Skip to main content

Overview of Current Type I/II Kinase Inhibitors

  • Chapter
  • First Online:
Next Generation Kinase Inhibitors

Abstract

Research on kinase-targeting drugs has made great strides over the last 30 years and is attracting greater attention for the treatment of yet more kinase-related diseases. Currently, 42 kinase drugs have been approved by the FDA, most of which (Wilson et al., Cancer Research 78(1):15–29, 2018) are Type I/II inhibitors. Notwithstanding these advances, it is desirable to target additional kinases for drug development as more than 200 diseases, particularly cancers, are directly associated with aberrant kinase regulation and signaling. Here, we review the extant Type I/II drugs systematically to obtain insights into the binding pocket characteristics, the associated features of Type I/II drugs, and the mechanism of action to facilitate future kinase drug design and discovery. We conclude by summarizing the main successes and limitations of targeting kinases for the development of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, J. A. (2001). Kinetic and catalytic mechanisms of protein kinases. Chemical Reviews, 101(8), 2271–2290.

    Article  CAS  PubMed  Google Scholar 

  2. Logue, J. S., & Morrison, D. K. (2012). Complexity in the signaling network: Insights from the use of targeted inhibitors in cancer therapy. Genes and Development, 26(7), 641–650. https://doi.org/10.1101/gad.186965.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Manning, G., Whyte, D. B., Martinez, R., Hunter, T., & Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science, 298(5600), 1912–1934. https://doi.org/10.1126/science.1075762.

    Article  CAS  PubMed  Google Scholar 

  4. Cell Signaling Technology. Kinase-disease associations. CST. https://www.cellsignal.com/contents/resources-reference-tables/kinase-disease-associations/science-tables-kinase-disease.

  5. Lahiry, P., Torkamani, A., Schork, N. J., & Hegele, R. A. (2010). Kinase mutations in human disease: Interpreting genotype-phenotype relationships. Nature Reviews Genetics, 11(1), 60–74. https://doi.org/10.1038/nrg2707.

    Article  CAS  PubMed  Google Scholar 

  6. Gharwan, H., & Groninger, H. (2016). Kinase inhibitors and monoclonal antibodies in oncology: Clinical implications. Nature Reviews Clinical Oncology, 13(4), 209–227. https://doi.org/10.1038/nrclinonc.2015.213.

    Article  CAS  PubMed  Google Scholar 

  7. Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz, L. A., Jr., & Kinzler, K. W. (2013). Cancer genome landscapes. Science, 339(6127), 1546–1558. https://doi.org/10.1126/science.1235122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wilson, L. J., Linley, A., Hammond, D. E., Hood, F. E., Coulson, J. M., MacEwan, D. J., Ross, S. J., Slupsky, J. R., Smith, P. D., Eyers, P. A., & Prior, I. A. (2018). New perspectives, opportunities, and challenges in exploring the human protein kinome. Cancer Research, 78(1), 15–29. https://doi.org/10.1158/0008-5472.CAN-17-2291.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, J., Yang, P. L., & Gray, N. S. (2009). Targeting cancer with small molecule kinase inhibitors. Nature Reviews Cancer, 9(1), 28–39. https://doi.org/10.1038/nrc2559.

    Article  CAS  PubMed  Google Scholar 

  10. U.S. Food and Drug Administration. Drugs@FDA: FDA approved drug products. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm.

  11. Knapp, S. (2018). New opportunities for kinase drug repurposing and target discovery. British Journal of Cancer, 118(7), 936–937. https://doi.org/10.1038/s41416-018-0045-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Muller, S., Chaikuad, A., Gray, N. S., & Knapp, S. (2015). The ins and outs of selective kinase inhibitor development. Nature Chemical Biology, 11(11), 818–821. https://doi.org/10.1038/nchembio.1938.

    Article  CAS  PubMed  Google Scholar 

  13. Ferguson, F. M., & Gray, N. S. (2018). Kinase inhibitors: The road ahead. Nature Reviews. Drug Discovery, 17(5), 353–377. https://doi.org/10.1038/nrd.2018.21.

    Article  CAS  PubMed  Google Scholar 

  14. Klaeger, S., Heinzlmeir, S., Wilhelm, M., Polzer, H., Vick, B., Koenig, P. A., Reinecke, M., Ruprecht, B., Petzoldt, S., Meng, C., Zecha, J., Reiter, K., Qiao, H., Helm, D., Koch, H., Schoof, M., Canevari, G., Casale, E., Depaolini, S. R., Feuchtinger, A., Wu, Z., Schmidt, T., Rueckert, L., Becker, W., Huenges, J., Garz, A. K., Gohlke, B. O., Zolg, D. P., Kayser, G., Vooder, T., Preissner, R., Hahne, H., Tonisson, N., Kramer, K., Gotze, K., Bassermann, F., Schlegl, J., Ehrlich, H. C., Aiche, S., Walch, A., Greif, P. A., Schneider, S., Felder, E. R., Ruland, J., Medard, G., Jeremias, I., Spiekermann, K., & Kuster, B. (2017). The target landscape of clinical kinase drugs. Science, 358(6367), eaan4368. https://doi.org/10.1126/science.aan4368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu, P., Nielsen, T. E., & Clausen, M. H. (2015). FDA-approved small-molecule kinase inhibitors. Trends in Pharmacological Sciences, 36(7), 422–439. https://doi.org/10.1016/j.tips.2015.04.005.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao, Z., Xie, L., Xie, L., & Bourne, P. E. (2016). Delineation of polypharmacology across the human structural kinome using a functional site interaction fingerprint approach. Journal of Medicinal Chemistry, 59(9), 4326–4341. https://doi.org/10.1021/acs.jmedchem.5b02041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, P., Clausen, M. H., & Nielsen, T. E. (2015). Allosteric small-molecule kinase inhibitors. Pharmacology and Therapeutics, 156, 59–68. https://doi.org/10.1016/j.pharmthera.2015.10.002.

    Article  CAS  PubMed  Google Scholar 

  18. Rice, K. D., Aay, N., Anand, N. K., Blazey, C. M., Bowles, O. J., Bussenius, J., Costanzo, S., Curtis, J. K., Defina, S. C., Dubenko, L., Engst, S., Joshi, A. A., Kennedy, A. R., Kim, A. I., Koltun, E. S., Lougheed, J. C., Manalo, J. C., Martini, J. F., Nuss, J. M., Peto, C. J., Tsang, T. H., Yu, P., & Johnston, S. (2012). Novel carboxamide-based allosteric MEK inhibitors: Discovery and optimization efforts toward XL518 (GDC-0973). ACS Medicinal Chemistry Letters, 3(5), 416–421. https://doi.org/10.1021/ml300049d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, J., Adrián, F. J., Jahnke, W., Cowan-Jacob, S. W., Li, A. G., Iacob, R. E., Sim, T., Powers, J., Dierks, C., Sun, F., Guo, G.-R., Ding, Q., Okram, B., Choi, Y., Wojciechowski, A., Deng, X., Liu, G., Fendrich, G., Strauss, A., Vajpai, N., Grzesiek, S., Tuntland, T., Liu, Y., Bursulaya, B., Azam, M., Manley, P. W., Engen, J. R., Daley, G. Q., Warmuth, M., & Gray, N. S. (2010). Targeting Bcr–Abl by combining allosteric with ATP-binding-site inhibitors. Nature, 463(7280), 501–506. https://doi.org/10.1038/nature08675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hirai, H., Sootome, H., Nakatsuru, Y., Miyama, K., Taguchi, S., Tsujioka, K., Ueno, Y., Hatch, H., Majumder, P. K., Pan, B. S., & Kotani, H. (2010). MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Molecular Cancer Therapeutics, 9(7), 1956–1967. https://doi.org/10.1158/1535-7163.MCT-09-1012.

    Article  CAS  PubMed  Google Scholar 

  21. Wu, W. I., Voegtli, W. C., Sturgis, H. L., Dizon, F. P., Vigers, G. P., & Brandhuber, B. J. (2010). Crystal structure of human AKT1 with an allosteric inhibitor reveals a new mode of kinase inhibition. PLoS One, 5(9), e12913. https://doi.org/10.1371/journal.pone.0012913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, X., Pickin, K. A., Bose, R., Jura, N., Cole, P. A., & Kuriyan, J. (2007). Inhibition of the EGF receptor by binding of MIG6 to an activating kinase domain interface. Nature, 450(7170), 741–744. https://doi.org/10.1038/nature05998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Betzi, S., Alam, R., Martin, M., Lubbers, D. J., Han, H., Jakkaraj, S. R., Georg, G. I., & Schonbrunn, E. (2011). Discovery of a potential allosteric ligand binding site in CDK2. ACS Chemical Biology, 6(5), 492–501. https://doi.org/10.1021/cb100410m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kooistra, A. J., Kanev, G. K., van Linden, O. P. J., Leurs, R., de Esch, I. J. P., & de Graaf, C. (2016). KLIFS: A structural kinase-ligand interaction database. Nucleic Acids Research, 44(D1), D365–D371. https://doi.org/10.1093/nar/gkv1082.

    Article  CAS  PubMed  Google Scholar 

  25. van Linden, O. P., Kooistra, A. J., Leurs, R., de Esch, I. J., & de Graaf, C. (2014). KLIFS: A knowledge-based structural database to navigate kinase-ligand interaction space. Journal of Medicinal Chemistry, 57(2), 249–277. https://doi.org/10.1021/jm400378w.

    Article  CAS  PubMed  Google Scholar 

  26. Liao, J. J. (2007). Molecular recognition of protein kinase binding pockets for design of potent and selective kinase inhibitors. Journal of Medicinal Chemistry, 50(3), 409–424. https://doi.org/10.1021/jm0608107.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao, Z., Liu, Q., Bliven, S., Xie, L., & Bourne, P. E. (2017). Determining cysteines available for covalent inhibition across the human kinome. Journal of Medicinal Chemistry, 60(7), 2879–2889. https://doi.org/10.1021/acs.jmedchem.6b01815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sordella, R., Bell, D. W., Haber, D. A., & Settleman, J. (2004). Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science, 305(5687), 1163–1167. https://doi.org/10.1126/science.1101637.

    Article  CAS  PubMed  Google Scholar 

  29. Gajiwala, K. S., Feng, J., Ferre, R., Ryan, K., Brodsky, O., Weinrich, S., Kath, J. C., & Stewart, A. (2013). Insights into the aberrant activity of mutant EGFR kinase domain and drug recognition. Structure, 21(2), 209–219. https://doi.org/10.1016/j.str.2012.11.014.

    Article  CAS  PubMed  Google Scholar 

  30. Chaikuad, A., Koch, P., Laufer, S. A., & Knapp, S. (2018). The cysteinome of protein kinases as a target in drug development. Angewandte Chemie (International Ed. in English), 57(16), 4372–4385. https://doi.org/10.1002/anie.201707875.

    Article  CAS  Google Scholar 

  31. Zhao, Z., & Bourne, P. E. (2018). Progress with covalent small-molecule kinase inhibitors. Drug Discovery Today, 23(3), 727–735. https://doi.org/10.1016/j.drudis.2018.01.035.

    Article  CAS  PubMed  Google Scholar 

  32. Kim, S., Loo, A., Chopra, R., Caponigro, G., Huang, A., Vora, S., Parasuraman, S., Howard, S., Keen, N., Sellers, W., & Brain, C. (2014). Abstract PR02: LEE011: An orally bioavailable, selective small molecule inhibitor of CDK4/6-Reactivating Rb in cancer. Molecular Cancer Therapeutics, 12(Suppl 11), PR02. https://doi.org/10.1158/1535-7163.targ-13-pr02.

    Article  Google Scholar 

  33. Chen, P., Lee, N. V., Hu, W., Xu, M., Ferre, R. A., Lam, H., Bergqvist, S., Solowiej, J., Diehl, W., He, Y. A., Yu, X., Nagata, A., VanArsdale, T., & Murray, B. W. (2016). Spectrum and degree of CDK drug interactions predicts clinical performance. Molecular Cancer Therapeutics, 15(10), 2273–2281. https://doi.org/10.1158/1535-7163.mct-16-0300.

    Article  PubMed  Google Scholar 

  34. Dummer, R., Ascierto, P. A., Gogas, H. J., Arance, A., Mandala, M., Liszkay, G., Garbe, C., Schadendorf, D., Krajsova, I., Gutzmer, R., Chiarion-Sileni, V., Dutriaux, C., de Groot, J. W. B., Yamazaki, N., Loquai, C., Moutouh-de Parseval, L. A., Pickard, M. D., Sandor, V., Robert, C., & Flaherty, K. T. (2018). Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF -mutant melanoma (COLUMBUS): A multicentre, open-label, randomised phase 3 trial. The Lancet Oncology, 19(5), 603–615. https://doi.org/10.1016/s1470-2045(18)30142-6.

    Article  CAS  PubMed  Google Scholar 

  35. Corcoran, R. B., Andre, T., Atreya, C. E., Schellens, J. H. M., Yoshino, T., Bendell, J. C., Hollebecque, A., McRee, A. J., Siena, S., Middleton, G., Muro, K., Gordon, M. S., Tabernero, J., Yaeger, R., O’Dwyer, P. J., Humblet, Y., De Vos, F., Jung, A. S., Brase, J. C., Jaeger, S., Bettinger, S., Mookerjee, B., Rangwala, F., & Van Cutsem, E. (2018). Combined BRAF, EGFR, and MEK inhibition in patients with BRAF(V600E)-mutant colorectal cancer. Cancer Discovery, 8(4), 428–443. https://doi.org/10.1158/2159-8290.CD-17-1226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maverakis, E., Cornelius, L., Bowen, G., Phan, T., Patel, F., Fitzmaurice, S., He, Y., Burrall, B., Duong, C., Kloxin, A., Sultani, H., Wilken, R., Martinez, S., & Patel, F. (2015). Metastatic melanoma—A review of current and future treatment options. Acta Dermato Venereologica, 95(5), 516–524. https://doi.org/10.2340/00015555-2035.

    Article  CAS  PubMed  Google Scholar 

  37. Bollag, G., Hirth, P., Tsai, J., Zhang, J., Ibrahim, P. N., Cho, H., Spevak, W., Zhang, C., Zhang, Y., Habets, G., Burton, E. A., Wong, B., Tsang, G., West, B. L., Powell, B., Shellooe, R., Marimuthu, A., Nguyen, H., Zhang, K. Y., Artis, D. R., Schlessinger, J., Su, F., Higgins, B., Iyer, R., D’Andrea, K., Koehler, A., Stumm, M., Lin, P. S., Lee, R. J., Grippo, J., Puzanov, I., Kim, K. B., Ribas, A., McArthur, G. A., Sosman, J. A., Chapman, P. B., Flaherty, K. T., Xu, X., Nathanson, K. L., & Nolop, K. (2010). Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature, 467(7315), 596–599. https://doi.org/10.1038/nature09454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsai, J., Lee, J. T., Wang, W., Zhang, J., Cho, H., Mamo, S., Bremer, R., Gillette, S., Kong, J., Haass, N. K., Sproesser, K., Li, L., Smalley, K. S. M., Fong, D., Zhu, Y. L., Marimuthu, A., Nguyen, H., Lam, B., Liu, J., Cheung, I., Rice, J., Suzuki, Y., Luu, C., Settachatgul, C., Shellooe, R., Cantwell, J., Kim, S. H., Schlessinger, J., Zhang, K. Y. J., West, B. L., Powell, B., Habets, G., Zhang, C., Ibrahim, P. N., Hirth, P., Artis, D. R., Herlyn, M., & Bollag, G. (2008). Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 3041–3046. https://doi.org/10.1073/pnas.0711741105.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Okamoto, K., Ikemori-Kawada, M., Jestel, A., von Konig, K., Funahashi, Y., Matsushima, T., Tsuruoka, A., Inoue, A., & Matsui, J. (2015). Distinct binding mode of multikinase inhibitor lenvatinib revealed by biochemical characterization. ACS Medicinal Chemistry Letters, 6(1), 89–94. https://doi.org/10.1021/ml500394m.

    Article  CAS  PubMed  Google Scholar 

  40. Weisberg, E., Boulton, C., Kelly, L. M., Manley, P., Fabbro, D., Meyer, T., Gilliland, D. G., & Griffin, J. D. (2002). Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell, 1(5), 433–443. https://doi.org/10.1016/s1535-6108(02)00069-7.

    Article  CAS  PubMed  Google Scholar 

  41. Gotlib, J., Kluin-Nelemans, H. C., George, T. I., Akin, C., Sotlar, K., Hermine, O., Awan, F. T., Hexner, E., Mauro, M. J., Sternberg, D. W., Villeneuve, M., Huntsman Labed, A., Stanek, E. J., Hartmann, K., Horny, H. P., Valent, P., & Reiter, A. (2016). Efficacy and safety of midostaurin in advanced systemic mastocytosis. The New England Journal of Medicine, 374(26), 2530–2541. https://doi.org/10.1056/NEJMoa1513098.

    Article  CAS  PubMed  Google Scholar 

  42. Gibney, G. T., & Zager, J. S. (2013). Clinical development of dabrafenib in BRAF mutant melanoma and other malignancies. Expert Opinion on Drug Metabolism and Toxicology, 9(7), 893–899. https://doi.org/10.1517/17425255.2013.794220.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, C., Spevak, W., Zhang, Y., Burton, E. A., Ma, Y., Habets, G., Zhang, J., Lin, J., Ewing, T., Matusow, B., Tsang, G., Marimuthu, A., Cho, H., Wu, G., Wang, W., Fong, D., Nguyen, H., Shi, S., Womack, P., Nespi, M., Shellooe, R., Carias, H., Powell, B., Light, E., Sanftner, L., Walters, J., Tsai, J., West, B. L., Visor, G., Rezaei, H., Lin, P. S., Nolop, K., Ibrahim, P. N., Hirth, P., & Bollag, G. (2015). RAF inhibitors that evade paradoxical MAPK pathway activation. Nature, 526(7574), 583–586. https://doi.org/10.1038/nature14982.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao, Z., Xie, L., & Bourne, P. E. (2017). Insights into the binding mode of MEK type-III inhibitors. A step towards discovering and designing allosteric kinase inhibitors across the human kinome. PLoS One, 12(6), e0179936. https://doi.org/10.1371/journal.pone.0179936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Long, G. V., Hauschild, A., Santinami, M., Atkinson, V., Mandalà, M., Chiarion-Sileni, V., Larkin, J., Nyakas, M., Dutriaux, C., Haydon, A., Robert, C., Mortier, L., Schachter, J., Schadendorf, D., Lesimple, T., Plummer, R., Ji, R., Zhang, P., Mookerjee, B., Legos, J., Kefford, R., Dummer, R., & Kirkwood, J. M. (2017). Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. New England Journal of Medicine, 377(19), 1813–1823. https://doi.org/10.1056/NEJMoa1708539.

    Article  CAS  PubMed  Google Scholar 

  46. Ayeni, D., Politi, K., & Goldberg, S. B. (2015). Emerging agents and new mutations in EGFR-mutant lung cancer. Clinical Cancer Research, 21(17), 3818–3820. https://doi.org/10.1158/1078-0432.CCR-15-1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Patel, H., Pawara, R., Ansari, A., & Surana, S. (2017). Recent updates on third generation EGFR inhibitors and emergence of fourth generation EGFR inhibitors to combat C797S resistance. European Journal of Medicinal Chemistry, 142, 32–47. https://doi.org/10.1016/j.ejmech.2017.05.027.

    Article  CAS  PubMed  Google Scholar 

  48. Jia, Y., Yun, C. H., Park, E., Ercan, D., Manuia, M., Juarez, J., Xu, C., Rhee, K., Chen, T., Zhang, H., Palakurthi, S., Jang, J., Lelais, G., DiDonato, M., Bursulaya, B., Michellys, P. Y., Epple, R., Marsilje, T. H., McNeill, M., Lu, W., Harris, J., Bender, S., Wong, K. K., Janne, P. A., & Eck, M. J. (2016). Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature, 534(7605), 129–132. https://doi.org/10.1038/nature17960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhao, Z., Wu, H., Wang, L., Liu, Y., Knapp, S., Liu, Q., & Gray, N. S. (2014). Exploration of type II binding mode: A privileged approach for kinase inhibitor focused drug discovery? ACS Chemical Biology, 9(6), 1230–1241. https://doi.org/10.1021/cb500129t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Juchum, M., Gunther, M., & Laufer, S. A. (2015). Fighting cancer drug resistance: Opportunities and challenges for mutation-specific EGFR inhibitors. Drug Resistance Updates, 20, 12–28. https://doi.org/10.1016/j.drup.2015.05.002.

    Article  PubMed  Google Scholar 

  51. Bean, J., Brennan, C., Shih, J. Y., Riely, G., Viale, A., Wang, L., Chitale, D., Motoi, N., Szoke, J., Broderick, S., Balak, M., Chang, W. C., Yu, C. J., Gazdar, A., Pass, H., Rusch, V., Gerald, W., Huang, S. F., Yang, P. C., Miller, V., Ladanyi, M., Yang, C. H., & Pao, W. (2007). MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proceedings of the National Academy of Sciences of the United States of America, 104(52), 20932–20937. https://doi.org/10.1073/pnas.0710370104.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wu, Y. L., Zhang, L., Kim, D. W., Liu, X., Lee, D. H., Yang, J. C., Ahn, M. J., Vansteenkiste, J. F., Su, W. C., Felip, E., Chia, V., Glaser, S., Pultar, P., Zhao, S., Peng, B., Akimov, M., & Tan, D. S. W. (2018). Phase Ib/II study of capmatinib (INC280) plus gefitinib after failure of endothelial growth factor receptor (EGFR) inhibitor therapy in patients with EGFR-mutated, MET factor-dysregulated non-small-cell lung cancer. Journal of Clinical Oncology, 36(31), 3101–3109. https://doi.org/10.1200/JCO.2018.77.7326.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Peng Wu for useful insights and corrections when reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip E. Bourne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, Z., Bourne, P.E. (2020). Overview of Current Type I/II Kinase Inhibitors. In: Shapiro, P. (eds) Next Generation Kinase Inhibitors. Springer, Cham. https://doi.org/10.1007/978-3-030-48283-1_2

Download citation

Publish with us

Policies and ethics