

    Article  CAS  PubMed  Google Scholar 

  • Kalač, P. & Samková, E. (2010). The effects of feeding various forages on fatty acid composition of bovine milk fat: A review. Czech Journal of Animal Science, 55, 521–537.

    Article  Google Scholar 

  • Kalo, P., Vaara, K. & Antila, M. (1986). Changes in triglyceride composition and melting properties of butter fat solid fraction/rapeseed oil mixtures induced by lipase catalysed inter-esterification. Fette, Seifen, Anstrichmittel, 88, 362–365.

    Article  CAS  Google Scholar 

  • Kamel, B. S. & DeMan, J. (1975). Measurement of fat consistency by the penetration method. Canadian Institute of Food Science and Technology, 8, 117–121.

    Article  Google Scholar 

  • Kaylegian, K. E. (1999). The production of specialty milk fat ingredients. Journal of Dairy Science, 82, 1433–1439.

    Article  CAS  Google Scholar 

  • Kaylegian, K. E. & Lindsay, R. C. (1992). Performance of selected milk fat fractions in cold-spreadable butter. Journal of Dairy Science, 75, 3307–3317.

    Article  CAS  PubMed  Google Scholar 

  • Kelsey, J. A., Corl, B. A., Collier, R. J. & Bauman, D. E. (2003). The effect of breed, parity, and stage of lactation on conjugated linoleic acid (CLA) in milk fat from dairy cows. Journal of Dairy Science, 86, 2588–2597.

    Article  CAS  PubMed  Google Scholar 

  • Kloek, W., Van Vliet, T. & Walstra, P. (2005). Large deformation behavior of fat crystal networks. Journal of Texture Studies, 36, 516–543.

    Article  Google Scholar 

  • Knoester, M., De Bruyne, P. & Van den Tempel, M. (1968). Crystallization of triglycerides at low supercooling. Journal of Crystal Growth, 3, 776–780.

    Article  Google Scholar 

  • Larsen, M. K., Andersen, K. K., Kaufmann, N. & Wiking, L. (2014). Seasonal variation in the composition and melting behavior of milk fat. Journal of Dairy Science, 97, 4703–4712.

    Article  CAS  PubMed  Google Scholar 

  • Lawler, P. J. & Dimick, P. S. (2008). Crystallization and polymorphism of fats. In C. Akoh & D. Min (Eds.), Food lipids: Chemistry, nutrition and biotechnology (3rd ed., pp. 245–263). New York: Marcel Dekker.

    Google Scholar 

  • Lázaro, R., Viriato, S., Queirós, M. D. S., Isabel, M., Neves, L., Paula, A., Ribeiro, B. & Gigante, M. L. (2019). Improvement in the functionality of spreads based on milk fat by the addition of low melting triacylglycerols. Food Research International, 120, 432–440.

    Article  CAS  Google Scholar 

  • Lee, J. & Martini, S. (2018). Effect of cream aging temperature and agitation on butter properties. Journal of Dairy Science, 101, 7724–7735.

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre, J. (1983). Finished product formulation. Journal of the American Oil Chemists’ Society, 60, 295–300.

    Article  CAS  Google Scholar 

  • Lindmark Månsson, H. (2008). Fatty acids in bovine milk fat. Food & Nutrition Research, 52, 1821.

    Article  Google Scholar 

  • Liu, S., Zhang, R., Kang, R., Meng, J. & Ao, C. (2016). Milk fatty acids profiles and milk production from dairy cows fed different forage quality diets. Animal Nutrition, 2, 329–333.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lock, A. L. & Bauman, D. E. (2004). Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids, 39, 1197–1206.

    Article  CAS  PubMed  Google Scholar 

  • Lock, A. L. & Garnsworthy, P. C. (2003). Seasonal variation in milk conjugated linoleic acid and D 9-desaturase activity in dairy cows. Livestock Production Science, 79, 47–59.

    Article  Google Scholar 

  • Lopez, C., Lavigne, F., Lesieur, P., Bourgaux, C. & Ollivon, M. (2001). Thermal and structural behavior of milk fat: 1. Unstable species of anhydrous milk fat. Journal of Dairy Science, 84, 756–766.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C., Bourgaux, C., Lesieur, P., Bernadou, S. & Ollivon, M. (2002). Thermal and structural behavior of milk fat 3. Influence of cooling rate and droplet size on cream crystallization. Journal of Colloid and Interface Science, 78, 64–78.

    Google Scholar 

  • Lopez, C., Lesieur, P., Bourgaux, C. & Ollivon, M. (2005). Thermal and structural behavior of anhydrous milk fat. 3. Influence of cooling rate. Journal of Dairy Science, 88, 511–526.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C., Briard-Bion, V., Camier, B. & Gassi, J.-Y. (2006). Milk fat thermal properties and solid fat content in Emmental cheese: A differential scanning calorimetry study. Journal of Dairy Science, 89, 2894–2910.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C., Bourgaux, C., Lesieur, P. & Ollivon, M. (2007). Coupling of time-resolved synchrotron X-ray diffraction and DSC to elucidate the crystallisation properties and polymorphism of triglycerides in milk fat globules. Le Lait, 87, 459–480.

    Article  CAS  Google Scholar 

  • Lopez, C., Briard-Bion, V., Beaucher, E. & Ollivon, M. (2008). Multiscale characterization of the organization of triglycerides and phospholipids in Emmental cheese: From the microscopic to the molecular level. Journal of Agricultural and Food Chemistry, 56, 2406–2414.

    Article  CAS  PubMed  Google Scholar 

  • Macias-Rodriguez, B. A. (2018). Nonlinear rheology of fats using large amplitude oscillatory shear tests. In A. G. Marangoni (Ed.), Structure-function analysis of edible fats (2nd ed., pp. 169–196). London: AOCS Press.

    Google Scholar 

  • Macias-Rodriguez, B. A. & Marangoni, A. G. (2016a). Physicochemical and rheological characterization of roll-in shortenings. Journal of the American Oil Chemists’ Society, 93, 575–585.

    Article  CAS  Google Scholar 

  • Macias-Rodriguez, B. A. & Marangoni, A. G. (2016b). Rheological characterization of triglyceride shortenings. Rheologica Acta, 55, 767–779.

    Article  CAS  Google Scholar 

  • Macias-rodriguez, B. A., Peyronel, F. & Marangoni, A. G. (2017). The role of nonlinear viscoelasticity on the functionality of laminating shortenings. Journal of Food Engineering, 212, 87–96.

    Article  CAS  Google Scholar 

  • Maleky, F. & Marangoni, A. G. (2008). Process development for continuous crystallization of fat under laminar shear. Journal of Food Engineering, 89, 399–407.

    Article  Google Scholar 

  • Maleky, F., Smith, A. K. & Marangoni, A. G. (2011). Laminar shear effects on crystalline alignments and nanostructure of a triacylglycerol crystal network. Crystal Growth & Design, 11, 2335–2345.

    Article  CAS  Google Scholar 

  • Mansbridge, R. & Blake, J. (1997). Nutritional factors affecting the fatty acid composition of bovine milk. British Journal of Nutrition, 78, S37–S47.

    Article  CAS  Google Scholar 

  • Marangoni, A. G. (1998). On the use and misuse of the Avrami equation in characterization of the kinetics of fat crystallization. Journal of the American Oil Chemists’ Society, 75, 1465–1467.

    Article  CAS  Google Scholar 

  • Marangoni, A. G. (2000). Elasticity of high-volume-fraction fractal aggregate networks: A thermodynamic approach. Physical Review B, 62, 13951–13955.

    Article  CAS  Google Scholar 

  • Marangoni, A. G. & Lencki, R. W. (1998). Ternary phase behavior of milk fat fractions. Journal of Agricultural and Food Chemistry, 46, 3879–3884.

    Article  CAS  Google Scholar 

  • Marangoni, A. G. & Mcgauley, S. E. (2003). Relationship between crystallization behavior and structure in cocoa butter. Crystal Growth & Design, 3, 95–108.

    Article  CAS  Google Scholar 

  • Marangoni, A. G. & Rogers, M. A. (2003). Structural basis for the yield stress in plastic disperse systems. Applied Physics Letters, 82, 3239–3241.

    Article  CAS  Google Scholar 

  • Marangoni, A. G. & Rousseau, D. (1996). Is plastic fat rheology governed by the fractal nature of the fat crystal network? Journal of the American Oil Chemists’ Society, 73, 991–994.

    Article  CAS  Google Scholar 

  • Marangoni, A. G. & Rousseau, D. (1998). Chemical and enzymatic modification of butterfat and butterfat-canola oil blends. Food Research International, 31, 595–599.

    Article  CAS  Google Scholar 

  • Marangoni, A. G. & Wesdorp, L. H. (2013a). Nucleation and crystalline growth kinetics. In A. G. Marangoni & L. H. Wesdorp (Eds.), Structure and properties of fat crystal networks (2nd ed., pp. 27–100). Boca Raton: CRC Press.

    Google Scholar 

  • Marangoni, A. G. & Wesdorp, L. H. (2013b). Crystallography and polymorphism. In A. G. Marangoni & L. H. Wesdorp (Eds.), Structure and properties of fat crystal networks (2nd ed., pp. 1–26). Boca Raton: CRC Press.

    Google Scholar 

  • Martini, S., Suzuki, A. & Hartel, R. (2008). Effect of high intensity ultrasound on crystallization behavior of anhydrous milk fat. Journal of the American Oil Chemists’ Society, 85, 621–628.

    Article  CAS  Google Scholar 

  • Mattice, K. D. & Marangoni, A. G. (2017). Matrix effects on the crystallization behaviour of butter and roll-in shortening in laminated bakery products. Food Research International, 96, 54–63.

    Article  CAS  PubMed  Google Scholar 

  • Mattice, K. D. & Marangoni, A. G. (2018a). Gelatinized wheat starch influences crystallization behaviour and structure of roll-in shortenings in laminated bakery products. Food Chemistry, 243, 396–402.

    Article  CAS  PubMed  Google Scholar 

  • Mattice, K. D. & Marangoni, A. G. (2018b). Fat crystallization and structure in bakery, meat, and cheese systems. In A. G. Marangoni (Ed.), Structure-function analysis of edible fats (2nd ed., pp. 287–311). London: AOCS Press.

    Google Scholar 

  • Maurice-van Eijndhoven, M. H. T., Hiemstra, S. J. & Calus, M. P. L. (2011). Short communication: Milk fat composition of 4 cattle breeds in the Netherlands. Journal of Dairy Science, 94, 1021–1025.

    Article  CAS  PubMed  Google Scholar 

  • Mazzanti, G., Guthrie, S. E., Sirota, E. B., Marangoni, A. G. & Idziak, S. H. J. (2003). Orientation and phase transitions of fat crystals under shear. Crystal Growth & Design, 3, 721–725.

    Article  CAS  Google Scholar 

  • Mazzanti, G., Marangoni, A. G. & Idziak, S. H. J. (2009). Synchrotron study on crystallization kinetics of milk fat under shear flow. Food Research International, 42, 682–694.

    Article  CAS  Google Scholar 

  • McCarthy, O. J. (2011). Rheology of liquid and semi-solid milk products. In J. W. Fuquay (Ed.), Encyclopedia of dairy sciences (2nd ed., pp. 520–531). San Diego: Academic.

    Chapter  Google Scholar 

  • Mcdowell, R. E., Hooven, N. W. & Camoens, J. K. (1975). Effect of climate on performance of Holsteins in first lactation. Journal of Dairy Science, 59, 965–971.

    Article  Google Scholar 

  • Mulder, H. (1953). The consistency of butter. In S. Blair (Ed.), Foodstuffs: Their plasticity, fluidity and consistency. Amsterdam: North Holland Publishing Company.

    Google Scholar 

  • Narine, S. & Marangoni, A. G. (1999a). Mechanical and structural model of fractal networks of fat crystals at low deformations. Physical Review E, 60, 6991–7000.

    Article  CAS  Google Scholar 

  • Narine, S. S. & Marangoni, A. G. (1999b). Relating structure of fat crystal networks to mechanical properties: A review. Food Research International, 32, 227–248.

    Article  CAS  Google Scholar 

  • Narine, S. S. & Marangoni, A. G. (1999c). Fractal nature of fat crystal networks. Physical Review E, 59, 1908–1920.

    Article  CAS  Google Scholar 

  • Narine, S. S. & Marangoni, A. G. (2001). Elastic modulus as an indicator of macroscopic hardness of fat crystal networks. LWT – Food Science and Technology, 34, 33–40.

    Article  CAS  Google Scholar 

  • Nunes, G. F. M., Veloso de Paula, A., Ferreira de Castro, H. & César dos Santos, J. (2011). Compositional and textural properties of milkfat – Soybean oil blends following enzymatic interesterification. Food Chemistry, 125, 133–138.

    Article  CAS  Google Scholar 

  • O’Sullivan, C., Acevedo, N., Peyronel, F. & Marangoni, A. G. (2014). Fat nanostructure. In A. G. Marangoni & D. Pink (Eds.), Edible nanostructures: A bottom-up approach (pp. 6–40). Cambridge: Royal Society of Chemistry.

    Google Scholar 

  • Ollivon, M., Keller, G., Bourgaux, C., Kalnin, D., Villeneuve, P. & Lesieur, P. (2006). DSC and high resolution X-ray diffraction coupling. Journal of Thermal Analysis and Calorimetry, 85, 219–224.

    Article  CAS  Google Scholar 

  • Pal, P. K., Bhattacharyya, D. K. & Ghosh, S. (2001). Modifications of butter stearin by blending and interesterification for better utilization in edible fat products. Journal of the American Oil Chemists' Society, 78, 31–36.

    Article  CAS  Google Scholar 

  • Pappritz, J., Meyer, U., Kramer, R., Weber, E., Rehage, J., Flachowsky, G., Dänicke, S., Pappritz, J., Meyer, U., Kramer, R., Weber, E., Rehage, J., Flachowsky, G. & Dänicke, S. (2011). Effects of long-term supplementation of dairy cow diets with rumen-protected conjugated linoleic acids (CLA) on performance, metabolic parameters and fatty acid profile in milk fat. Archives of Animal Nutrition, 65, 89–107.

    Article  CAS  PubMed  Google Scholar 

  • Peyronel, F., Ilavsky, J., Pink, D. A. & Marangoni, A. G. (2014). Quantification of the physical structure of fats in 20 minutes: Implications for formulation. Lipid Technology, 26, 223–226.

    Article  CAS  Google Scholar 

  • Pink, D. A., Peyronel, F., Quinn, B., Singh, P. & Marangoni, A. G. (2015). Condensation versus diffusion. A spatial- scale-independent theory of aggregate structures in edible oils: Applications to model systems and commercial shortenings studied via rheology and USAXS. Journal of Physics D: Applied Physics, 48, 384003.

    Article  CAS  Google Scholar 

  • Prentice, J. H. (1972). Rheology and texture of dairy products. Journal of Texture Studies, 3, 415–458.

    Article  Google Scholar 

  • Queirós, M. S., Grimaldi, R. & Gigante, M. L. (2016). Addition of olein from milk fat positively affects the firmness of butter. Food Research International, 84, 69–75.

    Article  CAS  Google Scholar 

  • Ramel, P. R. & Marangoni, A. G. (2016). Engineering the microstructure of milk fat by blending binary and ternary mixtures of its fractions. RSC Advances, 6, 41189–41194.

    Article  CAS  Google Scholar 

  • Ramel, P. R. & Marangoni, A. G. (2017a). Characterization of the polymorphism of milk fat within processed cheese products. Food Structure, 12, 15–25.

    Article  Google Scholar 

  • Ramel, P. R. & Marangoni, A. G. (2017b). Insights into the mechanism of the formation of the most stable crystal polymorph of milk fat in model protein matrices. Journal of Dairy Science, 100, 6930–6937.

    Article  CAS  PubMed  Google Scholar 

  • Ramel, P. R. & Marangoni, A. G. (2018a). Engineering the rheological and thermomechanical properties of model imitation cheese using particle fillers. Journal of Food Engineering, 235, 9–15.

    Article  CAS  Google Scholar 

  • Ramel, P. R. & Marangoni, A. G. (2018b). Processed cheese as a polymer matrix composite: A particle toolkit for the replacement of milk fat with canola oil in processed cheese. Food Research International, 107, 110–118.

    Article  CAS  PubMed  Google Scholar 

  • Ramel, P. R. R., Peyronel, F. & Marangoni, A. G. (2016). Characterization of the nanoscale structure of milk fat. Food Chemistry, 203, 224–230.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues, J. N. & Gioielli, L. A. (2003). Chemical interesterification of milkfat and milkfat-corn oil blends. Food Research International, 36, 149–159.

    Article  CAS  Google Scholar 

  • Rogers, N. R., Mcmahon, D. J., Daubert, C. R., Berry, T. K. & Foegeding, E. A. (2010). Rheological properties and microstructure of Cheddar cheese made with different fat contents. Journal of Dairy Science, 93, 4565–4576.

    Article  CAS  PubMed  Google Scholar 

  • Rohm, H. (1992). Influence of sectility speed on the relationship between sensory and instrumental evaluation of edible fat firmness. Zeitschrift für Leb. und Forsch., 194, 240–243.

    Article  Google Scholar 

  • Rohm, H. & Raaber, S. (1991). Hedonic spreadability optima of selected edible fats. Journal of Sensory Studies, 6, 81–88.

    Article  Google Scholar 

  • Rohm, H. & Ulberth, F. (1989). Use of magnitude estimation in sensory texture analysis of butter. Journal of Texture Studies, 20, 409–418.

    Article  Google Scholar 

  • Rohm, H. & Weidinger, K.-H. (1993). Rheological behaviour of butter at small deformations. Journal of Texture Studies, 24, 157–172.

    Article  Google Scholar 

  • Rønholt, S., Kirkensgaard, J. J. K., Mortensen, K. & Knudsen, J. C. (2014). Effect of cream cooling rate and water content on butter microstructure during four weeks of storage. Food Hydrocolloids, 34, 169–176.

    Article  CAS  Google Scholar 

  • Rousseau, D. & Marangoni, A. G. (1998a). The effects of interesterifcation on physical and sensory attributes of butterfat and butterfat-canola oil spreads. Food Research International, 31, 381–388.

    Article  CAS  Google Scholar 

  • Rousseau, D. & Marangoni, A. G. (1998b). Tailoring the textural attributes of butter fat/canola oil blends via Rhizopus arrhizus lipase-catalyzed interesterification. 2. Modifications of physical properties. Journal of Agricultural and Food Chemistry, 46, 2375–2381.

    Article  CAS  Google Scholar 

  • Rousseau, D., Foresti, K., Hill, A. R. & Marangoni, A. G. (1996). Restructuring butterfat through blending and chemical interesterification. 1. Melting behaviour and triacylglycerol modifications. Journal of the American Oil Chemists’ Society, 73, 963–972.

    Article  CAS  Google Scholar 

  • Rousseau, D., Hill, A. R. & Marangoni, A. G. (1996b). Restructuring butterfat through blending and chemical interesterification. 2. Microstructure and polymorphism. Journal of the American Oil Chemists’ Society, 73, 973–981.

    Article  CAS  Google Scholar 

  • Rousseau, D., Hill, A. R. & Marangoni, A. G. (1996c). Restructuring butterfat through blending and chemical interesterification. 3. Rheology. Journal of the American Oil Chemists’ Society, 73, 983–989.

    Article  CAS  Google Scholar 

  • Rousset, P. (2002). Modeling crystallization kinetics of triacylglycerols. In A. G. Marangoni & S. S. Narine (Eds.), Physical properties of lipids (pp. 9–44). New York: Marcel Dekker.

    Google Scholar 

  • Sangwal, K. & Sato, K. (2018). Nucleation and crystallization kinetics of fats. In A. G. Marangoni (Ed.), Structure-function analysis of edible fats (2nd ed., pp. 21–72). San Diego: Elsevier.

    Chapter  Google Scholar 

  • Sato, K. (2001). Crystallization behaviour of fats and lipids – A review. Chemical Engineering Science, 56, 2255–2265.

    Article  CAS  Google Scholar 

  • Sato, K. (2018a). Polymorphism of lipid crystals. In K. Sato (Ed.), Crystallization of lipids: Fundamentals and applications in food, cosmetics, and pharmaceuticals (pp. 17–60). Hoboken: Wiley-Blackwell.

    Chapter  Google Scholar 

  • Sato, K. (2018b). Introduction: Relationships of structures, properties, and functionality. In K. Sato (Ed.), Crystallization of lipids: Fundamentals and applications in food, cosmetics, and pharmaceuticals (pp. 1–15). Hoboken: Wiley-Blackwell.

    Chapter  Google Scholar 

  • Sebben, D. A., Gao, N., Gillies, G., Beattie, D. A. & Krasowska, M. (2019). Fractionation and characterisation of hard milk fat crystals using atomic force microscopy. Food Chemistry, 279, 98–104.

    Article  CAS  PubMed  Google Scholar 

  • Shama, F. & Sherman, P. (1970). The influence of work softening on the viscoelastic properties of butter and margarine. Journal of Texture Studies, 1, 196–205.

    Article  CAS  PubMed  Google Scholar 

  • Sharples, A. (1996). Overall kinetics of crystallization. In A. Sharples (Ed.), Introduction to polymer crystallization (pp. 44–59). London: Edward Arnold.

    Google Scholar 

  • Shin, J.-A., Akoh, C. & Lee, K.-T. (2009). Production and physicochemical properties of functional-butterfat through enzymatic interesterification in a continuous reactor. Journal of Agricultural and Food Chemistry, 57, 888–900.

    Article  CAS  PubMed  Google Scholar 

  • Shukla, A. & Rizvi, S. (1995). Viscoelastic properties of butter. Journal of Food Science, 60, 902–905.

    Article  CAS  Google Scholar 

  • Shukla, A., Bhaskar, A. R., Rizvi, S. S. H. & Mulvaney, S. J. (1994). Physicochemical and rheological properties of butter made from supercritically fractionated milk fat. Journal of Dairy Science, 77, 45–54.

    Article  CAS  Google Scholar 

  • Singh, A. P., Avramis, C. A., Kramer, J. K. G. & Marangoni, A. G. (2004). Algal meal supplementation of the cows’ diet alters the physical properties of milk fat. Journal of Dairy Research, 71, 66–73.

    Article  CAS  Google Scholar 

  • Skoda, W. & Van den Tempel, M. (1967). Growth kinetics of triglyceride crystals. Journal of Crystal Growth, 1, 207–217.

    Article  CAS  Google Scholar 

  • Soyeurt, H., Dehareng, F., Gengler, N., Mcparland, S., Wall, E., Berry, D. P. & Coffey, M. (2011). Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries. Journal of Dairy Science, 94, 1657–1667.

    Article  CAS  PubMed  Google Scholar 

  • Stoop, W. M., Bovenhuis, H., Heck, J. M. L. & van Arendonk, J. A. M. (2009). Effect of lactation stage and energy status on milk fat composition of Holstein-Friesian cows. Journal of Dairy Science, 92, 1469–1478.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, A., Lee, J., Padilla, S. & Martini, S. (2010). Altering functional properties of fats using power ultrasound. Journal of Food Science, 75, E208–E214.

    Article  CAS  PubMed  Google Scholar 

  • ten Grotenhuis, E., van Aken, G. A., van Malssen, K. F. & Schenk, H. (1999). Polymorphism of milk fat studied by differential scanning calorimetry and real-time X-ray powder diffraction. Journal of the American Oil Chemists’ Society, 76, 1031–1039.

    Article  Google Scholar 

  • Texture Technologies Corp. (2019). Spreadability. Accessed Feb 2019. http://texturetechnologies.com/application-studies/spreadability

  • Timms, R. E. (1979). The physical properties of blends of milk fat with beef tallow and beef tallow fractions. Australian Journal of Dairy Technology, 34, 60.

    CAS  Google Scholar 

  • Tomaszewska-Gras, J. (2013). Melting and crystallization DSC profiles of milk fat depending on selected factors. Journal of Thermal Analysis and Calorimetry, 113, 199–208.

    Article  CAS  Google Scholar 

  • Tran, T. & Rousseau, D. (2016). Influence of shear on fat crystallization. Food Research International, 81, 157–162.

    Article  CAS  Google Scholar 

  • Truong, T., Morgan, G. P., Bansal, N., Palmer, M. & Bhandari, B. (2015). Crystal structures and morphologies of fractionated milk fat in nanoemulsions. Food Chemistry, 171, 157–167.

    Article  CAS  PubMed  Google Scholar 

  • Truong, T., Palmer, M., Bansal, N. & Bhandari, B. (2017a). Investigation of solubility of carbon dioxide in anhydrous milk fat by lab-scale manometric method. Food Chemistry, 237, 667–676.

    Article  CAS  PubMed  Google Scholar 

  • Truong, T., Palmer, M., Bansal, N. & Bhandari, B. (2017b). Effect of solubilised carbon dioxide at low partial pressure on crystallisation behaviour, microstructure and texture of anhydrous milk fat. Food Research International, 95, 82–90.

    Article  CAS  PubMed  Google Scholar 

  • van Aken, G. A. & Visser, K. A. (2000). Firmness and crystallization of Milk fat in relation to processing conditions. Journal of Dairy Science, 83, 1919–1932.

    Article  PubMed  Google Scholar 

  • van Aken, G. A., ten Grotenhuis, E., van Langevelde, A. J. & Schenk, H. (1999). Composition and crystallization of milk fat fractions. Journal of the American Oil Chemists’ Society, 76, 1323–1331.

    Article  Google Scholar 

  • Vanbergue, E., Hurtaud, C., Peyraud, J., Beuvier, E., Duboz, G. & Buchin, S. (2018). Effects of n-3 fatty acid sources on butter and hard cooked cheese; technological properties and sensory quality. International Dairy Journal, 82, 35–44.

    Article  CAS  Google Scholar 

  • Vanhoutte, B., Dewettinck, K., Vanlerberghe, B. & Huyghebaert, A. (2003). Monitoring milk fat fractionation: Filtration properties and crystallization kinetics. Journal of the American Oil Chemists’ Society, 80, 213–218.

    Article  CAS  Google Scholar 

  • Walstra, P. (1998). Secondary nucleation in triglyceride crystallization. Progress in Colloid and Polymer Science, 108, 4–8.

    Article  CAS  Google Scholar 

  • Walstra, P., Van Vliet, T. & Kloek, W. (1995). Crystallization and rheological properties of milk fat. In P. F. Fox (Ed.), Advanced dairy chemistry. Volume 2: Lipids (pp. 179–211). London: Chapman and Hall.

    Google Scholar 

  • Woodrow, I. L. & DeMan, J. (1968). Polymorphism in milk fat shown by X-ray diffraction and infrared spectroscopy. Journal of Dairy Science, 51, 996–1000.

    Article  CAS  Google Scholar 

  • Wright, A. J. & Marangoni, A. G. (2003). The effect of minor components on milk fat microstructure and mechanical properties. Journal of Food Science, 68, 182–186.

    Article  CAS  Google Scholar 

  • Wright, A. J., Hartel, R. W., Narine, S. S. & Marangoni, A. G. (2000). The effect of minor components on milk fat crystallization. Journal of the American Oil Chemists’ Society, 77, 463–475.

    Article  CAS  Google Scholar 

  • Wright, A. J., Scanlon, M., Hartel, R. W. & Marangoni, A. G. (2001). Rheological properties of milkfat and butter. Journal of Food Science, 66, 1056–1071.

    Article  CAS  Google Scholar 

  • Wright, A. J., Marangoni, A. G. & Hartel, R. W. (2011). Milk lipids|rheological properties and their modification. In J. W. Fuquay (Ed.), Encyclopedia of dairy sciences (2nd ed., pp. 704–710). San Diego: Academic.

    Chapter  Google Scholar 

  • Yang, X., Rogers, N. R., Kendricks Berry, T. & Foegeding, E. A. (2011). Modeling the rheological properties of Cheddar cheese with different fat contents at various temperatures. Journal of Texture Studies, 42, 331–348.

    Article  Google Scholar 

  • Zachut, M., Arieli, A., Lehrer, H., Livshitz, L., Yakoby, S. & Moallem, U. (2010). Effects of increased supplementation of n-3 fatty acids to transition dairy cows on performance and fatty acid profile in plasma, adipose tissue, and milk fat. Journal of Dairy Science, 93, 5877–5889.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Marangoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mattice, K.D., Wright, A.J., Marangoni, A.G. (2020). Crystallization and Rheological Properties of Milk Fat. In: McSweeney, P.L.H., Fox, P.F., O'Mahony, J.A. (eds) Advanced Dairy Chemistry, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-48686-0_8

Download citation

Publish with us

Policies and ethics