Skip to main content

Ovarian Tissue Cryopreservation and Transplantation: Scientific and Clinical Implications

  • Chapter
  • First Online:
Female and Male Fertility Preservation

Abstract

After fresh or frozen ovary transplantation, FSH levels return to normal, and menstrual cycles resume by 150 days, coincident with anti-Müllerian hormone rising to higher than normal levels. AMH then returns to well below normal levels by 240 days, remaining as such for many years with nonetheless normal ovulation and fertility. To date, 27 babies have been born in our program from 11 fresh and 13 cryopreserved ovary transplant recipients with a live baby rate of over 70% (11 babies from fresh and 16 from frozen). Globally, over 180 live births have been reported for both fresh and frozen ovary transplants with a 30–71% live birth rate. Given the rapid rise of AMH after the fall of FSH, with a subsequent AMH decrease with long-term retention of ovarian function, it is tempting to speculate the existence of a shared mechanism controlling primordial follicle recruitment, fetal oocyte meiotic arrest, and recruitment in the adult ovary. With the massive recruitment of primordial follicles observed after human ovarian cortical tissue transplantation, which subsides later to an extremely low recruitment rate, we will discuss how this phenomenon suggests a unifying theory implicating ovarian cortical tissue rigidity in the regulation of both fetal oocyte arrest and recruitment of follicles in the adult ovary. Follicle loss after ovarian cortex transplantation is not due to ischemic apoptosis, but rather from a “burst” of primordial follicle recruitment because of reduced cortical tissue pressure. In vivo, primordial follicles are normally resistant to development or activation in order to prevent oocyte depletion. The dense fibrous ovarian cortex, by inducing nuclear rotation, arrests the further continuation of meiosis and also prevents a sudden depletion of all resting follicles in the adult ovary. Intrinsic tissue pressure is released after cortical tissue transplantation, temporarily resulting in a rapid follicle depletion. These results are consistent with the observation that once the ovarian reserve is reduced in the graft, the rate of recruitment diminishes and the ovarian tissue exhibits a relatively long duration of function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winkler-Crepaz. Follicular growth after xenotransplantation of cryopreserved/thawed human ovarian tissue in SCID mice: dynamic and molecular aspects. JARG, in press, 2016.

    Google Scholar 

  2. Connolly MP, Pollard MS, Hoorens S, Kaplan BR, Oskowitz SP, Silber SJ. Long-term economic benefits attributed to IVF-conceived children: a lifetime tax calculation. Am J Manag Care. 2008;14:598–604.

    PubMed  Google Scholar 

  3. Silber SJ. Are we infertile? Simpler treatments. In: How to get pregnant. Boston: Little Brown; 2007. p. 87.

    Google Scholar 

  4. Mosher WD, Pratt WF. Fecundity and infertility in the United States, 1965–82. Adv Data. 1985;

    Google Scholar 

  5. Baerwald AR, Adams GP, Pierson RA. Ovarian antral folliculogenesis during the human menstrual cycle: a review. Hum Reprod Update. 2012;18:73–91.

    Article  PubMed  Google Scholar 

  6. Leridon H. Can assisted reproduction technology compensate for the natural decline in fertility with age? A model assessment. Hum Reprod. 2004;19:1548–53.

    Article  PubMed  Google Scholar 

  7. Lampic C, Svanberg AS, Karlstrom P, Tyden T. Fertility awareness, intentions concerning childbearing, and attitudes toward parenthood among female and male academics. Hum Reprod. 2006;21:558–64.

    Article  CAS  PubMed  Google Scholar 

  8. Maheshwari A, Porter M, Shetty A, Bhattacharya S. Women’s awareness and perceptions of delay in childbearing. Fertil Steril. 2008;90:1036–42.

    Article  PubMed  Google Scholar 

  9. te Velde ER. Pearson PL. The variability of female reproductive ageing. Hum Reprod Update. 2002;8:141–54.

    Article  Google Scholar 

  10. Devroey P. Female age predicts embryonic implantation after ICSI: a case-controlled study. Hum Reprod. 1996;11:1324–7.

    Article  CAS  PubMed  Google Scholar 

  11. Silber SJ, Nagy Z, Devroey P, Camus M, Van Steirteghem AC. The effect of female age and ovarian reserve on pregnancy rate in male infertility: treatment of azoospermia with sperm retrieval and fertility and sterility 2195 intracytoplasmic sperm injection. Hum Reprod. 1997;12:2693–700.

    Article  CAS  PubMed  Google Scholar 

  12. Fretts RC. Effect of advanced age on fertility and pregnancy in women. Up To Date Online. 2007; Available at: http://www.uptodate.com

  13. SART. Assisted reproductive technology success rates. National summary and fertility clinic reports. Centers for Disease Control and Prevention: Atlanta, GA; 2005.

    Google Scholar 

  14. Bleyer WA. The impact of childhood cancer on the United States and the world. CA Cancer J Clin. 1990;40:355–67.

    Article  CAS  PubMed  Google Scholar 

  15. Ries LAG. Cancer incidence and survival among children and adolescents: United States SEER program 1975–1995. 1999.

    Google Scholar 

  16. Jeruss JS, Woodruff TK. Preservation of fertility in patients with cancer. N Engl J Med. 2009;360:902–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anderson RA, Themmen AP, Al-Qahtani A, Groome NP, Cameron DA. The effects of chemotherapy and long-term gonadotrophin suppression on the ovarian reserve in premenopausal women with breast cancer. Hum Reprod. 2006;21:2583–92.

    Article  CAS  PubMed  Google Scholar 

  18. Anderson RA, Cameron DA. Assessment of the effect of chemotherapy on ovarian function in women with breast cancer. J Clin Oncol. 2007;25:1630–1. Author reply 1632

    Article  PubMed  Google Scholar 

  19. Larsen EC, Muller J, Schmiegelow K, Rechnitzer C, Andersen AN. Reduced ovarian function in long- term survivors of radiation and chemotherapy-treated childhood cancer. J Clin Endocrinol Metab. 2003;88:5307–14.

    Article  CAS  PubMed  Google Scholar 

  20. Lee SJ, Schover LR, Partridge AH, Patrizio P, Wallace WH, Hagerty K, et al. American Society of Clinical Oncology. American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol. 2006;24:2917–31.

    Article  PubMed  Google Scholar 

  21. Schover LR, Rybicki LA, Martin BA, Bringelsen KA. Having children after cancer. A pilot survey of survivors’ attitudes and experiences. Cancer. 1999;86:697–709.

    Article  CAS  PubMed  Google Scholar 

  22. Schover LR, Brey K, Lichtin A, Lipshultz LI, Jeha S. Knowledge and experience regarding cancer, infertility, and sperm banking in younger male survivors. J Clin Oncol. 2002;20:1880–9.

    Article  PubMed  Google Scholar 

  23. Gosden RG, Baird DT, Wade JC, Webb R. Restoration of fertility to oophorectomized sheep by ovarian autografts stored at −196 degrees C. Hum Reprod. 1994;9:597–603.

    Article  CAS  Google Scholar 

  24. Gook DA, Edgar DH, Stern C. Effect of cooling rate and dehydration regimen on the histological appearance of human ovarian cortex following cryopreservation in 1, 2-propanediol. Hum Reprod. 1999;14:2061–8.

    Article  CAS  PubMed  Google Scholar 

  25. Newton H, Aubard Y, Rutherford A, Sharma V, Gosden R. Low temperature storage and grafting of human ovarian tissue. Hum Reprod. 1996;11:1487–91.

    Article  CAS  PubMed  Google Scholar 

  26. Homburg R, van der Veen F, Silber SJ. Oocyte vitrification--women's emancipation set in stone. Fertil Steril. 2009;91:1319–20.

    Article  PubMed  Google Scholar 

  27. Kuwayama M, Vajta G, Kato O, Leibo SP. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod Biomed Online. 2005;11:300–8.

    Article  PubMed  Google Scholar 

  28. Cobo A, Garcia-Velasco JA, Domingo J. Remoh. J, Pellicer a. is vitrification of oocytes useful for fertility preservation for age-related fertility decline and in cancer patients? Fertil Steril. 2013;99:1485–95.

    Article  PubMed  Google Scholar 

  29. Cobo A, Diaz C. Clinical application of oocyte vitrification: a systematic review and meta-analysis of randomized controlled trials. Fertil Steril. 2011;96:277–85.

    Article  PubMed  Google Scholar 

  30. Cobo A, Vajta G. Remoh. J. Vitrification of human mature oocytes in clinical practice. Reprod biomed online 2009; 19 (suppl 4): 4385. 32 smith GD, Serafini PC, Fioravanti J, et al. prospective randomized comparison of human oocyte cryopreservation with slow-rate freezing or vitrification. Fertil Steril. 2010;94:2088–95.

    Google Scholar 

  31. Cobo A, Kuwayama M. P.rez S, Ruiz a, Pellicer a, Remoh. J. Comparison of concomitant outcome achieved with fresh and cryopreserved donor oocytes vitrified by the Cryotop method. Fertil Steril. 2008;89:1657–64.

    Article  PubMed  Google Scholar 

  32. Rienzi L, Cobo A, Paffoni A, et al. Consistent and predictable delivery rates after oocyte vitrification: an observational longitudinal cohort multicentric study. Hum Reprod. 2012;27:1606–12.

    Article  PubMed  Google Scholar 

  33. Cil AP, Bang H, Oktay K. Age-specific probability of live birth with oocyte cryopreservation: an individual patient data meta-analysis. Fertil Steril. 2013;100:492–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stoop D, Maes E, Polyzos NP, Verheyen G, Tournaye H, Nekkebroeck J. Oocyte banking for anticipated gamete exhaustion (AGE) is a preventive intervention, neither social nor nonmedical. Reprod Biomed Online. 2014;28:548–51.

    Article  PubMed  Google Scholar 

  35. Patrizio P, Sakkas D. From oocyte to baby: a clinical evaluation of the biological efficiency of in vitro fertilization. Fertil Steril. 2009;91:1061–6.

    Article  PubMed  Google Scholar 

  36. Silber SJ, Lenahan KM, Levine DJ, et al. Ovarian transplantation between monozygotic twins discordant for premature ovarian failure. N Engl J Med. 2005;353:58–63.

    Article  CAS  PubMed  Google Scholar 

  37. Silber S. Unifying theory of adult resting follicle recruitment and fetal oocyte arrest. Reprod Biomed Online. 2015;31:472–5.

    Article  PubMed  Google Scholar 

  38. Silber S, Pineda J, Lenahan K, DeRosa M, Melnick J. Fresh and cryopreserved ovary transplantation and resting follicle recruitment. Reprod Biomed Online. 2015;30:643–50.

    Article  PubMed  Google Scholar 

  39. Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science. 2012;338:971–5.

    Article  CAS  PubMed  Google Scholar 

  40. Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell. 2011;146:519–32.

    Article  CAS  PubMed  Google Scholar 

  41. Hayashi K, Saitou M. Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells. Nat Protoc. 2013;8:1513–24.

    Article  CAS  PubMed  Google Scholar 

  42. Gunasena KT, Villines PM, Critser ES, Critser JK. Live births after autologous transplant of cryopreserved mouse ovaries. Hum Reprod1997; 12: 101–106.

    Google Scholar 

  43. Deanesly R. Immature rat ovaries grafted after freezing and thawing. J Endocrinol. 1954;11:197–200.

    Article  CAS  PubMed  Google Scholar 

  44. Parrott DMV. The fertility of mice with orthotopic ovarian grafts derived from frozen tissue. J Reprod Fertil. 1960;1:230–41.

    Article  Google Scholar 

  45. Candy CJ, Wood MJ, Whittingham DG. Restoration of a normal reproductive lifespan after grafting of cryopreserved mouse ovaries. Hum Reprod. 2000;15:1300–4.

    Article  CAS  PubMed  Google Scholar 

  46. Aubard Y, Piver P, Cogni Y, Fermeaux V, Poulin N, Driancourt MA. Orthotopic and heterotopic autografts of frozen-thawed ovarian cortex in sheep. Hum Reprod. 1999;14:2149–54.

    Article  CAS  PubMed  Google Scholar 

  47. Donnez J, Dolmans MM, Demylle D, et al. Live birth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;364:1405–10.

    Article  CAS  PubMed  Google Scholar 

  48. Meirow D, Levron J, Eldar-Geva T, et al. Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med. 2005;353:318–21.

    Article  CAS  PubMed  Google Scholar 

  49. Silber SJ, Gosden RG. Ovarian transplantation in a series of monozygotic twins discordant for ovarian failure. N Engl J Med. 2007;356:1382–4.

    Article  CAS  PubMed  Google Scholar 

  50. Silber SJ, DeRosa M, Pineda J, Lenahan K, Grenia D, Gorman K, Gosden RG. A series of monozygotic twins discordant for ovarian failure: ovary transplantation (cortical versus microvascular) and cryopreservation. Hum Reprod. 2008a;23:1531–7.

    Article  CAS  PubMed  Google Scholar 

  51. Silber SJ, Grudzinskas G, Gosden RG. Successful pregnancy after microsurgical transplantation of an intact ovary. N Engl J Med. 2008b;359:2617–8.

    Article  CAS  PubMed  Google Scholar 

  52. Gosden RG, Telfer E, Faddy MJ, Brook DJ. Ovarian cyclicity and follicular recruitment in unilaterally ovariectomized mice. J Reprod Fertil. 1989;87:257–64.

    Article  CAS  PubMed  Google Scholar 

  53. Greve T, Clasen-Linde E, Andersen MT, et al. Cryopreserved ovarian cortex from patients with leukemia n complete remission contains no apparent viable malignant cells. Blood. 2012;120:4311–6.

    Article  CAS  PubMed  Google Scholar 

  54. Kagawa N, Silber S, Kuwayama M. Successful vitrification of bovine and human ovarian tissue. Reprod Biomed Online. 2009;18:568.

    Article  PubMed  Google Scholar 

  55. Silber S, Kagawa N, Kuwayama M, Gosden R. Duration of fertility after fresh and frozen ovary transplantation. Fertil Steril. 2010;94:2191–6.

    Article  PubMed  Google Scholar 

  56. Stoop D, Cobo A, Silber S. Fertility preservation for age-related fertility decline. Lancet. 2014;384:1311–9.

    Article  PubMed  Google Scholar 

  57. Donnez J, Dolmans MM. Ovarian cortex transplantation: 60 reported live births brings the success and worldwide expansion of the technique towards routine clinical practice. J Assist Reprod Genet. 2015;32:1167–70.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Andersen CY, Rosendahl M, Byskov AG, et al. Two successful pregnancies following autotransplantation of frozen/thawed ovarian tissue. Hum Reprod. 2008;23:2266–72.

    Article  PubMed  Google Scholar 

  59. Revel A, Laufer N, Ben Meir A, Lebovich M, Mitrani E. Micro-organ ovarian transplantation enables pregnancy: a case report. Hum Reprod. 2011;26:1097–103.

    Article  PubMed  Google Scholar 

  60. Revelli A, Marchino G, Dolfin E, et al. Live birth after orthotopic grafting of autologous cryopreserved ovarian tissue and spontaneous conception in Italy. Fertil Steril. 2013;99:227–30.

    Article  PubMed  Google Scholar 

  61. Dittrich R, Lotz L, Keck G, et al. Live birth after ovarian tissue autotransplantation following overnight transportation before cryopreservation. Fertil Steril. 2012;97:387–90.

    Article  PubMed  Google Scholar 

  62. Andersen CY, Silber SJ, Bergholdt SH, Jorgensen JS, Ernst E. Long-term duration of function of ovarian tissue transplants: case reports. Reprod Biomed Online. 2012;25:128–32.

    Article  PubMed  Google Scholar 

  63. Demeestere I, Simon P, Emiliani S, Delbaere A, Englert Y. Fertility preservation: successful transplantation of cryopreserved ovarian tissue in a young patient previously treated for Hodgkin's disease. Oncologist. 2007;12:1437–42.

    Article  PubMed  Google Scholar 

  64. Sanchez-Serrano M, Crespo J, Mirabet V, et al. Twins born after transplantation of ovarian cortical tissue and oocyte vitrification. Fertility and sterility 2010;93:268 e11–3.

    Google Scholar 

  65. Piver P, Amiot C, Agnani G, et al. Two pregnancies obtained after a new technique of autotransplantation of cryopreserved ovarian tissue. Hum Reprod. 2009;24(15):10–35.

    Google Scholar 

  66. Donnez J, Dolmans MM, Pellicer A, et al. Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue: a review of 60 cases of reimplantation. Fertil Steril. 2013;99:1503–13.

    Article  Google Scholar 

  67. Jensen AK, Kristensen SG, Macklon KT, et al. Outcomes of transplantations of cryopreserved ovarian tissue to 41 women in Denmark. Hum Reprod. 2015;30:2838–45.

    Article  CAS  PubMed  Google Scholar 

  68. Gook DA, Edgar DH, Stern C. The effects of cryopreservation regimens on the morphology of human ovarian tissue. Mol Cell Endocrinol. 2000;169:99–103.

    Article  CAS  PubMed  Google Scholar 

  69. Ortega JJ, Javier G, Toran N. Testicular relapses in childhood acute lymphoid leukaemia (author's transl). Sangre. 1981;26:168–79.

    CAS  PubMed  Google Scholar 

  70. Wallace WH, Kelsey TW. Human ovarian reserve from conception to the menopause. PLoS One. 2010;5:e8772.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kawamura K, Cheng Y, Suzuki N, et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci U S A. 2013;110:17474–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Practice Committee of the American Society for Reproductive Medicine. Fertility preservation in patients undergoing gonadotoxic therapy or gonadectomy: a committee opinion. Fertil Steril. 2019;112(6):1022–33.

    Article  Google Scholar 

  73. Silber SJ, DeRosa M. Goldsmith S, et al. Cryopreservation and transplantation of ovarian tissue: results from one center in the USA. 2018;35(12):2205–13.

    Google Scholar 

  74. Silber, SJ. Ovarian tissue cryopreservation and transplantation: scientific implications. 2016;33(12):1295–1603.

    Google Scholar 

  75. Donnez J, Silber S, Andersen CY, Demeestere I, Piver P, Meirow D, et al. Children born after autotransplantation of cryopreserved ovarian tissue. A review of 13 live births. Ann Med. 2011;43:437–50.

    Article  PubMed  Google Scholar 

  76. Poirot C, Abirached F, Prades M, Coussieu C, Bernaudin F, Piver P. Induction of puberty by autograft of cryopreserved ovarian tissue. Lancet. 2012;379:588.

    Article  PubMed  Google Scholar 

  77. Sanchez M, Alama P, Gadea B, Soares SR, Simon C, Pellicer A. Fresh human orthotopic ovarian cortex transplantation: long-term results. Hum Reprod. 2007;22:786–91.

    Article  CAS  PubMed  Google Scholar 

  78. Silber S, Silber D, Barbey N. Long-term function of ovarian tissue transplants. Middle East Fertil Soc J. 2012;17:215–20.

    Article  Google Scholar 

  79. MussettMV PDM. Factors affecting the fertility of mice with orthotopic ovarian grafts. J Reprod Fertil. 1961;2:80–97.

    Article  Google Scholar 

  80. Meirow D, Ra'anani H, Shapira M, Brenghausen M, Derech Chaim S, Aviel-Ronen S, et al. Transplantations of frozen-thawed ovarian tissue demonstrate high reproductive performance and the need to revise restrictive criteria. Fertil Steril. 2016;106:467–74.

    Article  PubMed  Google Scholar 

  81. Shapira M, Raanani H, Barshack I, et al. First delivery in a leukemia survivor after transplantation of cryopreserved ovarian tissue, evaluated for leukemia cells contamination. Fertil Steril. 2017;109:48–53.

    Article  PubMed  Google Scholar 

  82. Donnez J, Dolmans MM. Fertility preservation in women. N Engl J Med. 2017;377:1657–65.

    Article  PubMed  Google Scholar 

  83. Young JL Jr, Ries LG, Silverberg E, Horm JW, Miller RW. Cancer incidence, survival, and mortality for children younger than age 15 years. Cancer. 1986;58:598–602.

    Article  PubMed  Google Scholar 

  84. Cobo A, Domingo J, Perez S, Crespo J, Remohi J, Pellicer A. Vitrification: an effective new approach to oocyte banking and preserving fertility in cancer patients. Clin Transl Oncol. 2008;10:268–73.

    Article  CAS  PubMed  Google Scholar 

  85. Nagy ZP, Chang CC, Shapiro DB, Bernal DP, Kort HI, Vajta G. The efficacy and safety of human oocyte vitrification. Semin Reprod Med. 2009;27:450–5.

    Article  CAS  PubMed  Google Scholar 

  86. Shi Q, Xie Y, Wang Y, Li S. Vitrification versus slow freezing for human ovarian tissue cryopreservation: a systematic review and meta-analysis. Sci Rep. 2017;7:8538.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Stern CJ, Gook D, Hale LG, Agresta F, Oldham J, Rozen G, et al. First reported clinical pregnancy following heterotopic grafting of cryopreserved ovarian tissue in a woman after a bilateral oophorectomy. Hum Reprod. 2013;28:2996–9.

    Article  CAS  PubMed  Google Scholar 

  88. Practice Committee of American Society for Reproductive Medicine. Ovarian tissue cryopreservation: a committee opinion. Fertil Steril. 2014;101(5):1237–43.

    Article  Google Scholar 

  89. Nesbit ME Jr, Robison LL, Ortega JA, Sather HN, Donaldson M, Hammond D. Testicular relapse in childhood acute lymphoblastic leukemia: association with pretreatment patient characteristics and treatment. A report for Children’s Cancer study group. Cancer. 1980;45:2009–16.

    Article  PubMed  Google Scholar 

  90. Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y, Hamada N, et al. Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature. 2016;539:299–303.

    Article  PubMed  Google Scholar 

  91. Woodruff TK, Shea LD. A new hypothesis regarding ovarian follicle development: ovarian rigidity as a regulator of selection and health. J Assist Reprod Genet. 2011;28:3–6.

    Article  PubMed  Google Scholar 

  92. Lind T, Holte J, Olofsson JI, Hadziosmanovic N, Gudmundsson J. Nedstrand E, et al reduced live-birth rates after IVF/ICSI in women with previous unilateral oophorectomy: results of a multicenter cohort study. Hum Reprod. 2018;33(2):238–47.

    Article  PubMed  Google Scholar 

  93. Lass A, Paul M, Margara R, Winston RM. Women with one ovary have decreased response to GnRHa/HMG ovulation protocol in IVF but the same pregnancy rate as women with two ovaries. Hum Reprod. 1997;12:298–300.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sierra Goldsmith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silber, S., Goldsmith, S. (2022). Ovarian Tissue Cryopreservation and Transplantation: Scientific and Clinical Implications. In: Grynberg, M., Patrizio, P. (eds) Female and Male Fertility Preservation. Springer, Cham. https://doi.org/10.1007/978-3-030-47767-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47767-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47766-0

  • Online ISBN: 978-3-030-47767-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics