Skip to main content

Abstract

Acute kidney injury (AKI) is a common and serious complication of cardiac surgery. The spectrum of cardiac surgery-associated AKI (CS-AKI) ranges from transient loss of renal reserve, through AKI, to long-term irreversible renal failure requiring renal replacement therapy (RRT). Notably, CS-AKI is also associated with numerous complications including: short and long-term mortality; development and progression of chronic kidney disease (CKD); extended hospital and intensive care unit (ICU) lengths of stay; and hospital readmission (Brown et al. Ann Thorac Surg 97(1):111–117, 2014; Pickering et al. Am J Kidney Dis 65(2):283–293, 2015; Xu et al. Medicine 94(45):e2025, 2015; Hu et al. J Cardiothorac Vasc Anesth 30(1):82–89, 2016). Thus, a review of avoidable CS-AKI sources, and interventions that preserve or promote recovery of renal function is highly pertinent to care of cardiac surgical patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomas ME, Blaine C, Dawnay A, Devonald MA, Ftouh S, Laing C, et al. The definition of acute kidney injury and its use in practice. Kidney Int. 2015;87(1):62–73.

    Article  Google Scholar 

  2. Hall J. Guyton and hall textbook of medical physiology. 12th ed. Philadelphia: Saunders; 2011.

    Google Scholar 

  3. Kork F, Balzer F, Spies CD, Wernecke KD, Ginde AA, Jankowski J, et al. Minor postoperative increases of creatinine are associated with higher mortality and longer hospital length of stay in surgical patients. Anesthesiology. 2015;123(6):1301–11.

    Article  CAS  Google Scholar 

  4. Lassnigg A, Schmidlin D, Mouhieddine M, Bachmann LM, Druml W, Bauer P, et al. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol. 2004;15(6):1597–605.

    Article  CAS  Google Scholar 

  5. O’Neal JB, Shaw AD, Billings FT. Acute kidney injury following cardiac surgery: current understanding and future directions. Crit Care (Lond). 2016;20(1):187.

    Google Scholar 

  6. McIlroy DR, Argenziano M, Farkas D, Umann T, Sladen RN. Incorporating oliguria into the diagnostic criteria for acute kidney injury after on-pump cardiac surgery: impact on incidence and outcomes. J Cardiothorac Vasc Anesth. 2013;27(6):1145–52.

    Article  Google Scholar 

  7. Petaja L, Vaara S, Liuhanen S, Suojaranta-Ylinen R, Mildh L, Nisula S, et al. Acute kidney injury after cardiac surgery by complete KDIGO criteria predicts increased mortality. J Cardiothorac Vasc Anesth. 2016;31(3):827–36.

    Google Scholar 

  8. Hu J, Chen R, Liu S, Yu X, Zou J, Ding X. Global incidence and outcomes of adult patients with acute kidney injury after cardiac surgery: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth. 2016;30(1):82–9.

    Article  Google Scholar 

  9. Karhausen J, Stafford-Smith M. The role of nonocclusive sources of acute gut injury in cardiac surgery. J Cardiothorac Vasc Anesth. 2014;28(2):379–91.

    Article  Google Scholar 

  10. Stafford-Smith M, Grocott HP. Renal medullary hypoxia during experimental cardiopulmonary bypass: a pilot study. Perfusion. 2005;20(1):53–8.

    Article  Google Scholar 

  11. Gambardella I, Gaudino M, Ronco C, Lau C, Ivascu N, Girardi LN. Congestive kidney failure in cardiac surgery: the relationship between central venous pressure and acute kidney injury. Interact Cardiovasc Thorac Surg. 2016;23(5):800–5.

    Article  Google Scholar 

  12. Billings FT, Ball SK, Roberts LJ, Pretorius M. Postoperative acute kidney injury is associated with hemoglobinemia and an enhanced oxidative stress response. Free Radic Biol Med. 2011;50(11):1480–7.

    Article  CAS  Google Scholar 

  13. Benedetto U, Angeloni E, Luciani R, Refice S, Stefanelli M, Comito C, et al. Acute kidney injury after coronary artery bypass grafting: does rhabdomyolysis play a role? J Thorac Cardiovasc Surg. 2010;140(2):464–70.

    Article  Google Scholar 

  14. Mauricio Del Rio J, Nicoara A, Swaminathan M. Neuroendocrine stress response: implications for cardiac surgery-associated acute kidney injury. Rom J Anaesth Intensive Care. 2017;24(1):57–63.

    CAS  Google Scholar 

  15. Zhang WR, Garg AX, Coca SG, Devereaux PJ, Eikelboom J, Kavsak P, et al. Plasma IL-6 and IL-10 concentrations predict AKI and long-term mortality in adults after cardiac surgery. J Am Soc Nephrol. 2015;26(12):3123–32.

    Article  CAS  Google Scholar 

  16. de Fontnouvelle CA, Greenberg JH, Thiessen-Philbrook HR, Zappitelli M, Roth J, Kerr KF, et al. Interleukin-8 and tumor necrosis factor predict acute kidney injury after pediatric cardiac surgery. Ann Thorac Surg. 2017;104(6):2072–9.

    Article  Google Scholar 

  17. Kristovic D, Horvatic I, Husedzinovic I, Sutlic Z, Rudez I, Baric D, et al. Cardiac surgery-associated acute kidney injury: risk factors analysis and comparison of prediction models. Interact Cardiovasc Thorac Surg. 2015;21(3):366–73.

    Article  Google Scholar 

  18. Oprea AD, Del Rio JM, Cooter M, Green CL, Karhausen JA, Nailer P, et al. Pre- and postoperative anemia, acute kidney injury, and mortality after coronary artery bypass grafting surgery: a retrospective observational study. Can J Anaesth. 2017;65(1):46–59.

    Google Scholar 

  19. Swaminathan M, Phillips-Bute BG, Conlon PJ, Smith PK, Newman MF, Stafford-Smith M. The association of lowest hematocrit during cardiopulmonary bypass with acute renal injury after coronary artery bypass surgery. Ann Thorac Surg. 2003;76(3):784–91; discussion 92.

    Google Scholar 

  20. Aronson S, Fontes ML, Miao Y, Mangano DT, Investigators of the Multicenter Study of Perioperative Ischemia Research G, Ischemia R, et al. Risk index for perioperative renal dysfunction/failure: critical dependence on pulse pressure hypertension. Circulation. 2007;115(6):733–42.

    Article  Google Scholar 

  21. Aronson S, Boisvert D, Lapp W. Isolated systolic hypertension is associated with adverse outcomes from coronary artery bypass grafting surgery. Anesth Analg. 2002;94(5):1079–84.

    Article  Google Scholar 

  22. Aronson S, Avery E, Dyke C, Varon J, Levy J. Blood pressure lability during cardiac surgery is associated with adverse outcomes. Am Soc Anesthesiol. 2008;FL2008.

    Google Scholar 

  23. Jiang W, Teng J, Xu J, Shen B, Wang Y, Fang Y, et al. Dynamic predictive scores for cardiac surgery-associated acute kidney injury. J Am Heart Assoc. 2016;5(8).

    Google Scholar 

  24. Stafford-Smith M, Li YJ, Mathew JP, Li YW, Ji Y, Phillips-Bute BG, et al. Genome-wide association study of acute kidney injury after coronary bypass graft surgery identifies susceptibility loci. Kidney Int. 2015;88(4):823–32.

    Article  CAS  Google Scholar 

  25. Huen SC, Parikh CR. Predicting acute kidney injury after cardiac surgery: a systematic review. Ann Thorac Surg. 2012;93(1):337–47.

    Article  Google Scholar 

  26. Thakar CV, Arrigain S, Worley S, Yared JP, Paganini EP. A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol. 2005;16(1):162–8.

    Article  Google Scholar 

  27. Englberger L, Suri RM, Li Z, Dearani JA, Park SJ, Sundt TM 3rd, et al. Validation of clinical scores predicting severe acute kidney injury after cardiac surgery. Am J Kidney Dis. 2010;56(4):623–31.

    Article  Google Scholar 

  28. KDIGO. KDIGO 2012 Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3(1).

    Google Scholar 

  29. Wang X, Vrtiska TJ, Avula RT, Walters LR, Chakkera HA, Kremers WK, et al. Age, kidney function, and risk factors associate differently with cortical and medullary volumes of the kidney. Kidney Int. 2014;85(3):677–85.

    Article  CAS  Google Scholar 

  30. Denic A, Glassock RJ, Rule AD. Structural and functional changes with the aging kidney. Adv Chronic Kidney Dis. 2016;23(1):19–28.

    Article  Google Scholar 

  31. Lindeman RD, Tobin J, Shock NW. Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc. 1985;33(4):278–85.

    Article  CAS  Google Scholar 

  32. Mennuni S, Rubattu S, Pierelli G, Tocci G, Fofi C, Volpe M. Hypertension and kidneys: unraveling complex molecular mechanisms underlying hypertensive renal damage. J Hum Hypertens. 2014;28(2):74–9.

    Article  CAS  Google Scholar 

  33. Mora-Fernandez C, Dominguez-Pimentel V, de Fuentes MM, Gorriz JL, Martinez-Castelao A, Navarro-Gonzalez JF. Diabetic kidney disease: from physiology to therapeutics. J Physiol. 2014;592(18):3997–4012.

    Article  CAS  Google Scholar 

  34. Parolari A, Pesce LL, Pacini D, Mazzanti V, Salis S, Sciacovelli C, et al. Risk factors for perioperative acute kidney injury after adult cardiac surgery: role of perioperative management. Ann Thorac Surg. 2012;93(2):584–91.

    Article  Google Scholar 

  35. Fischer S, Salaunkey K. Cardiac surgery-associated acute kidney injury. Curr Anesthesiol Rep. 2017.

    Google Scholar 

  36. Murray PT, Mehta RL, Shaw A, Ronco C, Endre Z, Kellum JA, et al. Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th acute dialysis quality initiative consensus conference. Kidney Int. 2014;85(3):513–21.

    Article  Google Scholar 

  37. Jia HM, Huang LF, Zheng Y, Li WX. Diagnostic value of urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor binding protein 7 for acute kidney injury: a meta-analysis. Crit Care (Lond). 2017;21(1):77.

    Google Scholar 

  38. Ho J, Tangri N, Komenda P, Kaushal A, Sood M, Brar R, et al. Urinary, plasma, and serum biomarkers’ utility for predicting acute kidney injury associated with cardiac surgery in adults: a meta-analysis. Am J Kidney Dis. 2015;66(6):993–1005.

    Article  CAS  Google Scholar 

  39. Moller CH, Penninga L, Wetterslev J, Steinbruchel DA, Gluud C. Off-pump versus on-pump coronary artery bypass grafting for ischaemic heart disease. Cochrane Database Syst Rev. 2012;3:CD007224.

    Google Scholar 

  40. Cheungpasitporn W, Thongprayoon C, Kittanamongkolchai W, Srivali N, O’Corragain OA, Edmonds PJ, et al. Comparison of renal outcomes in off-pump versus on-pump coronary artery bypass grafting: a systematic review and meta-analysis of randomized controlled trials. Nephrology (Carlton, Vic). 2015;20:727–35.

    Article  Google Scholar 

  41. Polomsky M, He X, O’Brien SM, Puskas JD. Outcomes of off-pump versus on-pump coronary artery bypass grafting: impact of preoperative risk. J Thorac Cardiovasc Surg. 2013;145(5):1193–8.

    Article  Google Scholar 

  42. Chawla LS, Zhao Y, Lough FC, Schroeder E, Seneff MG, Brennan JM. Off-pump versus on-pump coronary artery bypass grafting outcomes stratified by preoperative renal function. J Am Soc Nephrol. 2012;23(8):1389–97.

    Article  Google Scholar 

  43. Chen JJ, Lin LY, Yang YH, Hwang JJ, Chen PC, Lin JL, et al. On pump versus off pump coronary artery bypass grafting in patients with end-stage renal disease and coronary artery disease – a nation-wide, propensity score matched database analyses. Int J Cardiol. 2017;227:529–34.

    Article  Google Scholar 

  44. McCreath BJ, Swaminathan M, Booth JV, Phillips-Bute B, Chew STH, Glower DD, et al. Mitral valve surgery and acute renal injury: port access versus median sternotomy. Ann Thorac Surg. 2003;75(3):812–9.

    Article  Google Scholar 

  45. Antonic M, Gersak B. Renal function after port access and median sternotomy mitral valve surgery. Heart Surg Forum. 2007;10(5):E401–7.

    Article  Google Scholar 

  46. Gilmanov D, Bevilacqua S, Murzi M, Cerillo AG, Gasbarri T, Kallushi E, et al. Minimally invasive and conventional aortic valve replacement: a propensity score analysis. Ann Thorac Surg. 2013;96(3):837–43.

    Article  Google Scholar 

  47. Furukawa N, Kuss O, Aboud A, Schonbrodt M, Renner A, Hakim Meibodi K, et al. Ministernotomy versus conventional sternotomy for aortic valve replacement: matched propensity score analysis of 808 patients. Eur J Cardio-thorac Surg. 2014;46(2):221–6.. discussion 6-7

    Article  Google Scholar 

  48. Valdez GD, Mihos CG, Santana O, Heimowitz TB, Goldszer R, Lamas GA, et al. Incidence of postoperative acute kidney injury in patients with chronic kidney disease undergoing minimally invasive valve surgery. J Thorac Cardiovasc Surg. 2013;146(6):1488–93.

    Article  Google Scholar 

  49. Edwards ST, Schermerhorn ML, O’Malley AJ, Bensley RP, Hurks R, Cotterill P, et al. Comparative effectiveness of endovascular versus open repair of ruptured abdominal aortic aneurysm in the medicare population. J Vasc Surg. 2014;59(3):575–82.

    Article  Google Scholar 

  50. Siracuse JJ, Gill HL, Graham AR, Schneider DB, Connolly PH, Sedrakyan A, et al. Comparative safety of endovascular and open surgical repair of abdominal aortic aneurysms in low-risk male patients. J Vasc Surg. 2014;60(5):1154–8.

    Article  Google Scholar 

  51. Becquemin JP, Pillet JC, Lescalie F, Sapoval M, Goueffic Y, Lermusiaux P, et al. A randomized controlled trial of endovascular aneurysm repair versus open surgery for abdominal aortic aneurysms in low- to moderate-risk patients. J Vasc Surg. 2011;53(5):1167–73.. e1

    Article  Google Scholar 

  52. Gopaldas RR, Huh J, Dao TK, LeMaire SA, Chu D, Bakaeen FG, et al. Superior nationwide outcomes of endovascular versus open repair for isolated descending thoracic aortic aneurysm in 11,669 patients. J Thorac Cardiovasc Surg. 2010;140(5):1001–10.

    Article  Google Scholar 

  53. Lee HC, Joo HC, Lee SH, Lee S, Chang BC, Yoo KJ, et al. Endovascular repair versus open repair for isolated descending thoracic aortic aneurysm. Yonsei Med J. 2015;56(4):904–12.

    Article  Google Scholar 

  54. Murphy EH, Beck AW, Clagett P, DiMaio JM, Jessen ME, Arko FR. Combined aortic debranching and thoracic endovascular aneurysm repair (TEVAR) effective but at a cost. Arch Surg. 2009;144(3):222–7.

    Article  Google Scholar 

  55. Yoshitake A, Okamoto K, Yamazaki M, Kimura N, Hirano A, Iida Y, et al. Comparison of aortic arch repair using the endovascular technique, total arch replacement and staged surgery dagger. Eur J Cardio-thorac Surg. 2017;51(6):1142–8.

    Article  Google Scholar 

  56. Kawatou M, Minakata K, Sakamoto K, Nakatsu T, Tazaki J, Higami H, et al. Comparison of endovascular repair with branched stent graft and open repair for aortic arch aneurysmdagger. Interact Cardiovasc Thorac Surg. 2017;25(2):246–53.

    Google Scholar 

  57. Reardon MJ, Van Mieghem NM, Popma JJ, Kleiman NS, Sondergaard L, Mumtaz M, et al. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2017;376(14):1321–31.

    Article  Google Scholar 

  58. Leon MB, Smith CR, Mack MJ, Makkar RR, Svensson LG, Kodali SK, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2016;374(17):1609–20.

    Article  CAS  Google Scholar 

  59. Wang J, Yu W, Zhou Y, Yang Y, Li C, Liu N, et al. Independent risk factors contributing to acute kidney injury according to updated valve academic research consortium-2 criteria after transcatheter aortic valve implantation: a meta-analysis and meta-regression of 13 studies. J Cardiothorac Vasc Anesth. 2017;31(3):816–26.

    Article  Google Scholar 

  60. Nguyen TC, Babaliaros VC, Razavi SA, Kilgo PD, Guyton RA, Devireddy CM, et al. Impact of varying degrees of renal dysfunction on transcatheter and surgical aortic valve replacement. J Thorac Cardiovasc Surg. 2013;146(6):1399–406.. discussion 13406-7

    Article  Google Scholar 

  61. Umanath K, Emani S. Getting to the heart of the matter: review of treatment of cardiorenal syndrome. Adv Chronic Kidney Dis. 2017;24(4):261–6.

    Article  Google Scholar 

  62. Shamseddin MK, Parfrey PS. Mechanisms of the cardiorenal syndromes. Nat Rev Nephrol. 2009;5(11):641–9.

    Article  Google Scholar 

  63. Metz LI, LeBeau ME, Zlabek JA, Mathiason MA. Acute renal failure in patients undergoing cardiothoracic surgery in a community hospital. WMJ. 2009;108(2):109–14.

    Google Scholar 

  64. Renyolds A, White W, Stafford-Smith M, Grichnik K, Sickeler R, Gray M, et al. The relationship of loop diuretics with acute kidney injury and mortality after cardiac surgery. Anesth Analg. 2013;113(Suppl)(SCA3).

    Google Scholar 

  65. Yacoub R, Patel N, Lohr JW, Rajagopalan S, Nader N, Arora P. Acute kidney injury and death associated with renin angiotensin system blockade in cardiothoracic surgery: a meta-analysis of observational studies. Am J Kidney Dis. 2013;62(6):1077–86.

    Article  Google Scholar 

  66. Cheungpasitporn W, Thongprayoon C, Srivali N, O’Corragain OA, Edmonds PJ, Ungprasert P, et al. Preoperative renin-angiotensin system inhibitors use linked to reduced acute kidney injury: a systematic review and meta-analysis. Nephrol Dial Transplant. 2015;30(6):978–88.

    Article  CAS  Google Scholar 

  67. Xiong B, Nie D, Cao Y, Zou Y, Yao Y, Qian J, et al. Preoperative statin treatment for the prevention of acute kidney injury in patients undergoing cardiac surgery: a meta-analysis of randomised controlled trials. Heart Lung Circ. 2017;26(11):1200–7.

    Article  Google Scholar 

  68. O’Neal JB, Billings FT, Liu X, Shotwell MS, Liang Y, Shah AS, et al. Effect of preoperative Beta-blocker use on outcomes following cardiac surgery. Am J Cardiol. 2017;120(8):1293–7.

    Article  Google Scholar 

  69. Hu Y, Li Z, Chen J, Shen C, Song Y, Zhong Q. The effect of the time interval between coronary angiography and on-pump cardiac surgery on risk of postoperative acute kidney injury: a meta-analysis. J Cardiothorac Surg. 2013;8:178.

    Article  Google Scholar 

  70. Kim K, Joung KW, Ji SM, Kim JY, Lee EH, Chung CH, et al. The effect of coronary angiography timing and use of cardiopulmonary bypass on acute kidney injury after coronary artery bypass graft surgery. J Thorac Cardiovasc Surg. 2016;152(1):254–61.. e3

    Article  Google Scholar 

  71. Aycock RD, Westafer LM, Boxen JL, Majlesi N, Schoenfeld EM, Bannuru RR. Acute kidney injury after computed tomography: a meta-analysis. Ann Emerg Med. 2017.

    Google Scholar 

  72. Hinson JS, Ehmann MR, Fine DM, Fishman EK, Toerper MF, Rothman RE, et al. Risk of acute kidney injury after intravenous contrast media administration. Ann Emerg Med. 2017;69(5):577–86.e4.

    Article  Google Scholar 

  73. Azzalini L, Candilio L, McCullough PA, Colombo A. Current risk of contrast-induced acute kidney injury after coronary angiography and intervention: a reappraisal of the literature. Can J Cardiol. 2017;33(10):1225–8.

    Article  Google Scholar 

  74. Weisbord SD, Gallagher M, Jneid H, Garcia S, Cass A, Thwin SS, et al. Outcomes after angiography with sodium bicarbonate and acetylcysteine. N Engl J Med. 2017;378(7):603–14.

    Google Scholar 

  75. Pierce B, Bole I, Patel V, Brown DL. Clinical outcomes of remote ischemic preconditioning prior to cardiac surgery: a meta-analysis of randomized controlled trials. J Am Heart Assoc. 2017;6(2):e004666.

    Google Scholar 

  76. Zarbock A, Kellum JA, Van Aken H, Schmidt C, Kullmar M, Rosenberger P, et al. Long-term effects of remote ischemic preconditioning on kidney function in high-risk cardiac surgery patients: follow-up results from the renal RIP trial. Anesthesiology. 2017;126(5):787–98.

    Article  Google Scholar 

  77. Lannemyr L, Bragadottir G, Krumbholz V, Redfors B, Sellgren J, Ricksten SE. Effects of cardiopulmonary bypass on renal perfusion, filtration, and oxygenation in patients undergoing cardiac surgery. Anesthesiology. 2017;126(2):205–13.

    Article  Google Scholar 

  78. Regolisti G, Maggiore U, Cademartiri C, Belli L, Gherli T, Cabassi A, et al. Renal resistive index by transesophageal and transparietal echo-Doppler imaging for the prediction of acute kidney injury in patients undergoing major heart surgery. J Nephrol. 2016;30:243–53.

    Article  Google Scholar 

  79. Scott NB, Turfrey DJ, Ray DA, Nzewi O, Sutcliffe NP, Lal AB, et al. A prospective randomized study of the potential benefits of thoracic epidural anesthesia and analgesia in patients undergoing coronary artery bypass grafting. Anesth Analg. 2001;93(3):528–35.

    Article  CAS  Google Scholar 

  80. Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–11.

    Article  CAS  Google Scholar 

  81. Stafford-Smith M. Antifibrinolytic use during cardiac and hepatic surgery makes tubular proteinuria-based early biomarkers poor tools to diagnose perioperative acute kidney injury. Am J Kidney Dis. 2011;57(6):960; author reply-1.

    Google Scholar 

  82. Mazze RI. Methoxyflurane revisited: tale of an anesthetic from cradle to grave. Anesthesiology. 2006;105(4):843–6.

    Article  CAS  Google Scholar 

  83. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney International Supplements. 2012;2(1).

    Google Scholar 

  84. Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–72.

    Article  CAS  Google Scholar 

  85. Young P, Bailey M, Beasley R, Henderson S, Mackle D, McArthur C, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA. 2015;314(16):1701–10.

    Article  CAS  Google Scholar 

  86. Zhang L, Chen Z, Diao Y, Yang Y, Fu P. Associations of fluid overload with mortality and kidney recovery in patients with acute kidney injury: a systematic review and meta-analysis. J Crit Care. 2015;30(4):860.e7–13.

    Article  Google Scholar 

  87. Williams JB, Peterson ED, Wojdyla D, Harskamp R, Southerland KW, Ferguson TB, et al. Central venous pressure after coronary artery bypass surgery: does it predict postoperative mortality or renal failure? J Crit Care. 2014;29(6):1006–10.

    Article  Google Scholar 

  88. Prowle JR, Chua HR, Bagshaw SM, Bellomo R. Clinical review: volume of fluid resuscitation and the incidence of acute kidney injury – a systematic review. Critical care (Lond). 2012;16(4):230.

    Article  Google Scholar 

  89. Heringlake M, Knappe M, Vargas Hein O, Lufft H, Kindgen-Milles D, Bottiger BW, et al. Renal dysfunction according to the ADQI-RIFLE system and clinical practice patterns after cardiac surgery in Germany. Minerva Anestesiol. 2006;72(7–8):645–54.

    CAS  Google Scholar 

  90. De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362(9):779–89.

    Article  Google Scholar 

  91. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41(2):580–637.

    Article  Google Scholar 

  92. Sickeler R, Phillips-Bute B, Kertai MD, Schroder J, Mathew JP, Swaminathan M, et al. The risk of acute kidney injury with co-occurrence of anemia and hypotension during cardiopulmonary bypass relative to anemia alone. Ann Thorac Surg. 2014;97(3):865–71.

    Article  Google Scholar 

  93. Karkouti K, Beattie WS, Wijeysundera DN, Rao V, Chan C, Dattilo KM, et al. Hemodilution during cardiopulmonary bypass is an independent risk factor for acute renal failure in adult cardiac surgery. J Thorac Cardiovasc Surg. 2005;129(2):391–400.

    Article  CAS  Google Scholar 

  94. Mazer CD, Whitlock RP, Fergusson DA, Hall J, Belley-Cote E, Connolly K, et al. Restrictive or Liberal red-cell transfusion for cardiac surgery. N Engl J Med. 2017;377(22):2133–44.

    Article  Google Scholar 

  95. Karkouti K, Wijeysundera DN, Yau TM, Callum JL, Cheng DC, Crowther M, et al. Acute kidney injury after cardiac surgery: focus on modifiable risk factors. Circulation. 2009;119(4):495–502.

    Article  Google Scholar 

  96. Haase M, Bellomo R, Story D, Letis A, Klemz K, Matalanis G, et al. Effect of mean arterial pressure, haemoglobin and blood transfusion during cardiopulmonary bypass on post-operative acute kidney injury. Nephrol Dial Transplant. 2012;27(1):153–60.

    Article  CAS  Google Scholar 

  97. Lacroix J, Hebert PC, Fergusson DA, Tinmouth A, Cook DJ, Marshall JC, et al. Age of transfused blood in critically ill adults. N Engl J Med. 2015;372(15):1410–8.

    Article  CAS  Google Scholar 

  98. Heddle NM, Cook RJ, Arnold DM, Liu Y, Barty R, Crowther MA, et al. Effect of short-term vs. long-term blood storage on mortality after transfusion. N Engl J Med. 2016;375(20):1937–45.

    Article  Google Scholar 

  99. Cooper DJ, McQuilten ZK, Nichol A, Ady B, Aubron C, Bailey M, et al. Age of red cells for transfusion and outcomes in critically ill adults. N Engl J Med. 2017;377(19):1858–67.

    Article  Google Scholar 

  100. Wang G, Bainbridge D, Martin J, Cheng D. The efficacy of an intraoperative cell saver during cardiac surgery: a meta-analysis of randomized trials. Anesth Analg. 2009;109(2):320–30.

    Article  CAS  Google Scholar 

  101. Scrascia G, Guida P, Rotunno C, de Luca Tupputi Schinosa L, Paparella D. Anti-inflammatory strategies to reduce acute kidney injury in cardiac surgery patients: a meta-analysis of randomized controlled trials. Artif Organs. 2014;38(2):101–12.

    Article  CAS  Google Scholar 

  102. Gandhi GY, Nuttall GA, Abel MD, Mullany CJ, Schaff HV, O’Brien PC, et al. Intensive intraoperative insulin therapy versus conventional glucose management during cardiac surgery: a randomized trial. Ann Intern Med. 2007;146(4):233–43.

    Article  Google Scholar 

  103. Wiener RS, Wiener DC, Larson RJ. Benefits and risks of tight glucose control in critically ill adults: a meta-analysis. JAMA. 2008;300(8):933–44.

    Article  CAS  Google Scholar 

  104. Yamada T, Shojima N, Noma H, Yamauchi T, Kadowaki T. Glycemic control, mortality, and hypoglycemia in critically ill patients: a systematic review and network meta-analysis of randomized controlled trials. Intensive Care Med. 2017;43(1):1–15.

    Article  CAS  Google Scholar 

  105. Azau A, Markowicz P, Corbeau JJ, Cottineau C, Moreau X, Baufreton C, et al. Increasing mean arterial pressure during cardiac surgery does not reduce the rate of postoperative acute kidney injury. Perfusion. 2014;29(6):496–504.

    Article  CAS  Google Scholar 

  106. Abel RM, Buckley MJ, Austen WG, Barnett GO, Beck CH Jr, Fischer JE. Etiology, incidence, and prognosis of renal failure following cardiac operations. Results of a prospective analysis of 500 consecutive patients. J Thorac Cardiovasc Surg. 1976;71(3):323–33.

    Article  CAS  Google Scholar 

  107. Urzua J, Troncoso S, Bugedo G, Canessa R, Munoz H, Lema G, et al. Renal function and cardiopulmonary bypass: effect of perfusion pressure. J Cardiothorac Vasc Anesth. 1992;6(3):299–303.

    Article  CAS  Google Scholar 

  108. Smeltz AM, Cooter M, Rao S, Karhausen JA, Stafford-Smith M, Fontes ML, et al. Elevated pulse pressure, intraoperative hemodynamic perturbations, and acute kidney injury after coronary artery bypass grafting surgery. J Cardiothorac Vasc Anesth. 2017;32:1214–24.

    Article  Google Scholar 

  109. Swaminathan M, East C, Phillips-Bute B, Newman MF, Reves JG, Smith PK, et al. Report of a substudy on warm versus cold cardiopulmonary bypass: changes in creatinine clearance. Ann Thorac Surg. 2001;72(5):1603–9.

    Article  CAS  Google Scholar 

  110. Newland RF, Tully PJ, Baker RA. Hyperthermic perfusion during cardiopulmonary bypass and postoperative temperature are independent predictors of acute kidney injury following cardiac surgery. Perfusion. 2013;28(3):223–31.

    Article  CAS  Google Scholar 

  111. Newland RF, Baker RA, Mazzone AL, Quinn SS, Chew DP, Perfusion Downunder C. Rewarming temperature during cardiopulmonary bypass and acute kidney injury: a multicenter analysis. Ann Thorac Surg. 2016;101(5):1655–62.

    Article  Google Scholar 

  112. Yallop KG, Sheppard SV, Smith DC. The effect of mannitol on renal function following cardio-pulmonary bypass in patients with normal pre-operative creatinine. Anaesthesia. 2008;63(6):576–82.

    Article  CAS  Google Scholar 

  113. Smith MN, Best D, Sheppard SV, Smith DC. The effect of mannitol on renal function after cardiopulmonary bypass in patients with established renal dysfunction. Anaesthesia. 2008;63(7):701–4.

    Article  CAS  Google Scholar 

  114. Fiaccadori E, Lombardi M, Leonardi S, Rotelli CF, Tortorella G, Borghetti A. Prevalence and clinical outcome associated with preexisting malnutrition in acute renal failure: a prospective cohort study. J Am Soc Nephrol. 1999;10(3):581–93.

    Article  CAS  Google Scholar 

  115. Ho KM, Sheridan DJ. Meta-analysis of frusemide to prevent or treat acute renal failure. BMJ. 2006;333(7565):420.

    Article  CAS  Google Scholar 

  116. Kellum J, Decker J. Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med. 2001;29(8):6.

    Article  Google Scholar 

  117. Friedrich J, Adhikari N, Herridge M, Beyene J. Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med. 2005;142(7):15.

    Article  Google Scholar 

  118. Bove T, Zangrillo A, Guarracino F, Alvaro G, Persi B, Maglioni E, et al. Effect of fenoldopam on use of renal replacement therapy among patients with acute kidney injury after cardiac surgery: a randomized clinical trial. JAMA. 2014;312(21):2244–53.

    Article  CAS  Google Scholar 

  119. Landoni G, Biondi-Zoccai GG, Marino G, Bove T, Fochi O, Maj G, et al. Fenoldopam reduces the need for renal replacement therapy and in-hospital death in cardiovascular surgery: a meta-analysis. J Cardiothorac Vasc Anesth. 2008;22(1):27–33.

    Article  CAS  Google Scholar 

  120. Cogliati AA, Vellutini R, Nardini A, Urovi S, Hamdan M, Landoni G, et al. Fenoldopam infusion for renal protection in high-risk cardiac surgery patients: a randomized clinical study. J Cardiothorac Vasc Anesth. 2007;21(6):847–50.

    Article  CAS  Google Scholar 

  121. Swaminathan M, Stafford-Smith M, Chertow GM, Warnock DG, Paragamian V, Brenner RM, et al. Allogeneic mesenchymal stem cells for treatment of AKI after cardiac surgery. J Am Soc Nephrol. 2017;29(1):260–67.

    Google Scholar 

  122. Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43(11):1551–61.

    Article  CAS  Google Scholar 

  123. Bouchard J, Soroko SB, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009;76(4):422–7.

    Article  Google Scholar 

  124. Gaudry S, Hajage D, Schortgen F, Martin-Lefevre L, Pons B, Boulet E, et al. Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med. 2016;375(2):122–33.

    Article  Google Scholar 

  125. Zarbock A, Kellum JA, Schmidt C, Van Aken H, Wempe C, Pavenstadt H, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA. 2016;315(20):2190–9.

    Article  CAS  Google Scholar 

  126. Meersch M, Kullmar M, Schmidt C, Gerss J, Weinhage T, Margraf A, et al. Long-term clinical outcomes after early initiation of RRT in critically ill patients with AKI. J Am Soc Nephrol. 2017;29(3):1011–9.

    Google Scholar 

  127. Bhatt GC, Das RR. Early versus late initiation of renal replacement therapy in patients with acute kidney injury-a systematic review & meta-analysis of randomized controlled trials. BMC Nephrol. 2017;18(1):78.

    Article  Google Scholar 

  128. Schneider AG, Bellomo R, Bagshaw SM, Glassford NJ, Lo S, Jun M, et al. Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: a systematic review and meta-analysis. Intensive Care Med. 2013;39(6):987–97.

    Article  CAS  Google Scholar 

  129. Bellomo R, Baldwin I, Fealy N. Prolonged intermittent renal replacement therapy in the intensive care unit. Crit Care Resusc. 2002;4(4):281–90.

    CAS  Google Scholar 

  130. Zhang L, Yang J, Eastwood GM, Zhu G, Tanaka A, Bellomo R. Extended daily dialysis versus continuous renal replacement therapy for acute kidney injury: a meta-analysis. Am J Kidney Dis. 2015;66(2):322–30.

    Article  Google Scholar 

  131. Schiffl H, Lang SM, Fischer R. Daily hemodialysis and the outcome of acute renal failure. N Engl J Med. 2002;346(5):305–10.

    Article  Google Scholar 

  132. Network VNARFT, Palevsky PM, Zhang JH, O’Connor TZ, Chertow GM, Crowley ST, et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359(1):7–20.

    Article  Google Scholar 

  133. Combes A, Brechot N, Amour J, Cozic N, Lebreton G, Guidon C, et al. Early high-volume hemofiltration versus standard care for post-cardiac surgery shock. The HEROICS study. Am J Respir Crit Care Med. 2015;192(10):1179–90.

    Article  Google Scholar 

  134. Liu C, Mao Z, Kang H, Hu J, Zhou F. Regional citrate versus heparin anticoagulation for continuous renal replacement therapy in critically ill patients: a meta-analysis with trial sequential analysis of randomized controlled trials. Crit Care (Lond). 2016;20(1):144.

    Google Scholar 

  135. Lim W, Cook DJ, Crowther MA. Safety and efficacy of low molecular weight heparins for hemodialysis in patients with end-stage renal failure: a meta-analysis of randomized trials. J Am Soc Nephrol. 2004;15(12):3192–206.

    Article  Google Scholar 

  136. Lasocki S, Piednoir P, Ajzenberg N, Geffroy A, Benbara A, Montravers P. Anti-PF4/heparin antibodies associated with repeated hemofiltration-filter clotting: a retrospective study. Crit Care (Lond). 2008;12(3):R84.

    Google Scholar 

  137. Swaminathan M, Hudson CC, Phillips-Bute BG, Patel UD, Mathew JP, Newman MF, et al. Impact of early renal recovery on survival after cardiac surgery-associated acute kidney injury. Ann Thorac Surg. 2010;89(4):1098–104.

    Article  Google Scholar 

  138. Thongprayoon C, Cheungpasitporn W, Srivali N, Kittanamongkolchai W, Sakhuja A, Greason KL, et al. The association between renal recovery after acute kidney injury and long-term mortality after transcatheter aortic valve replacement. PLoS One. 2017;12(8):e0183350.

    Article  CAS  Google Scholar 

  139. Forni LG, Darmon M, Ostermann M, Oudemans-van Straaten HM, Pettila V, Prowle JR, et al. Renal recovery after acute kidney injury. Intensive Care Med. 2017;43(6):855–66.

    Article  CAS  Google Scholar 

  140. Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK. Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol. 2015;26(8):1765–76.

    Article  CAS  Google Scholar 

  141. Brown JR, Parikh CR, Ross CS, Kramer RS, Magnus PC, Chaisson K, et al. Impact of perioperative acute kidney injury as a severity index for thirty-day readmission after cardiac surgery. Ann Thorac Surg. 2014;97(1):111–7.

    Article  Google Scholar 

  142. Pickering JW, James MT, Palmer SC. Acute kidney injury and prognosis after cardiopulmonary bypass: a meta-analysis of cohort studies. Am J Kidney Dis. 2015;65(2):283–93.

    Article  Google Scholar 

  143. Xu JR, Zhu JM, Jiang J, Ding XQ, Fang Y, Shen B, et al. Risk factors for long-term mortality and progressive chronic kidney disease associated with acute kidney injury after cardiac surgery. Medicine. 2015;94(45):e2025.

    Article  CAS  Google Scholar 

  144. Brochard L, Abroug F, Brenner M, Broccard AF, Danner RL, Ferrer M, et al. An official ATS/ERS/ESICM/SCCM/SRLF statement: prevention and management of acute renal failure in the ICU patient: an international consensus conference in intensive care medicine. Am J Respir Crit Care Med. 2010;181(10):1128–55.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Stafford-Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cherry, A.D., Andrew, B.Y., Privratsky, J.R., Stafford-Smith, M. (2021). Renal Failure and Dialysis. In: Cheng, D.C., Martin, J., David, T. (eds) Evidence-Based Practice in Perioperative Cardiac Anesthesia and Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-47887-2_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47887-2_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47886-5

  • Online ISBN: 978-3-030-47887-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics