Skip to main content

Controllability and Stability of Semilinear Fractional Order Systems

  • Chapter
  • First Online:
Automatic Control, Robotics, and Information Processing

Abstract

In the chapter two the most important properties of fractional order dynamical systems, namely, controllability and stability are presented. At the beginning the basic notations and the fundamental definitions are recalled. The first part of the chapter is devoted to controllability and contains the formulation of the problem, main hypotheses and theorems about controllability of semilinear fractional order systems with distributed and point multiplicities constant or variable delays in the state variables and controls. Next, using fixed point theorems approximate controllability problem in infinite dimensional spaces, in particular Banach or Hilbert space, are discussed. Second part of the chapter is devoted to the stability problem of fractional order systems. The problem of stability and the problem of the existence of solutions for linear and nonlinear fractional order systems are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, R.P., de Andrade, B., Siracusa, G.: On fractional integro-differential equations with state-dependent delay. Comput. Math. Appl., 62(3), 1143–1149 (2011)

    Google Scholar 

  2. de Andrade, B., dos Santos, J.P.C. , et al.: Existence of solutions for a fractional neutral integro-differential equation with unbounded delay. Electron. J. Differ. Equat. 2012(90), 1–13 (2012)

    Google Scholar 

  3. Anh, P.T., Babiarz, A., Czornik, A., Niezabitowski, M., Siegmund, S.: Asymptotic properties of discrete linear fractional equations. Bull. Pol. Acad. Sci.: Tech. Sci. 67(4), 749–759 (2019)

    Google Scholar 

  4. Anh, P.T., Babiarz, A., Czornik, A., Niezabitowski, M., Siegmund, S.: Variation of constant formulas for fractional difference equations. Arch. Control Sci. 28 (2018)

    Google Scholar 

  5. Babiarz, A., Klamka, J., Niezabitowski, M.: Schauder’s fixed-point theorem in approximate controllability problems. Int. J. Appl. Math. Comput. Sci. 26(2), 263–275 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bachelier, O., Dąbkowski, P., GaƂkowski, K., Kummert, A.: Fractional and nd systems: a continuous case. Multidimension. Syst. Signal Process. 23(3), 329–347 (2012)

    Article  MATH  Google Scholar 

  7. Balasubramaniam, P., Tamilalagan, P.: Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay by using mainardis function. Appl. Math. Comput. 256, 232–246 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Balasubramaniam, P., Vembarasan, V., Senthilkumar, T.: Approximate controllability of impulsive fractional integro-differential systems with nonlocal conditions in hilbert space. Numer. Funct. Anal. Optim. 35(2), 177–197 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Baleanu, D., Sadati, S.J., Ghaderi, R., Ranjbar, A., Abdeljawad Maraaba, T., Jarad, F.: Razumikhin stability theorem for fractional systems with delay. In: Abstract and Applied Analysis, vol. 2010. Hindawi (2010)

    Google Scholar 

  10. Baleanu, D., Diethelm, K., Scalas, E.: Fractional Calculus: Models And Numerical Methods. Nonlinearity And Chaos. World Scientific Publishing Company, Series on Complexity (2012)

    Google Scholar 

  11. Bellman, R., Cooke, K.L.: Differential Difference Equations. New York (1963)

    Google Scholar 

  12. Bhalekar, S.: Stability and bifurcation analysis of a generalized scalar delay differential equation. Chaos: An Interdisc. J. Nonlinear Sci. 26(8), 084306 (2016)

    Google Scholar 

  13. Catherine Bonnet and Jonathan R Partington. Stabilization of fractional exponential systems including delays. Kybernetika 37(3), 345–353 (2001)

    Google Scholar 

  14. Bonnet, C., Partington, J.R.: Analysis of fractional delay systems of retarded and neutral type. Automatica 38(7), 1133–1138 (2002)

    Google Scholar 

  15. Čermák, J., Doơlá, Z., Kisela, T.: Fractional differential equations with a constant delay: stability and asymptotics of solutions. Appl. Math. Comput. 298, 336–350 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Čermák, J., Horníček, J., Kisela, T.: Stability regions for fractional differential systems with a time delay. Commun. Nonlinear Sci. Numer. Simul. 31(1–3), 108–123 (2016)

    Article  MathSciNet  Google Scholar 

  17. Chen, Y.Q., Moore, K.L.: Analytical stability bound for a class of delayed fractional-order dynamic systems. In: Proceedings of the 40th IEEE Conference on Decision and Control, 2001, vol. 2, pp. 1421–1426. IEEE (2001)

    Google Scholar 

  18. Chen, Y.Q., Moore, K.L.: Analytical stability bound for a class of delayed fractional-order dynamic systems. Nonlinear Dyn. 29(1–4), 191–200 (2002)

    Google Scholar 

  19. Nguyen Dinh Cong and Hoang The Tuan: Existence, uniqueness, and exponential boundedness of global solutions to delay fractional differential equations. Mediterr. J. Math. 14(5), 193 (2017)

    Article  MathSciNet  Google Scholar 

  20. Debbouche, A., Nieto, J.J.: Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls. Appl. Math. Comput. 245, 74–85 (2014)

    Google Scholar 

  21. Debbouche, A., Torres, D.F.M.: Approximate controllability of fractional delay dynamic inclusions with nonlocal control conditions. Appl. Math. Comput. 243, 161–175 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Debbouche, A., Torres, D.F.M.: Sobolev type fractional dynamic equations and optimal multi-integral controls with fractional nonlocal conditions. Fract. Calc. Appl. Anal. 18(1), 95–121 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Deng, W., Li, C., LĂŒ, J.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48(4), 409–416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer Science & Business Media (2010)

    Google Scholar 

  25. Ding, X., Nieto, J.J.: Controllability and optimality of linear time-invariant neutral control systems with different fractional orders. Acta Math. Sci. 35(5), 1003–1013 (2015)

    Google Scholar 

  26. Driver, R.D.: Ordinary and delay differential equations. In: Applied Mathematical Sciences. Springer New York (2012)

    Google Scholar 

  27. Feckan, M., Wang, J.R., Zhou, Y.: Controllability of fractional functional evolution equations of sobolev type via characteristic solution operators. J. Optim. Theory Appl. 156(1), 79–95 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xianlong, F.: Controllability of non-densely defined functional differential systems in abstract space. Appl. Math. Lett. 19(4), 369–377 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xianlong, F., Liu, X.: Controllability of non-densely defined neutral functional differential systems in abstract space. Chin. Ann. Math., Ser. B 28(2), 243–252 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fubini, G.: Sugli integrali multipli. Rend. Acc. Naz. Lincei 16, 608–614 (1907)

    MATH  Google Scholar 

  31. Henryk, G.: Analysis and Synthesis of Time Delay Systems. Wiley (1989)

    Google Scholar 

  32. Górniewicz, L., Ntouyas, S.K., O’regan, D.: Controllability of semilinear differential equations and inclusions via semigroup theory in banach spaces. Rep. Math. Phys. 3(56), 437–470 (2005)

    Google Scholar 

  33. Guendouzi, T., Farahi, S.: Approximate controllability of sobolev-type fractional functional stochastic integro-differential systems. Boletín de la Sociedad Matemática Mexicana 21(2), 289–308 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations, vol. 99. Springer Science & Business Media (2013)

    Google Scholar 

  35. Hei, X., Ranchao, W.: Finite-time stability of impulsive fractional-order systems with time-delay. Appl. Math. Model. 40(7–8), 4285–4290 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Richard,H.: Fractional Calculus: An Introduction for Physicists. World Scientific (2011)

    Google Scholar 

  37. Hotzel, R., Fliess, M.: On linear systems with a fractional derivation: introductory theory and examples. Math. Comput. Simul. 45(3–4), 385–395 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ji, S., Li, G., Wang, M.: Controllability of impulsive differential systems with nonlocal conditions. Appl. Math. Comput. 217(16), 6981–6989 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Kaczorek, T.: Selected Problems of Fractional Systems Theory. Lecture Notes in Control and Information Sciences. Springer, Berlin Heidelberg (2011)

    Book  Google Scholar 

  40. Kaczorek, T., Sajewski, L.: The Realization Problem for Positive and Fractional Systems. Studies in Systems, Decision and Control. Springer International Publishing (2014)

    Google Scholar 

  41. Karthikeyan, S., Balachandran, K., Sathya, M.: Controllability of nonlinear stochastic systems with multiple time-varying delays in control. Int. J. Appl. Math. Comput. Sci. 25(2), 207–215 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Khokhlova, T., Kipnis, M., Malygina, V.: The stability cone for a delay differential matrix equation. Appl. Math. Lett. 24(5), 742–745 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Number t. 13. Elsevier Science (2006)

    Google Scholar 

  44. Klamka, J.: Schauder’s fixed-point theorem in nonlinear controllability problems. Control and Cybern. 29, 153–165 (2000)

    MathSciNet  MATH  Google Scholar 

  45. Klamka, J., Babiarz, A., Niezabitowski, M.: Banach fixed-point theorem in semilinear controllability problems-a survey. Bull. Pol. Acad. Sci. Tech. Sci. 64(1), 21–35 (2016)

    MATH  Google Scholar 

  46. Klamka, J., Sikora, B.: New controllability criteria for fractional systems with varying delays. In: Theory and Applications of Non-integer Order Systems, pp. 333–344. Springer (2017)

    Google Scholar 

  47. Kumar, S., Sukavanam, N.: Approximate controllability of fractional order semilinear systems with bounded delay. J. Differ. Equat. 252(11), 6163–6174 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kumlin, P.: A note on fixed point theory. In: Functional Analysis Lecture (2004)

    Google Scholar 

  49. Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. CSP (2009)

    Google Scholar 

  50. Lazarević, M.P.: Finite time stability analysis of pd\(\alpha \) fractional control of robotic time-delay systems. Mech. Res. Commun. 33(2), 269–279 (2006)

    Google Scholar 

  51. Lazarević, M.P., Debeljković, D.L.: Finite time stability analysis of linear autonomous fractional order systems with delayed state. Asian J. Control 7(4):440–447 (2005)

    Google Scholar 

  52. Lazarević, M.P., Debeljković, D.L., Nenadić, Z., Milinković, S.: Finite-time stability of delayed systems. IMA J. Math. Control Inf. 17(2), 101–109 (2000)

    Google Scholar 

  53. Lazarević, M.P., Spasić, A.M.: Finite-time stability analysis of fractional order time-delay systems: Gronwalls approach. Math. Comput. Model. 49(3–4), 475–481 (2009)

    Google Scholar 

  54. Lee, T.N., Dianat, S.: Stability of time-delay systems. IEEE Trans. Autom. Control 26(4), 951–953 (1981)

    Google Scholar 

  55. Li, H., Zhong, S.-M., Li, H.-B.: Stability analysis of fractional order systems with time delay. Int. J. Math., Comput. Sci. Eng. 8(4), 400–403 (2014)

    Google Scholar 

  56. Li, M., Wang, J.: Finite time stability of fractional delay differential equations. Appl. Math. Lett. 64, 170–176 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  57. Liang, J., Yang, H.: Controllability of fractional integro-differential evolution equations with nonlocal conditions. Appl. Math. Comput. 254, 20–29 (2015)

    MathSciNet  MATH  Google Scholar 

  58. Liang, S., Mei, R.: Existence of mild solutions for fractional impulsive neutral evolution equations with nonlocal conditions. Adv. Differ. Equat. 2014(1), 101 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  59. Liu, Z., Li, X.: On the controllability of impulsive fractional evolution inclusions in banach spaces. J. Optim. Theory Appl. 156(1), 167–182 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Liu, Z., Li, X.: On the exact controllability of impulsive fractional semilinear functional differential inclusions. Asian J. Control 17(5), 1857–1865 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  61. Luo, Y., Chen, Y.Q.: Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems. Automatica 48(9), 2159–2167 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  62. Malek-Zavarei, M., Jamshidi, M.: Time-Delay Systems: Analysis, Optimization and Applications. Elsevier Science Inc. (1987)

    Google Scholar 

  63. Matignon, D.: ReprĂ©sentations en variables d’état de modĂšles de guides d’ondes avec dĂ©rivation fractionnaire. Ph.D. thesis, Paris 11 (1994)

    Google Scholar 

  64. Denis, M.: Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems Applications, vol. 2, pp. 963–968. IMACS, IEEE-SMC Lille, France (1996)

    Google Scholar 

  65. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-order Systems and Controls: Fundamentals and Applications. Advances in Industrial Control. Springer, London (2010)

    Book  MATH  Google Scholar 

  66. Kamran Akbari Moornani and Mohammad Haeri: Necessary and sufficient conditions for bibo-stability of some fractional delay systems of neutral type. IEEE Trans. Autom. Control 56(1), 125–128 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  67. Mur, T., Henriquez, H.R.: Relative controllability of linear systems of fractional order with delay. Math. Control Relat. Fields 5(4), 845–858 (2015)

    Google Scholar 

  68. Paszke, W., Dąbkowski, P., Rogers, E., GaƂkowski, K.: New results on strong practical stability and stabilization of discrete linear repetitive processes. Syst. Control Lett. 77, 22–29 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  69. Podlubny, I.: Fractional differential equations: an introduction to fractional derivatives. In: Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Elsevier (1998)

    Google Scholar 

  70. Qian, D., Li, C., Agarwal, R.P., Wong, P.J.Y.: Stability analysis of fractional differential system with Riemann–Liouville derivative. Math. Comput. Model.52(5–6), 862–874 (2010)

    Google Scholar 

  71. Joice Nirmala Rajagopal and Krishnan Balachandran: The controllability of nonlinear implicit fractional delay dynamical systems. Int. J. Appl. Math. Comput. Sci. 27(3), 501–513 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  72. Nirmala Rajagopal, J., Balachandran, K., Rodrguez-Germa, L., Trujillo, J.J.: Controllability of nonlinear fractional delay dynamical systems. Rep. Math. Phys.77(1), 87–104 (2016)

    Google Scholar 

  73. Rakkiyappan, R., Velmurugan, G., Cao, J.: Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with time delays. Nonlinear Dyn. 78(4), 2823–2836 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  74. Sakthivel, R., Nieto, J.J., Idrisoglu Mahmudov, N.: Approximate controllability of nonlinear deterministic and stochastic systems with unbounded delay. Taiwanese J. Math. 14(5), 1777–1797 (2010)

    Google Scholar 

  75. Sakthivel, R., Ren, Y., Idrisoglu Mahmudov, N.: Approximate controllability of second-order stochastic differential equations with impulsive effects. Mod. Phys. Lett. B 24(14), 1559–1572 (2010)

    Google Scholar 

  76. Schmeidel, E., Zbąszyniak, Z.: An application of darbos fixed point theorem in the investigation of periodicity of solutions of difference equations. Comput. Math. Appl. 64(7), 2185–2191 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  77. Shen, J., Lam, J.: Stability and performance analysis for positive fractional-order systems with time-varying delays. IEEE Trans. Autom. Control 61(9), 2676–2681 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  78. Sikora, B.: Controllability criteria for time-delay fractional systems with a retarded state. Int. J. Appl. Math. Comput. Sci. 26(3), 521–531 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  79. Sikora, B.: Controllability of time-delay fractional systems with and without constraints. IET Control Theory Appl. 10(3), 320–327 (2016)

    Article  MathSciNet  Google Scholar 

  80. Sukavanam, N., Kumar, S.: Approximate controllability of fractional order semilinear delay systems. J. Optim. Theory Appl. 151(2), 373–384 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  81. Tuan, H.T., Czornik, A., Nieto, J.J., Niezabitowski, M., et al.: Global attractivity for some classes of Riemann–Liouville fractional differential systems. J. Integr. Equat. Appl. 31(2), 265–282 (2019)

    Google Scholar 

  82. Wang, J.R., Fan, Z., Zhou, Y.: Nonlocal controllability of semilinear dynamic systems with fractional derivative in banach spaces. J. Optim. Theory Appl. 154(1), 292–302 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  83. Wang, J.R., Zhou, Y.: Complete controllability of fractional evolution systems. Commun. Nonlinear Sci. Numer. Simul. 17(11), 4346–4355 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  84. Wang, L.: Approximate controllability for integrodifferential equations with multiple delays. J. Optim. Theory Appl. 143(1), 185–206 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  85. Yan, Z.: Existence results for fractional functional integrodifferential equations with nonlocal conditions in banach spaces. Ann. Polonici Math. 3, 285–299 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  86. Yan, Z.: Controllability of fractional-order partial neutral functional integrodifferential inclusions with infinite delay. J. Franklin Inst. 348(8), 2156–2173 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  87. Yan, Z.: Approximate controllability of partial neutral functional differential systems of fractional order with state-dependent delay. Int. J. Control 85(8), 1051–1062 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  88. Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328(2), 1075–1081 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  89. Zawiski, R.: On controllability and measures of noncompactness. 1637, 1241–1246 (2014)

    Google Scholar 

  90. Zhang, X., Huang, X., Liu, Z.: The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay. Nonlinear Anal.: Hybrid Syst. 4(4), 775–781 (2010)

    MathSciNet  MATH  Google Scholar 

  91. Zhang, X., Zhu, C., Yuan, C.: Approximate controllability of fractional impulsive evolution systems involving nonlocal initial conditions. Adv. Differ. Equat. 2015(1), 244 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  92. Zhou, X.-F., Wei, J., Liang-Gen, H.: Controllability of a fractional linear time-invariant neutral dynamical system. Appl. Math. Lett. 26(4), 418–424 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  93. Yong, Z.: Fractional Evolution Equations and Inclusions: Analysis and Control. Academic Press (2016)

    Google Scholar 

  94. Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59(3), 1063–1077 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  95. Zhou, Y., Vijayakumar, V., Murugesu, R.: Controllability for fractional evolution inclusions without compactness. Evol. Equat. Control Theory 4(4), 507–524 (2015)

    Google Scholar 

Download references

Acknowledgments

The research presented here was done as parts of the projects funded by the National Science Centre in Poland granted according to decisions UMO-2017/25/B/ST7/ 02236 (JK) and DEC-2017/25/B/ST7/02888 (AB, MN). The work of Adam Czornik was supported by Polish Ministry for Science and Higher Education funding for statutory activities 02/990/BK_19/0121.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Klamka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klamka, J., Babiarz, A., Czornik, A., Niezabitowski, M. (2021). Controllability and Stability of Semilinear Fractional Order Systems. In: Kulczycki, P., Korbicz, J., Kacprzyk, J. (eds) Automatic Control, Robotics, and Information Processing. Studies in Systems, Decision and Control, vol 296. Springer, Cham. https://doi.org/10.1007/978-3-030-48587-0_9

Download citation

Publish with us

Policies and ethics