Skip to main content

Biomechanics of Locomotion in Tarantulas

  • Chapter
  • First Online:
New World Tarantulas

Part of the book series: Zoological Monographs ((ZM,volume 6))

  • 519 Accesses

Abstract

Terrestrial multi-legged locomotion is an energetically demanding activity. The limbs need to exert force on the ground to support and move the body weight and negotiate uneven surfaces. The locomotor performances of Theraphosidae are limited by their poor aerobic capacities. The smaller body size and longer legs of the more active sex (males) are considered results of an optimisation to reduce the high metabolic cost of locomotion.

A large fraction of the mechanical work is done against gravity, to lift the body centre of mass with each step. Both horizontal work (to push the centre of mass forward) and internal work (done to move the limbs with respect to the centre of mass) represent a small part of the total work .

Unlike other spiders, Theraphosidae employ all of their limbs for locomotion. The first described stepping pattern was an alternating tetrapod gait , in which the odd limbs on one side move together with the contralateral even limbs. Nevertheless, we are able to discriminate different quadruped-similar gait patterns, such as lateral and diagonal walking and trotting. Unlike quadrupedal vertebrates, the highest speeds are reached mainly by increasing stride frequency, while stride length remains roughly constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abourachid A (2003) A new way of analysing symmetrical and asymmetric gaits in quadrupeds. C R Biol 326:625–630

    Google Scholar 

  • Abourachid A, Herbin M, Hackert R, Maes L, Martin V (2007) Experimental study of coordination patterns during unsteady locomotion in mammals. J Exp Biol 210:366–372

    Article  PubMed  Google Scholar 

  • Alexander RMN (2003) Principles of animal locomotion. Princeton University Press, Princeton

    Google Scholar 

  • Alexander RMN (2005) Models and the scaling of energy costs for locomotion. J Exp Biol 208:1645–1652

    Article  PubMed  Google Scholar 

  • Alexander RMN, Jayes AS (1983) A dynamic similarity hypothesis for the gaits of quadrupedal mammals. J Zool 201:135–152

    Article  Google Scholar 

  • Anderson JF (1970) Metabolic rates of spiders. Comp Biochem Physiol A Physiol 33:51–72

    Article  CAS  Google Scholar 

  • Anderson JF, Prestwich KN (1975) The fluid pressure pumps of spiders (Chelicerata, Araneae). Zoomorphology 81:257–277

    Google Scholar 

  • Anderson JF, Prestwich KN (1985) The physiology of exercise at and above maximal aerobic capacity in a theraphosid (tarantula) spider, Brachypelma smithi (F.O. Pickard-Cambridge). J Comp Physiol B155:529–539

    Google Scholar 

  • Biancardi CM, Fabrica CG, Polero P, Loss JF, Minetti AE (2011) Biomechanics of octopedal locomotion: kinematic and kinetic analysis of the spider Grammostola mollicoma. J Exp Biol 14:3433–3442

    Article  Google Scholar 

  • Birn-Jeffery AV, Higham TE (2014) The scaling of uphill and downhill locomotion in legged animals. Integr Comp Biol 54:1159–1172

    Article  PubMed  Google Scholar 

  • Blickhan R, Barth FG (1985) Strains in the exoskeleton of spiders. J Comp Physiol A 157:115–147

    Article  Google Scholar 

  • Blickhan R, Full RJ (1987) Locomotion energetics of the ghost crab: II. Mechanics of the centre of mass during walking and running. J Exp Biol 130:155–174

    Google Scholar 

  • Booster NA, Su FY, Adolph SC, Ahn AN (2015) Effect of temperature on leg kinematics in sprinting tarantulas (Aphonopelma hentzi): high speed may limit hydraulic joint actuation. J Exp Biol 218:977–982

    Google Scholar 

  • Brüssel A (1987) Belastungen und Dehnungen im Spinnenskelett unter natürlichen Verhaltensbedingungen. Thesis (unpublished), Goethe University, Frankfurt

    Google Scholar 

  • Canals M, Salazar MJ, Durán C, Figueroa D, Veloso C (2007) Respiratory refinements in the mygalomorph spider Grammostola rosea Walckenaer 1837 (Araneae, Theraphosidae). J Arachnol 35:481–486

    Article  Google Scholar 

  • Cavagna GA (1975) Force platforms as ergometers. J Appl Physiol 39:174–179

    Article  CAS  PubMed  Google Scholar 

  • Cavagna GA (2017) External, internal and total mechanical work done during locomotion. In: Cavagna GA (ed) Physiological aspects of legged terrestrial locomotion: motor and the machine. Springer, Cham, pp 129–138

    Google Scholar 

  • Cavagna GA, Thys H, Zamboni A (1976) The sources of external work in level walking and running. J Physiol 262:639–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavagna GA, Heglund NC, Taylor CR (1977) Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am J Phys Regul Integr Comp Phys 233:R243–R261

    CAS  Google Scholar 

  • Cavagna GA, Franzetti P, Heglund NC, Willems P (1988) The determinants of the step frequency in running, trotting and hopping in man and other vertebrates. J Physiol 399:81–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Prampero PE (1985) La locomozione umana su terra, in acqua, in aria: fatti e teorie. Edi.Ermes, Milan

    Google Scholar 

  • Di Prampero PE, Margaria R (1968) Relationship between O2 consumption, high energy phosphates and the kinetics of the O2 debt in exercise. Pflugers Arch 304:11–19

    Google Scholar 

  • Ellington CP (1985) Power and efficiency of insect flight muscle. J Exp Biol 115:293–304

    CAS  PubMed  Google Scholar 

  • Evans MEG (1977) Locomotion in the Coleoptera Adephaga, especially Carabidae. J Zool 181:189–266

    Article  Google Scholar 

  • Fedak MA, Heglund NC, Taylor CR (1982) Energetics and mechanics of terrestrial locomotion. II. Kinetic energy changes of the limbs and body as a function of speed and body size in birds and mammals. J Exp Biol 97:23–40

    CAS  PubMed  Google Scholar 

  • Foelix R (2011) Biology of spiders. Oxford University Press, New York

    Google Scholar 

  • Full RJ, Tu MS (1990) Mechanics of six-legged runners. J Exp Biol 148:129–146

    CAS  PubMed  Google Scholar 

  • Gabaldón AM, Nelson FE, Roberts TJ (2004) Mechanical function of two ankle extensors in wild turkeys: shifts from energy production to energy absorption during incline versus decline running. J Exp Biol 207:2277–2288

    Article  PubMed  Google Scholar 

  • Griffin TM, Main RP, Farley CT (2004) Biomechanics of quadrupedal walking: how do four-legged animals achieve inverted pendulum-like movements? J Exp Biol 207:3545–3558

    Article  PubMed  Google Scholar 

  • Grossi B, Canals M (2010) Comparison of the morphology of the limbs of juvenile and adult horses (Equus caballus) and their implications on the locomotor biomechanics. J Exp Zool A Ecol Genet Physiol 313:292–300

    PubMed  Google Scholar 

  • Grossi B, Canals M (2015) Energetics, scaling and sexual size dimorphism of spiders. Acta Biotheor 63:71–81

    Article  CAS  PubMed  Google Scholar 

  • Grossi B, Solis R, Veloso C, Canals M (2016) Consequences of sexual size dimorphism on energetics and locomotor performance of Grammostola rosea (Araneae; Teraphosidae). Physiol Entomol 41:281–288

    Article  Google Scholar 

  • Herreid CF (1981) Energetics of pedestrian arthropods. In: Herried CF, Fourtner CR (eds) Locomotion and energetics in arthropods. Plenum, New York, pp 491–526

    Google Scholar 

  • Herreid CF, Full RJ (1980) Energetics of running tarantulas. Physiologist 23:40

    Google Scholar 

  • Hildebrand M (1966) Analysis of the symmetrical gaits of tetrapods. Folia Biotheor 6:9–22

    Google Scholar 

  • Hildebrand M (1989) The quadrupedal gaits of vertebrates. Bioscience 39:766–776

    Article  Google Scholar 

  • Irschick D, Jayne B (2000) Size matters: ontogenetic variation in the three-dimensional kinematics of steady-speed locomotion in the lizard Dipsosaurus dorsalis. J Exp Biol 203:2133–2148

    CAS  PubMed  Google Scholar 

  • Kram R, Wong B, Full RJ (1997) Three-dimensional kinematics and limb kinetic energy of running cockroaches. J Exp Biol 200:1919–1929

    CAS  PubMed  Google Scholar 

  • Kropf C (2013) Hydraulic system of locomotion. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin, pp 43–56

    Chapter  Google Scholar 

  • Lutz GJ, Rome LC (1994) Built for jumping: the design of the frog muscular system. Science 263:370–372

    Article  CAS  PubMed  Google Scholar 

  • Maes LD, Herbin M, Hackert R et al. (2008) Steady locomotion in dogs: temporal and associated spatial coordination patterns and the effect of speed. J Exp Biol 211:138–149

    Google Scholar 

  • McGhee RB, Iswandhi GI (1979) Adaptive locomotion of a multilegged robot over rough terrain. IEEE Trans Syst Man Cybern 9:176–182

    Google Scholar 

  • McMahon TA, Cheng GC (1990) The mechanics of running: how does stiffness couple with speed? J Biomech 23:65–78

    Article  PubMed  Google Scholar 

  • Minetti AE (1998) A model equation for the prediction of mechanical internal work of terrestrial locomotion. J Biomechan 31:463–468

    Article  CAS  Google Scholar 

  • Minetti AE (2011) Bioenergetics and biomechanics of cycling: the role of ‘internal work’. Eur J Appl Physiol 111:323–329

    Article  PubMed  Google Scholar 

  • Minetti AE, Ardigo LP, Reinach E, Saibene F (1999) The relationship between mechanical work and energy expenditure of locomotion in horses. J Exp Biol 202:2329–2338

    CAS  PubMed  Google Scholar 

  • Moya-Laraño J, Vinković D, De Mas E, Corcobado G, Moreno E (2008) Morphological evolution of spiders predicted by pendulum mechanics. PLoS One 3:e1841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagy KA (1989) Doubly-labeled water studies of vertebrate physiological ecology. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Ecological Studies (Analysis and Synthesis), vol 68. Springer, New York, pp 270–287

    Google Scholar 

  • Nishikawa K, Biewener AA, Aerts P, Ahn AN, Chiel HJ, Daley MA, Daniel TL, Full RJ, Hale ME, Hedrick TL, Lappin AK, Nichols AP, Quinn NR, Satterlie RA, Szymik B (2007) Neuromechanics: an integrative approach for understanding motor control. Integr Comp Biol 47:16–54

    Article  PubMed  Google Scholar 

  • Paul R, Fincke T, Linzen B (1989) Book lung function in arachnids. J Comp Physiol B 159:409–418

    Article  Google Scholar 

  • Pérez-Miles F (1994) Tarsal scopula division in Therephosinae (Araneae, Theraphosidae): its systematic significance. J Arachnol 22:46–53

    Google Scholar 

  • Pérez-Miles F, Perafán C, Santamaría L (2015) Tarantulas (Araneae: Theraphosidae) use different adhesive pads complementarily during climbing on smooth surfaces: experimental approach in eight arboreal and burrower species. Biol Open 4(12):1643–1648

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Miles F, Guadanucci JPL, Jurgilas JP, Becco R, Perafán C (2017) Morphology and evolution of scopula, pseudoscopula and claw tufts in Mygalomorphae (Araneae). Zoomorphology 136:435–459

    Article  Google Scholar 

  • Saibene F, Minetti AE (2003) Biomechanical and physiological aspects of legged locomotion in humans. Eur J Appl Physiol 88:297–316

    Article  PubMed  Google Scholar 

  • Schmidt-Nielsen K (1972) Locomotion: energy cost of swimming, flying, and running. Science 177:222–228

    Article  CAS  PubMed  Google Scholar 

  • Sensenig AT, Shultz JW (2003) Mechanics of cuticular elastic energy storage in leg joints lacking extensor muscles in arachnids. J Exp Biol 206:771–784

    Article  PubMed  Google Scholar 

  • Sensenig AT, Shultz JW (2006) Mechanical energy oscillations during locomotion in the harvestman Leiobunum vittatum (Opiliones). J Arachnol 34:627–633

    Article  Google Scholar 

  • Seyfarth EA (1985) Spider proprioception: receptors, reflexes, and control of locomotion. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin, pp 337–347

    Google Scholar 

  • Shillington C, Peterson CC (2002) Energy metabolism of male and female tarantulas (Aphonopelma anax) during locomotion. J Exp Biol 205:2909–2914

    PubMed  Google Scholar 

  • Silva-Pereyra V, Fábrica CG, Biancardi CM, Pérez-Miles F (2019) Kinematics of males Eupalaestrus weijenberghi (Araneae, Theraphosidae) locomotion on different substrates and inclines (No. e27520v1). PeerJ 7:e7748. https://doi.org/10.7717/peerj.7748

    Article  PubMed  PubMed Central  Google Scholar 

  • Spagna JC, Peattie AM (2012) Terrestrial locomotion in arachnids. J Insect Physiol 58:599–606

    Article  CAS  PubMed  Google Scholar 

  • Spagna JC, Valdivia EA, Mohan V (2011) Gait characteristics of two fast-running spider species (Hololena adnexa and Hololena curta), including an aerial phase (Araneae: Agelenidae). J Arachnol 39(1):84–92

    Article  Google Scholar 

  • Stewart DM, Martin AW (1974) Blood pressure in the tarantula, Dugesiella hentzi. J Comp Physiol 88:141–172

    Article  Google Scholar 

  • Taylor CR, Schmidt-Nielsen K, Raab JL (1970) Scaling of energetic cost of running to body size in mammals. Am J Physiol Legacy Cont 219:1104–1107

    Article  CAS  Google Scholar 

  • Ting LH, Blickhan R, Full RJ (1994) Dynamic and static stability in hexapedal runners. J Exp Biol 269:251–269

    Google Scholar 

  • Walsberg G, Wolf B (1995) Variation in the respiratory quotient of birds and implications for indirect calorimetry using measurements of carbon dioxide production. J Exp Biol 198:213–219

    CAS  PubMed  Google Scholar 

  • Weihmann T (2013) Crawling at high speeds: steady level locomotion in the spider Cupiennius salei—global kinematics and implications for centre of mass dynamics. PLoS One 8:e65788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilshin S, Reeve MA, Haynes GC, Revzen S, Koditschek DE, Spence AJ (2017) Longitudinal quasi-static stability predicts changes in dog gait on rough terrain. J Exp Biol 220(10):1864–1874

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilshin S, Shamble PS, Hovey KJ, Harris R, Spence AJ, Hsieh ST (2018) Limping following limb loss increases locomotor stability. J Exp Biol 221(18):jeb174268

    Article  PubMed  Google Scholar 

  • Wilson DM (1967) Stepping patterns in tarantula spiders. J Exp Biol 47:133–151

    Google Scholar 

  • Wohlfart E, Wolff JO, Arzt E, Gorb SN (2014) The whole is more than the sum of all its parts: collective effect of spider attachment organs. J Exp Biol 217:222–224

    Article  PubMed  Google Scholar 

  • Wolff JO, Nentwig W, Gorb SN (2013) The great silk alternative: multiple co-evolution of web loss and sticky hairs in spiders. PLoS One 8:e62682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Sun Y, Zhao FQ, Yu J, Craig R, Hu S (2009) Analysis of tarantula skeletal muscle protein sequences and identification of transcriptional isoforms. BMC Genomics 10:117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Fernando Pérez-Miles for his invitation to contribute to this book, and to Santiago Fernandez for his help with the English editing of this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biancardi, C.M., Silva-Pereyra, V. (2020). Biomechanics of Locomotion in Tarantulas. In: Pérez-Miles, F. (eds) New World Tarantulas. Zoological Monographs, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-48644-0_13

Download citation

Publish with us

Policies and ethics