Skip to main content
Log in

Restructuring butterfat through blending and chemical interesterification. 2. Microstructure and polymorphism

  • Article
  • Published:
Journal of the American Oil Chemists’ Society

Abstract

Blending of butterfat with canola oil and subsequent chemical interesterification modified the crystal morphology and X-ray diffraction patterns of butterfat, 90∶10 (w/w), and 80∶20 (w/w) blends of butterfat-canola oil. The morphology of 50∶50 (w/w) was also greatly influenced by interesterification.

Polarized light microscopy revealed that addition of canola oil led to gradual aggregation of the crystal structure. Scanning electron microscopy revealed all samples to be mixtures of defined crystalline regions and amorphous areas with greater amorphism as oil content increased. Most samples revealed segregation of solid from liquid. Confocal laser scanning microscopy of butterfat revealed complex aggregated structures that were composed of outwardly radiating filaments from a central nucleus. X-ray diffraction analysis revealed a predominance of β′ and a small proportion of β crystals for all samples examined except interesterified butterfat, which consisted solely of β′ crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jensen, L.H., and A.J. Mabis, Crystal Structure of β-Tricaprin,Nature 197:681–682 (1963).

    Article  CAS  Google Scholar 

  2. Rossell, J.B., inAdvances in Lipid Research, edited by R.Padetti and D. Kritchevsky, Academic Press, New York, 1967, pp. 353–408.

    Google Scholar 

  3. Lutton, E.S., Review of the Polymorphism of Saturated Even Glycerides.J. Am. Oil Chem. Soc. 27:276–281 (1950).

    CAS  Google Scholar 

  4. Chapman, D., The Polymorphism of Glycerides,Chem. Rev. 62:433–456 (1962).

    Article  CAS  Google Scholar 

  5. D’Souza, V., J.M. deMan, and L. deMan, Short Spacings and Polymorphic Forms of Natural Fats and Commercial Solid Fats: A Review,Ibid. 67:835–843 (1990).

    CAS  Google Scholar 

  6. Cebula, D.J. and K.W. Smith, Differential Scanning Calorimetry of Confectionary Fats. Pure Triglycerides: Effects of Cooling and Heating Rate Variation,Ibid. 68:591–595 (1991).

    CAS  Google Scholar 

  7. deMan, J.M., X-Ray Diffraction in the Study of Fat PolymorphismFood Research International 25:471–476 (1992).

    Article  CAS  Google Scholar 

  8. Larsson, K., Molecular Arrangements in Glycerides,Fette Seifen Anstrichtm, 74:136–142 (1972).

    Article  CAS  Google Scholar 

  9. Larsson, K., Classification of Glyceride Crystal Forms,Acta Chem. Scand. 20:225–2260 (1966).

    Google Scholar 

  10. Manning, D.M., and P.S. Dimick, Crystal Morphology of Cocoa Butter,Food Microstructure 4:249–265 (1985).

    Google Scholar 

  11. van Krevelen, D.W. and P.J. HoftyzerProperties of Polymers: Correlations with Chemical Structures, Elsevier Publishing Company, Amsterdam, 1972, pp. 301–310.

    Google Scholar 

  12. Hernqvist, L. On the Structure of Triglycerides in the Liquid State and Fat Crystallization,Fette Seifen Anstrichtm.86:297–300 (1984).

    Article  CAS  Google Scholar 

  13. Walstra, P., and R. Jenness,The Chemistry and Physics of Milk Products and Comparable Foods, The Universities Press, Belfast, 1974, pp. 88–97.

    Google Scholar 

  14. D’Souza, V., L. deMan, and J.M. deMan, Chemical and Physical Properties of the High Melting Glyceride Fractions of Commercial Margarines,J. Am. Oil Chem. Soc. 68:153–162 (1991).

    CAS  Google Scholar 

  15. Bailey, A.E.,Melting and Solidification of Fats, Interscience Publishers, New York, 1950, pp. 1–346.

    Google Scholar 

  16. Chawla, P., J.M. deMan, and A.K. Smith, Crystal Morphology of Shortenings and Margarines,Food Structure 9:329–336. (1990).

    Google Scholar 

  17. Heertje, P., P. Van der Vlist, J.C.G. Blonk, H.A.C.M. Hendrikx, and G.J. Brakenhoff, Confocal Scanning Laser Microscopy in Food Research: Some Observations,Food Microstructure 6:115–120 (1987).

    Google Scholar 

  18. Heertje, P., J. Nederlof, H.A.C.M. Hendrikx, and E.H. Lucassen-Reynders, The Observation of the Displacement of Emulsifiers by Confocal Scanning Laser Microscopy,Food Structure 9:305–316 (1990).

    Google Scholar 

  19. Cheng, P.C., T.H. Lin, W.L. Wu, and J.L. Wu,Multidimensional Microscopy, Springer-Verlag, New York, 1994, pp. 1–289.

    Google Scholar 

  20. Hoerr, G.W., and D.F. Waugh, Some Physical Characteristics of Rearranged Lard,J. Am. Oil Chem. Soc. 32:37–41 (1950).

    Google Scholar 

  21. VanHook, A.,Crystallization: Theory and Practice, Reinhold Publishing Corporation, New York, 1963, pp. 45–91.

    Google Scholar 

  22. Wiedermann, L.H., T.J. Weiss, G.A. Jacobson, and K.F. Mattil, A Comparison of Sodium-Methoxide Treated Lards,J. Am. Oil Chem. Soc. 38:389–395 (1961).

    CAS  Google Scholar 

  23. deMan, J.M., Physical Properties of Milk Fat. II. Some Factors Influencing Crystallization,J. Dairy Res. 28:117–123 (1961).

    Article  CAS  Google Scholar 

  24. deMan, J.M., Effect of Cooling Procedures on Consistency, Crystal Structure and Solid Fat Content of Milk Fat,Dairy Ind. 29:546–547 (1964).

    Google Scholar 

  25. Fairley, P., J.M. Krochta, and J.B. German, Crystal Morphology of Mixtures of Tripalmitin and Butterfat,J. Am. Oil Chem. Soc. 72:693–697 (1995).

    CAS  Google Scholar 

  26. Rousseau, D., K. Forestière, A.R. Hill, and A.G. Marangoni, Restructuring Butterfat Through Blending and Chemical Interesterification. I. Melting Behaviour and Triacylglycerol Modifications,Ibid. 73:963–972 (1996).

    CAS  Google Scholar 

  27. deMan, J.M., and F.W. Wood, Polarized Light Microscopy of Butter-Fat Crystallization,Proc. XV Int. Dairy Congr. 2:1010–1016 (1959).

    CAS  Google Scholar 

  28. Hoerr, C.W., Morphology of Fats, Oils, and Shortenings,J. Am. Oil Chem. Soc. 37:539–546 (1960).

    CAS  Google Scholar 

  29. Riiner, Ü., Investigation of the Phase Behavior ofCruciferae Seed Oils by Temperature Programmed X-Ray Diffraction,Ibid. 47:129–133 (1970).

    CAS  Google Scholar 

  30. Larsson, K.,Lipids—Molecular Organization, Physical Functions and Technical Applications, The Oily Press, Dundee, 1994, pp. 1–41.

    Google Scholar 

  31. Johansson, D., and B. Bergenståhl, Sintering of Fat Crystal Networks in Oil During Post-Crystallization Processes.J. Am. Oil Chem. Soc. 72:911–920 (1995).

    CAS  Google Scholar 

  32. Precht, D., and W. Buchheim, Elektronenmikroskopische Untersuchungen über die physikalische Struktur von Streichfetten. II: Die Mikrostruktur des zwischenglobularen Fettphase in Butter,Milchwissenschaft 35:393–398 (1980).

    Google Scholar 

  33. Jewell, G.G., and M.L. Meara, A New and Rapid Method for the Electron Microscopic Examination of Fats,J. Am. Oil Chem. Soc. 47:535–538 (1970).

    CAS  Google Scholar 

  34. Woodrow, I.L., and J.M. deMan, Polymorphism in Milk Fat Shown by X-Ray Diffraction and Infrared Spectroscopy,J. Dairy Sci. 51:996–1000 (1961).

    Article  Google Scholar 

  35. Timms, R.E., The Physical Properties of Blends of Milk Fat with Beef Tallow and Beef Tallow Fractions,Aust. J. Dairy Technol. 34:60–65 (1979).

    CAS  Google Scholar 

  36. deMan, L., J.M. deMan, and B. Blackman, Effect of Tempering on the Texture and Polymorphic Behaviour of Margarine Fats,Fat Sci. Technol. 97:55–60 (1995).

    CAS  Google Scholar 

  37. van den Tempel, M., Mechanical Properties of Plastic Disperse Systems at Very Small Deformations,J. Colloid Sci. 16:284–296 (1961).

    Article  Google Scholar 

  38. van den Tempel, M., Rheology of Concentrated Suspensions,J. Colloid Interface Sci. 71:18–20 (1979).

    Article  Google Scholar 

  39. Kamphuis, H., and R.J.J. Jongschaap, The Rheological Behaviour of Suspensions of Fat Particles in Oil Interpreted in Terms of a Transient-Network Model,Colloid and Polymer Sci. 263:1008–1024 (1985).

    Article  CAS  Google Scholar 

  40. Kantor, Y., and I. Webman, Elastic Properties of Random Percolating Systems,Phys. Rev. Lett. 52:1891–1894 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Rousseau, D., Hill, A.R. & Marangoni, A.G. Restructuring butterfat through blending and chemical interesterification. 2. Microstructure and polymorphism. J Am Oil Chem Soc 73, 973–981 (1996). https://doi.org/10.1007/BF02523404

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02523404

Key Words

Navigation