Skip to main content

Obesity and Cardiovascular Disease: Impact of Resveratrol as a Therapeutic

  • Chapter
  • First Online:
Biochemistry of Cardiovascular Dysfunction in Obesity

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 20))

  • 434 Accesses

Abstract

Obesity is a global epidemic and obese populations are at a much higher risk of developing diseases such as hypertension, type 2 diabetes, stroke and congestive heart failure. Increased adiposity is the hallmark of this physiological alteration of the body in response to excess intake of energy rich food, and this condition has far reaching health consequences in humans. Adipose dysfunction develops over time leading to increased secretion of inflammatory cytokines that cause inflammation and oxidative stress, which are independent risk factors for cardiovascular disease. Diastolic dysfunction is characteristic of the cardiac pathology associated with obesity. Obesity is a manageable condition and in some cases completely reversible with lifestyle modifications such as increased physical activity and a calorically restricted diet. In other cases, obesity can be reversed with either medications or surgery. In this regard, food derived compounds have been reported to have therapeutic benefits. Resveratrol is one such compound; it belongs to a family of plant compounds called polyphenols. In this chapter, we will review the causes and consequences of obesity, obesity associated cardiovascular disease and the potential of resveratrol in prevention/treatment of obesity and obesity associated cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO (2017) Cardiovascular diseases. WHO

    Google Scholar 

  2. Berry JD, Dyer A, Cai X, Garside DB, Ning H, Thomas A, Greenland P, Van Horn L, Tracy RP, Lloyd-Jones DM (2012) Lifetime risks of cardiovascular disease. N Engl J Med 366:321–329. https://doi.org/10.1056/NEJMoa1012848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lloyd-Jones DM, Nam BH, D’Agostino RB Sr, Levy D, Murabito JM, Wang TJ, Wilson PW, O’Donnell CJ (2004) Parental cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults: a prospective study of parents and offspring. JAMA 291:2204–2211. https://doi.org/10.1001/jama.291.18.2204

    Article  CAS  PubMed  Google Scholar 

  4. Murabito JM, Nam BH, D’Agostino RB Sr, Lloyd-Jones DM, O’Donnell CJ, Wilson PW (2004) Accuracy of offspring reports of parental cardiovascular disease history: the Framingham Offspring Study. Ann Intern Med 140:434–440

    Article  PubMed  Google Scholar 

  5. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling–concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an international forum on cardiac remodeling. J Am Coll Cardiol 35:569–582

    Article  CAS  PubMed  Google Scholar 

  6. Grossman W, Paulus WJ (2013) Myocardial stress and hypertrophy: a complex interface between biophysics and cardiac remodeling. J Clin Invest 123:3701–3703. https://doi.org/10.1172/JCI69830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu SS, Monti J, Kargbo HM, Athar MW, Parakh K (2013) Frontiers of therapy for patients with heart failure. Am J Med 126(6–12):e6. https://doi.org/10.1016/j.amjmed.2012.04.033

    Article  CAS  Google Scholar 

  8. Wexler R, Pleister A, Raman SV, Borchers JR (2012) Therapeutic lifestyle changes for cardiovascular disease. Phys Sportsmed 40:109–115. https://doi.org/10.3810/psm.2012.02.1957

    Article  PubMed  Google Scholar 

  9. Guyatt GH, Devereaux PJ (2004) A review of heart failure treatment. Mt Sinai J Med 71:47–54

    PubMed  Google Scholar 

  10. Bastien M, Poirier P, Lemieux I, Despres JP (2014) Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis 56:369–381

    Article  PubMed  Google Scholar 

  11. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH (2009) The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 9:88

    Article  PubMed  PubMed Central  Google Scholar 

  12. Artham SM, Lavie CJ, Patel HM, Ventura HO (2008) Impact of obesity on the risk of heart failure and its prognosis. J Cardiometab Syndr 3:155–161. https://doi.org/10.1111/j.1559-4572.2008.00001.x

    Article  PubMed  Google Scholar 

  13. Walley AJ, Blakemore AI and Froguel P (2006) Genetics of obesity and the prediction of risk for health. Hum Mol Genet 15 Spec No 2:R124–R130. doi: https://doi.org/10.1093/hmg/ddl215

  14. Hebebrand J, Hinney A (2009) Environmental and genetic risk factors in obesity. Child Adolesc Psychiatr Clin N Am 18:83–94. https://doi.org/10.1016/j.chc.2008.07.006

    Article  PubMed  Google Scholar 

  15. Dasouki MJ, Youngs EL, Hovanes K (2011) Structural chromosome abnormalities associated with obesity: report of four new subjects and review of literature. Curr Genomics 12:190–203. https://doi.org/10.2174/138920211795677930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Youngson NA, Whitelaw E (2011) The effects of acquired paternal obesity on the next generation. Asian J Androl 13:195–196. https://doi.org/10.1038/aja.2010.163

    Article  PubMed  Google Scholar 

  17. Drewnowski A (2004) Obesity and the food environment: dietary energy density and diet costs. Am J Prev Med 27:154–162. https://doi.org/10.1016/j.amepre.2004.06.011

    Article  PubMed  Google Scholar 

  18. Drewnowski A, Darmon N (2005) The economics of obesity: dietary energy density and energy cost. Am J Clin Nutr 82:265S-273S

    Article  CAS  PubMed  Google Scholar 

  19. Bluher M (2013) Adipose tissue dysfunction contributes to obesity related metabolic diseases. Best Pract Res Clin Endocrinol Metab 27:163–177. https://doi.org/10.1016/j.beem.2013.02.005

    Article  CAS  PubMed  Google Scholar 

  20. Northcott JM, Yeganeh A, Taylor CG, Zahradka P, Wigle JT (2012) Adipokines and the cardiovascular system: mechanisms mediating health and disease. Can J Physiol Pharmacol 90:1029–1059. https://doi.org/10.1139/y2012-053

    Article  CAS  PubMed  Google Scholar 

  21. Drosatos K, Schulze PC (2013) Cardiac lipotoxicity: molecular pathways and therapeutic implications. Curr Heart Fail Rep 10:109–121. https://doi.org/10.1007/s11897-013-0133-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ussher JR (2014) The role of cardiac lipotoxicity in the pathogenesis of diabetic cardiomyopathy. Expert Rev Cardiovasc Ther 12:345–358. https://doi.org/10.1586/14779072.2014.891939

    Article  CAS  PubMed  Google Scholar 

  23. Fabricant DS, Farnsworth NR (2001) The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 109(Suppl 1):69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mosihuzzaman M (2012) Herbal medicine in healthcare–an overview. Nat Prod Commun 7:807–812

    CAS  PubMed  Google Scholar 

  25. Santos AK, Costa JG, Menezes IR, Cansancao IF, Santos KK, Matias EF, Coutinho HD (2010) Antioxidant activity of five Brazilian plants used as traditional medicines and food in Brazil. Pharmacogn Mag 6:335–338. https://doi.org/10.4103/0973-1296.71789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bhamarapravati S, Pendland SL, Mahady GB (2003) Extracts of spice and food plants from Thai traditional medicine inhibit the growth of the human carcinogen Helicobacter pylori. Vivo 17:541–544

    CAS  Google Scholar 

  27. Brower V (2005) A nutraceutical a day may keep the doctor away. Consumers are turning increasingly to food supplements to improve well-being when pharmaceuticals fail. EMBO Rep 6:708–711. https://doi.org/10.1038/sj.embor.7400498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Raederstorff D, Kunz I, Schwager J (2013) Resveratrol, from experimental data to nutritional evidence: the emergence of a new food ingredient. Ann N Y Acad Sci 1290:136–141. https://doi.org/10.1111/nyas.12147

    Article  CAS  PubMed  Google Scholar 

  29. Tome-Carneiro J, Larrosa M, Gonzalez-Sarrias A, Tomas-Barberan FA, Garcia-Conesa MT, Espin JC (2013) Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr Pharm Des 19:6064–6093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Raj P, Louis XL, Thandapilly SJ, Movahed A, Zieroth S, Netticadan T (2014) Potential of resveratrol in the treatment of heart failure. Life Sci 95:63–71

    Article  CAS  PubMed  Google Scholar 

  31. Rothman KJ (2008) BMI-related errors in the measurement of obesity. Int J Obes (Lond) 32(Suppl 3):S56–S59. https://doi.org/10.1038/ijo.2008.87

    Article  Google Scholar 

  32. Schneider HJ, Friedrich N, Klotsche J, Pieper L, Nauck M, John U, Dorr M, Felix S, Lehnert H, Pittrow D, Silber S, Volzke H, Stalla GK, Wallaschofski H, Wittchen HU (2010) The predictive value of different measures of obesity for incident cardiovascular events and mortality. J Clin Endocrinol Metab 95:1777–1785. https://doi.org/10.1210/jc.2009-1584

    Article  CAS  PubMed  Google Scholar 

  33. Carmienke S, Freitag MH, Pischon T, Schlattmann P, Fankhaenel T, Goebel H, Gensichen J (2013) General and abdominal obesity parameters and their combination in relation to mortality: a systematic review and meta-regression analysis. Eur J Clin Nutr 67:573–585. https://doi.org/10.1038/ejcn.2013.61

    Article  CAS  PubMed  Google Scholar 

  34. Das SK (2005) Body composition measurement in severe obesity. Curr Opin Clin Nutr Metab Care 8:602–606

    Article  PubMed  Google Scholar 

  35. Deurenberg P, Deurenberg-Yap M (2002) Validation of skinfold thickness and hand-held impedance measurements for estimation of body fat percentage among Singaporean Chinese, Malay and Indian subjects. Asia Pac J Clin Nutr 11:1–7

    Article  PubMed  Google Scholar 

  36. de Koning L, Merchant AT, Pogue J, Anand SS (2007) Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: meta-regression analysis of prospective studies. Eur Heart J 28:850–856. https://doi.org/10.1093/eurheartj/ehm026

    Article  PubMed  Google Scholar 

  37. Hamer M, Stamatakis E (2012) Metabolically healthy obesity and risk of all-cause and cardiovascular disease mortality. J Clin Endocrinol Metab 97:2482–2488. https://doi.org/10.1210/jc.2011-3475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang J, Sereika SM, Styn MA, Burke LE (2013) Factors associated with health-related quality of life among overweight or obese adults. J Clin Nurs 22:2172–2182. https://doi.org/10.1111/jocn.12280

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gouveia MJ, Frontini R, Canavarro MC, Moreira H (2014) Quality of life and psychological functioning in pediatric obesity: the role of body image dissatisfaction between girls and boys of different ages. Qual Life Res. https://doi.org/10.1007/s11136-014-0711-y

    Article  PubMed  Google Scholar 

  40. Dalle Grave R, Calugi S, El Ghoch M (2013) Lifestyle modification in the management of obesity: achievements and challenges. Eat Weight Disord 18:339–349. https://doi.org/10.1007/s40519-013-0049-4

    Article  PubMed  Google Scholar 

  41. Lagerros YT, Rossner S (2013) Obesity management: what brings success? Therap Adv Gastroenterol 6:77–88. https://doi.org/10.1177/1756283X12459413

    Article  PubMed  PubMed Central  Google Scholar 

  42. Picot J, Jones J, Colquitt JL, Gospodarevskaya E, Loveman E, Baxter L and Clegg AJ (2009) The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: a systematic review and economic evaluation. Health Technol Assess 13:1–190, 215–357, iii–iv. doi: https://doi.org/10.3310/hta13410

  43. Pawloski LR, Ruchiwit M, Markham SM (2011) The growing burden of obesity in Thailand: a review of current trends and policies. Pediatr Nurs 37:256–261

    PubMed  Google Scholar 

  44. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M (2011) Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 378:815–825. https://doi.org/10.1016/S0140-6736(11)60814-3

    Article  PubMed  Google Scholar 

  45. Tsai AG, Abbo ED, Ogden LG (2011) The time burden of overweight and obesity in primary care. BMC Health Serv Res 11:191. https://doi.org/10.1186/1472-6963-11-191

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ramachandran A, Snehalatha C (2010) Rising burden of obesity in Asia. J Obes. https://doi.org/10.1155/2010/868573

    Article  PubMed  PubMed Central  Google Scholar 

  47. Withrow D, Alter DA (2011) The economic burden of obesity worldwide: a systematic review of the direct costs of obesity. Obes Rev 12:131–141. https://doi.org/10.1111/j.1467-789X.2009.00712.x

    Article  CAS  PubMed  Google Scholar 

  48. WHO (2018) Obesity and overweight.

    Google Scholar 

  49. Borders TF, Rohrer JE, Cardarelli KM (2006) Gender-specific disparities in obesity. J Community Health 31:57–68

    Article  PubMed  Google Scholar 

  50. Canada S (2018) Obesity in Canadian Adults, 2016 and 2017.

    Google Scholar 

  51. Canada S (2018) Health characteristics, annual estimates. June 25

    Google Scholar 

  52. Canada S (2009) Overweight and obese adults (self-reported)

    Google Scholar 

  53. Karen C, Roberts MS, de Groh M, Aziz A, Gilbert J-A (2012) Overweight and obesity in children and adolescents: results from the 2009 to 2011 Canadian Health Measures Survey. Health Reports

    Google Scholar 

  54. Roberts KC, Shields M, de Groh M, Aziz A, Gilbert JA (2012) Overweight and obesity in children and adolescents: results from the 2009 to 2011 Canadian Health Measures Survey. Health Rep 23:37–41

    PubMed  Google Scholar 

  55. Canada PHAo (2017) Tackling obesity in Canada: childhood obesity and excess weight rates in Canada

    Google Scholar 

  56. Ng C, Corey PN, Young TK (2011) Socio-economic patterns of obesity among aboriginal and non-Aboriginal Canadians. Can J Public Health 102:264–268

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bruce SG, Riediger ND, Zacharias JM, Young TK (2011) Obesity and obesity-related comorbidities in a Canadian First Nation population. Prev Chronic Dis 8:A03

    PubMed  Google Scholar 

  58. Must A (1996) Morbidity and mortality associated with elevated body weight in children and adolescents. Am J Clin Nutr 63:445S-447S

    Article  CAS  PubMed  Google Scholar 

  59. Franks PW, Hanson RL, Knowler WC, Sievers ML, Bennett PH, Looker HC (2010) Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med 362:485–493. https://doi.org/10.1056/NEJMoa0904130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. PHAC C (2013) Obesity in Canada

    Google Scholar 

  61. Dalrymple KL, Galione J, Hrabosky J, Chelminski I, Young D, O’Brien E, Zimmerman M (2011) Diagnosing social anxiety disorder in the presence of obesity: implications for a proposed change in DSM-5. Depress Anxiety 28:377–382. https://doi.org/10.1002/da.20794

    Article  PubMed  Google Scholar 

  62. Zimmerman M, Hrabosky JI, Francione C, Young D, Chelminski I, Dalrymple K and Galione JN (2011) Impact of obesity on the psychometric properties of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria for major depressive disorder. Compr Psychiatry 52:146–150. doi: https://doi.org/10.1016/j.comppsych.2010.05.001

  63. Canada PHAo (2011) Obesity in Canada—Health and economic implications.

    Google Scholar 

  64. Finkelstein EA, Khavjou OA, Thompson H, Trogdon JG, Pan L, Sherry B, Dietz W (2012) Obesity and severe obesity forecasts through 2030. Am J Prev Med 42:563–570. https://doi.org/10.1016/j.amepre.2011.10.026

    Article  PubMed  Google Scholar 

  65. Rengma MS, Sen J, Mondal N (2015) Socio-economic, demographic and lifestyle determinants of overweight and obesity among adults of Northeast India. Ethiop J Health Sci 25:199–208. https://doi.org/10.4314/ejhs.v25i3.2

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lee EY, Yoon KH (2018) Epidemic obesity in children and adolescents: risk factors and prevention. Front Med 12:658–666. https://doi.org/10.1007/s11684-018-0640-1

    Article  PubMed  Google Scholar 

  67. Fischer-Posovszky P, Wabitsch M, Hochberg Z (2007) Endocrinology of adipose tissue: an update. Horm Metab Res 39:314–321. https://doi.org/10.1055/s-2007-976539

    Article  CAS  PubMed  Google Scholar 

  68. Lapid K, Graff JM (2017) Form(ul)ation of adipocytes by lipids. Adipocyte 6:176–186. https://doi.org/10.1080/21623945.2017.1299298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Viscarra JA, Ortiz RM (2013) Cellular mechanisms regulating fuel metabolism in mammals: role of adipose tissue and lipids during prolonged food deprivation. Metabolism 62:889–897. https://doi.org/10.1016/j.metabol.2012.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Trayhurn P (2014) Hypoxia and adipocyte physiology: implications for adipose tissue dysfunction in obesity. Annu Rev Nutr. https://doi.org/10.1146/annurev-nutr-071812-161156

    Article  PubMed  Google Scholar 

  71. Lin JD, Wu TY, Lin LP, Hsu SW, Liu CT, Wu CL (2013) An exploratory study of health behaviors and the risks for triple H (hypertension, hyperlipidemia, and hyperglycemia) in young adults with disabilities between 20 and 39 years of age. Res Dev Disabil 34:3211–3217. https://doi.org/10.1016/j.ridd.2013.06.044

    Article  PubMed  Google Scholar 

  72. Nestruck AC, Davignon J (1986) Risks for hyperlipidemia. Cardiol Clin 4:47–56

    Article  CAS  PubMed  Google Scholar 

  73. Jo J, Gavrilova O, Pack S, Jou W, Mullen S, Sumner AE, Cushman SW, Periwal V (2009) Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Comput Biol 5:e1000324. https://doi.org/10.1371/journal.pcbi.1000324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti GA, Beguinot F, Miele C (2019) Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int J Mol Sci. https://doi.org/10.3390/ijms20092358

    Article  PubMed  PubMed Central  Google Scholar 

  75. Skurk T, Alberti-Huber C, Herder C, Hauner H (2007) Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 92:1023–1033. https://doi.org/10.1210/jc.2006-1055

    Article  CAS  PubMed  Google Scholar 

  76. Hajer GR, van Haeften TW, Visseren FL (2008) Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 29:2959–2971. https://doi.org/10.1093/eurheartj/ehn387

    Article  CAS  PubMed  Google Scholar 

  77. Coelho M, Oliveira T, Fernandes R (2013) Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci 9:191–200. https://doi.org/10.5114/aoms.2013.33181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Suganami T, Nishida J, Ogawa Y (2005) A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 25:2062–2068. https://doi.org/10.1161/01.ATV.0000183883.72263.13

    Article  CAS  PubMed  Google Scholar 

  79. Bluher M (2009) Adipose tissue dysfunction in obesity. Exp Clin Endocrinol Diabetes 117:241–250. https://doi.org/10.1055/s-0029-1192044

    Article  CAS  PubMed  Google Scholar 

  80. Wang GX, Cho KW, Uhm M, Hu CR, Li S, Cozacov Z, Xu AE, Cheng JX, Saltiel AR, Lumeng CN, Lin JD (2014) Otopetrin 1 protects mice from obesity-associated metabolic dysfunction through attenuating adipose tissue inflammation. Diabetes 63:1340–1352. https://doi.org/10.2337/db13-1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hubert HB, Feinleib M, McNamara PM, Castelli WP (1983) Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation 67:968–977

    Article  CAS  PubMed  Google Scholar 

  82. Csige I, Ujvarosy D, Szabo Z, Lorincz I, Paragh G, Harangi M, Somodi S (2018) The impact of obesity on the cardiovascular system. J Diabetes Res 2018:3407306. https://doi.org/10.1155/2018/3407306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jiang J, Ahn J, Huang WY, Hayes RB (2013) Association of obesity with cardiovascular disease mortality in the PLCO trial. Prev Med 57:60–64. https://doi.org/10.1016/j.ypmed.2013.04.014

    Article  PubMed  PubMed Central  Google Scholar 

  84. Flegal KM, Graubard BI, Williamson DF, Gail MH (2007) Cause-specific excess deaths associated with underweight, overweight, and obesity. JAMA 298:2028–2037. https://doi.org/10.1001/jama.298.17.2028

    Article  CAS  PubMed  Google Scholar 

  85. Shields M, Tremblay MS, Connor Gorber S, Janssen I (2012) Abdominal obesity and cardiovascular disease risk factors within body mass index categories. Health Rep 23:7–15

    PubMed  Google Scholar 

  86. Ortega-Loubon C, Fernandez-Molina M, Singh G, Correa R (2019) Obesity and its cardiovascular effects. Diabetes Metab Res Rev 35:e3135. https://doi.org/10.1002/dmrr.3135

    Article  PubMed  Google Scholar 

  87. Taube A, Schlich R, Sell H, Eckardt K, Eckel J (2012) Inflammation and metabolic dysfunction: links to cardiovascular diseases. American journal of physiology. Heart Circulatory Physiol 302:H2148–H2165

    Article  CAS  Google Scholar 

  88. Chrysant SG, Chrysant GS (2013) New insights into the true nature of the obesity paradox and the lower cardiovascular risk. J Am Soc Hypertens 7:85–94. https://doi.org/10.1016/j.jash.2012.11.008

    Article  PubMed  Google Scholar 

  89. Bombelli M, Facchetti R, Sega R, Carugo S, Fodri D, Brambilla G, Giannattasio C, Grassi G, Mancia G (2011) Impact of body mass index and waist circumference on the long-term risk of diabetes mellitus, hypertension, and cardiac organ damage. Hypertension 58:1029–1035. https://doi.org/10.1161/HYPERTENSIONAHA.111.175125

    Article  CAS  PubMed  Google Scholar 

  90. Britton KA, Fox CS (2011) Ectopic fat depots and cardiovascular disease. Circulation 124:e837–e841. https://doi.org/10.1161/CIRCULATIONAHA.111.077602

    Article  PubMed  Google Scholar 

  91. Klein S, Allison DB, Heymsfield SB, Kelley DE, Leibel RL, Nonas C, Kahn R, Association for Weight M, Obesity P, Naaso TOS, American Society for N and American Diabetes A (2007) Waist circumference and cardiometabolic risk: a consensus statement from Shaping America’s Health: Association for Weight Management and Obesity Prevention; NAASO, The Obesity Society; the American Society for Nutrition; and the American Diabetes Association. Am J Clin Nutr 85:1197–1202

    Article  Google Scholar 

  92. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, Eckel RH, American Heart A, Obesity Committee of the Council on Nutrition PA and Metabolism (2006) Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 113:898–918. https://doi.org/10.1161/CIRCULATIONAHA.106.171016

    Article  Google Scholar 

  93. Zebekakis PE, Nawrot T, Thijs L, Balkestein EJ, van der Heijden-Spek J, Van Bortel LM, Struijker-Boudier HA, Safar ME, Staessen JA (2005) Obesity is associated with increased arterial stiffness from adolescence until old age. J Hypertens 23:1839–1846

    Article  CAS  PubMed  Google Scholar 

  94. Iannuzzi A, Licenziati MR, Acampora C, Salvatore V, Auriemma L, Romano ML, Panico S, Rubba P, Trevisan M (2004) Increased carotid intima-media thickness and stiffness in obese children. Diab Care 27:2506–2508

    Article  Google Scholar 

  95. Ozcetin M, Celikyay ZR, Celik A, Yilmaz R, Yerli Y, Erkorkmaz U (2012) The importance of carotid artery stiffness and increased intima-media thickness in obese children. S Afr Med J 102:295–299

    Article  CAS  PubMed  Google Scholar 

  96. Lee CD, Jacobs DR Jr, Schreiner PJ, Iribarren C, Hankinson A (2007) Abdominal obesity and coronary artery calcification in young adults: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Clin Nutr 86:48–54

    Article  CAS  PubMed  Google Scholar 

  97. Kotsis V, Stabouli S, Papakatsika S, Rizos Z, Parati G (2010) Mechanisms of obesity-induced hypertension. Hypertens Res 33:386–393. https://doi.org/10.1038/hr.2010.9

    Article  PubMed  Google Scholar 

  98. Aurigemma GP, de Simone G, Fitzgibbons TP (2013) Cardiac remodeling in obesity. Circ Cardiovasc Imaging 6:142–152. https://doi.org/10.1161/CIRCIMAGING.111.964627

    Article  PubMed  Google Scholar 

  99. Goldberg IJ, Trent CM, Schulze PC (2012) Lipid metabolism and toxicity in the heart. Cell Metab 15:805–812. https://doi.org/10.1016/j.cmet.2012.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Carpenter HM (1962) Myocardial fat infiltration. Am Heart J 63:491–496

    Article  CAS  PubMed  Google Scholar 

  101. Karasoy D, Bo Jensen T, Hansen ML, Schmiegelow M, Lamberts M, Gislason GH, Hansen J, Torp-Pedersen C, Olesen JB (2013) Obesity is a risk factor for atrial fibrillation among fertile young women: a nationwide cohort study. Europace 15:781–786. https://doi.org/10.1093/europace/eus422

    Article  PubMed  Google Scholar 

  102. Chrostowska M, Szyndler A, Hoffmann M, Narkiewicz K (2013) Impact of obesity on cardiovascular health. Best Pract Res Clin Endocrinol Metab 27:147–156. https://doi.org/10.1016/j.beem.2013.01.004

    Article  PubMed  Google Scholar 

  103. Steyn K, Sliwa K, Hawken S, Commerford P, Onen C, Damasceno A, Ounpuu S, Yusuf S, Africa IIi (2005) Risk factors associated with myocardial infarction in Africa: the INTERHEART Africa study. Circulation 112:3554–3561. https://doi.org/10.1161/CIRCULATIONAHA.105.563452

    Article  PubMed  Google Scholar 

  104. O’Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, Rangarajan S, Islam S, Pais P, McQueen MJ, Mondo C, Damasceno A, Lopez-Jaramillo P, Hankey GJ, Dans AL, Yusoff K, Truelsen T, Diener HC, Sacco RL, Ryglewicz D, Czlonkowska A, Weimar C, Wang X, Yusuf S, Investigators I (2010) Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet 376:112–123. https://doi.org/10.1016/S0140-6736(10)60834-3

    Article  PubMed  Google Scholar 

  105. Drager LF, Togeiro SM, Polotsky VY, Lorenzi-Filho G (2013) Obstructive sleep apnea: a cardiometabolic risk in obesity and the metabolic syndrome. J Am Coll Cardiol 62:569–576. https://doi.org/10.1016/j.jacc.2013.05.045

    Article  PubMed  PubMed Central  Google Scholar 

  106. Van de Voorde J, Pauwels B, Boydens C, Decaluwe K (2013) Adipocytokines in relation to cardiovascular disease. Metabolism 62:1513–1521. https://doi.org/10.1016/j.metabol.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  107. Luc G, Empana JP, Morange P, Juhan-Vague I, Arveiler D, Ferrieres J, Amouyel P, Evans A, Kee F, Bingham A, Machez E, Ducimetiere P (2010) Adipocytokines and the risk of coronary heart disease in healthy middle aged men: the PRIME Study. Int J Obes (Lond) 34:118–126. https://doi.org/10.1038/ijo.2009.204

    Article  CAS  Google Scholar 

  108. Wickman C, Kramer H (2013) Obesity and kidney disease: potential mechanisms. Semin Nephrol 33:14–22. https://doi.org/10.1016/j.semnephrol.2012.12.006

    Article  CAS  PubMed  Google Scholar 

  109. de Jong PE, Verhave JC, Pinto-Sietsma SJ (2002) Obesity and target organ damage: the kidney. Int J Obes Relat Metab Disord 26(Suppl 4):S21–S24. https://doi.org/10.1038/sj.ijo.0802213

    Article  PubMed  Google Scholar 

  110. Foster MC, Hwang SJ, Massaro JM, Hoffmann U, DeBoer IH, Robins SJ, Vasan RS, Fox CS (2011) Association of subcutaneous and visceral adiposity with albuminuria: the Framingham Heart Study. Obesity (Silver Spring) 19:1284–1289. https://doi.org/10.1038/oby.2010.308

    Article  CAS  Google Scholar 

  111. Schulze PC, Drosatos K, Goldberg IJ (2016) Lipid use and misuse by the heart. Circ Res 118:1736–1751. https://doi.org/10.1161/CIRCRESAHA.116.306842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Taegtmeyer H, Sen S, Vela D (2010) Return to the fetal gene program: a suggested metabolic link to gene expression in the heart. Ann N Y Acad Sci 1188:191–198. https://doi.org/10.1111/j.1749-6632.2009.05100.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pascual F, Coleman RA (2016) Fuel availability and fate in cardiac metabolism: a tale of two substrates. Biochim Biophys Acta 1861:1425–1433. https://doi.org/10.1016/j.bbalip.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  114. Trent CM, Yu S, Hu Y, Skoller N, Huggins LA, Homma S, Goldberg IJ (2014) Lipoprotein lipase activity is required for cardiac lipid droplet production. J Lipid Res 55:645–658. https://doi.org/10.1194/jlr.M043471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. van der Vusse GJ, van Bilsen M, Glatz JF (2000) Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res 45:279–293

    Article  PubMed  Google Scholar 

  116. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258. https://doi.org/10.1152/physrev.00015.2009

    Article  CAS  PubMed  Google Scholar 

  117. Saely CH, Geiger K, Drexel H (2012) Brown versus white adipose tissue: a mini-review. Gerontology 58:15–23. https://doi.org/10.1159/000321319

    Article  PubMed  Google Scholar 

  118. Ameer F, Scandiuzzi L, Hasnain S, Kalbacher H, Zaidi N (2014) De novo lipogenesis in health and disease. Metabolism. https://doi.org/10.1016/j.metabol.2014.04.003

    Article  PubMed  Google Scholar 

  119. Schwenk RW, Holloway GP, Luiken JJ, Bonen A, Glatz JF (2010) Fatty acid transport across the cell membrane: regulation by fatty acid transporters. Prostaglandins Leukot Essent Fatty Acids 82:149–154. https://doi.org/10.1016/j.plefa.2010.02.029

    Article  CAS  PubMed  Google Scholar 

  120. Das UN (2006) Essential fatty acids: biochemistry, physiology and pathology. Biotechnol J 1:420–439. https://doi.org/10.1002/biot.200600012

    Article  CAS  PubMed  Google Scholar 

  121. Nishi H, Higashihara T, Inagi R (2019) Lipotoxicity in kidney, heart, and skeletal muscle dysfunction. Nutrients. https://doi.org/10.3390/nu11071664

    Article  PubMed  PubMed Central  Google Scholar 

  122. Turkieh A, Caubere C, Barutaut M, Desmoulin F, Harmancey R, Galinier M, Berry M, Dambrin C, Polidori C, Casteilla L, Koukoui F, Rouet P, Smih F (2014) Apolipoprotein O is mitochondrial and promotes lipotoxicity in heart. J Clin Invest 124:2277–2286. https://doi.org/10.1172/JCI74668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nolan CJ (2014) Lipotoxicity, beta cell dysfunction, and gestational diabetes. Cell Metab 19:553–554. https://doi.org/10.1016/j.cmet.2014.03.020

    Article  CAS  PubMed  Google Scholar 

  124. Eguchi K, Manabe I (2014) Toll-like receptor, lipotoxicity and chronic inflammation: the pathological link between obesity and cardiometabolic disease. J Atheroscler Thromb

    Google Scholar 

  125. Lake AD, Novak P, Hardwick RN, Flores-Keown B, Zhao F, Klimecki WT, Cherrington NJ (2014) The adaptive endoplasmic reticulum stress response to lipotoxicity in progressive human nonalcoholic fatty liver disease. Toxicol Sci 137:26–35. https://doi.org/10.1093/toxsci/kft230

    Article  CAS  PubMed  Google Scholar 

  126. Schulze PC (2009) Myocardial lipid accumulation and lipotoxicity in heart failure. J Lipid Res 50:2137–2138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. de Vries JE, Vork MM, Roemen TH, de Jong YF, Cleutjens JP, van der Vusse GJ, van Bilsen M (1997) Saturated but not mono-unsaturated fatty acids induce apoptotic cell death in neonatal rat ventricular myocytes. J Lipid Res 38:1384–1394

    PubMed  Google Scholar 

  128. Hickson-Bick DL, Buja LM, McMillin JB (2000) Palmitate-mediated alterations in the fatty acid metabolism of rat neonatal cardiac myocytes. J Mol Cell Cardiol 32:511–519. https://doi.org/10.1006/jmcc.1999.1098

    Article  CAS  PubMed  Google Scholar 

  129. Park TS, Hu Y, Noh HL, Drosatos K, Okajima K, Buchanan J, Tuinei J, Homma S, Jiang XC, Abel ED, Goldberg IJ (2008) Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. J Lipid Res 49:2101–2112. https://doi.org/10.1194/jlr.M800147-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Dyntar D, Eppenberger-Eberhardt M, Maedler K, Pruschy M, Eppenberger HM, Spinas GA, Donath MY (2001) Glucose and palmitic acid induce degeneration of myofibrils and modulate apoptosis in rat adult cardiomyocytes. Diabetes 50:2105–2113

    Article  CAS  PubMed  Google Scholar 

  131. Juhasz B, Varga B, Gesztelyi R, Kemeny-Beke A, Zsuga J, Tosaki A (2010) Resveratrol: a multifunctional cytoprotective molecule. Curr Pharm Biotechnol 11:810–818

    Article  CAS  PubMed  Google Scholar 

  132. Giovinazzo G, Ingrosso I, Paradiso A, De Gara L, Santino A (2012) Resveratrol biosynthesis: plant metabolic engineering for nutritional improvement of food. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 67:191–199

    Article  CAS  Google Scholar 

  133. Pervaiz S (2003) Resveratrol: from grapevines to mammalian biology. FASEB J 17:1975–1985. https://doi.org/10.1096/fj.03-0168rev17/14/1975

    Article  CAS  PubMed  Google Scholar 

  134. de Lorgeril M, Salen P, Guiraud A, Boucher F, de Leiris J (2003) Resveratrol and non-ethanolic components of wine in experimental cardiology. Nutr Metab Cardiovasc Dis 13:100–103

    Article  PubMed  Google Scholar 

  135. Takaoka MJ (1940) Of the phenolic substances of white hellebore (Veratrum grandiflorum Loes. fil.). J Faculty Sci Hokkaido Imperial University 3:1–16

    CAS  Google Scholar 

  136. Tsai WH, Yang CC, Li PC, Chen WC, Chien CT (2013) Therapeutic potential of traditional chinese medicine on inflammatory diseases. J Tradit Complement Med 3:142–151. https://doi.org/10.4103/2225-4110.114898

    Article  PubMed  PubMed Central  Google Scholar 

  137. Hillis WE, Isoi K (1965) Variation in the chemical composition of Eucalyptus sideroxylon. Phytochemistry 4:541–550

    Article  CAS  Google Scholar 

  138. Tyukavkina NA, Gromova AS, Lutskii VI, Voronov VK (1974) Hydroxystilbenes from the bark of Pinus sibirica. Chem Nat Compd 8:570–572

    Article  Google Scholar 

  139. Langcake P, Pryce RJ (1976) The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol Plant Pathol 9:77–86

    Article  CAS  Google Scholar 

  140. Pool RM, Creasy LL, Frackelton AS (1981) Resveratrol and the viniferins, their application to screening for disease resistance in grape breeding programs. Vitis 20:136–145

    Google Scholar 

  141. Kubo M, Shin H, Haneda T, Tani T, Namba K (1981) Studies on the antifungal substance of crude drug: 2. On the roots of Polygonum cuspidatum (Polygonaceae). Shoyakugaku Zasshi 35:58–61

    Google Scholar 

  142. Arichi H, Kimura Y, Okuda H, Baba K, Kozawa M, Arichi S (1982) Effects of stilbene components of the roots of Polygonum cuspidatum Sieb. et Zucc. on lipid metabolism. Chem Pharm Bull 30:1766–1770

    Article  CAS  PubMed  Google Scholar 

  143. Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523–1526

    Article  CAS  PubMed  Google Scholar 

  144. Creasy EHSaLL (1992) Concentration of the phytoalexin resveratrol in wine. Am J Enol Vitic 43:49–52

    Google Scholar 

  145. Frankel EN, Kanner J, German JB, Parks E, Kinsella JE (1993) Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet 341:454–457

    Article  CAS  PubMed  Google Scholar 

  146. Xu Q, Si LY (2012) Resveratrol role in cardiovascular and metabolic health and potential mechanisms of action. Nutrition research (New York, N.Y.) 32:648–658.

    Google Scholar 

  147. Tome-Carneiro J, Gonzalvez M, Larrosa M, Yanez-Gascon MJ, Garcia-Almagro FJ, Ruiz-Ros JA, Tomas-Barberan FA, Garcia-Conesa MT, Espin JC (2013) Resveratrol in primary and secondary prevention of cardiovascular disease: a dietary and clinical perspective. Ann N Y Acad Sci 1290:37–51

    Article  CAS  PubMed  Google Scholar 

  148. Ko JH, Sethi G, Um JY, Shanmugam MK, Arfuso F, Kumar AP, Bishayee A, Ahn KS (2017) The role of resveratrol in cancer therapy. Int J Mol Sci. https://doi.org/10.3390/ijms18122589

    Article  PubMed  PubMed Central  Google Scholar 

  149. Wallerath T, Deckert G, Ternes T, Anderson H, Li H, Witte K, Forstermann U (2002) Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation 106:1652–1658

    Article  CAS  PubMed  Google Scholar 

  150. Opie LH, Lecour S (2007) The red wine hypothesis: from concepts to protective signalling molecules. Eur Heart J 28:1683–1693. https://doi.org/10.1093/eurheartj/ehm149

    Article  CAS  PubMed  Google Scholar 

  151. Li H, Forstermann U (2012) Red wine and cardiovascular health. Circ Res 111:959–961. https://doi.org/10.1161/CIRCRESAHA.112.278705

    Article  CAS  PubMed  Google Scholar 

  152. Yu W, Fu YC, Wang W (2012) Cellular and molecular effects of resveratrol in health and disease. J Cell Biochem 113:752–759. https://doi.org/10.1002/jcb.23431

    Article  CAS  PubMed  Google Scholar 

  153. Zheng X, Zhu S, Chang S, Cao Y, Dong J, Li J, Long R, Zhou Y (2013) Protective effects of chronic resveratrol treatment on vascular inflammatory injury in streptozotocin-induced type 2 diabetic rats: Role of NF-kappa B signaling. Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2013.10.034

    Article  PubMed  PubMed Central  Google Scholar 

  154. Chan AY, Dolinsky VW, Soltys CL, Viollet B, Baksh S, Light PE, Dyck JR (2008) Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt. J Biol Chem 283:24194–24201. https://doi.org/10.1074/jbc.M802869200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Thandapilly SJ, Louis XL, Yang T, Stringer DM, Yu L, Zhang S, Wigle J, Kardami E, Zahradka P, Taylor C, Anderson HD, Netticadan T (2011) Resveratrol prevents norepinephrine induced hypertrophy in adult rat cardiomyocytes, by activating NO-AMPK pathway. Eur J Pharmacol 668:217–224. https://doi.org/10.1016/j.ejphar.2011.06.042

    Article  CAS  PubMed  Google Scholar 

  156. Beauloye C, Bertrand L, Horman S, Hue L (2011) AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure. Cardiovasc Res 90:224–233. https://doi.org/10.1093/cvr/cvr034

    Article  CAS  PubMed  Google Scholar 

  157. Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS, Hubbard BP, Varela AT, Davis JG, Varamini B, Hafner A, Moaddel R, Rolo AP, Coppari R, Palmeira CM, de Cabo R, Baur JA, Sinclair DA (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15:675–690. https://doi.org/10.1016/j.cmet.2012.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Penumathsa SV, Maulik N (2009) Resveratrol: a promising agent in promoting cardioprotection against coronary heart disease. Can J Physiol Pharmacol 87:275–286. https://doi.org/10.1139/Y09-013

    Article  CAS  PubMed  Google Scholar 

  159. Li H, Xia N, Forstermann U (2012) Cardiovascular effects and molecular targets of resveratrol. Nitric Oxide 26:102–110. https://doi.org/10.1016/j.niox.2011.12.006

    Article  CAS  PubMed  Google Scholar 

  160. Zhang LP, Yin JX, Liu Z, Zhang Y, Wang QS, Zhao J (2006) Effect of resveratrol on L-type calcium current in rat ventricular myocytes. Acta Pharmacol Sin 27:179–183. https://doi.org/10.1111/j.1745-7254.2006.00250.x

    Article  CAS  PubMed  Google Scholar 

  161. Poulsen MM, Jorgensen JO, Jessen N, Richelsen B, Pedersen SB (2013) Resveratrol in metabolic health: an overview of the current evidence and perspectives. Ann N Y Acad Sci 1290:74–82. https://doi.org/10.1111/nyas.12141

    Article  CAS  PubMed  Google Scholar 

  162. Lekli I, Szabo G, Juhasz B, Das S, Das M, Varga E, Szendrei L, Gesztelyi R, Varadi J, Bak I, Das DK, Tosaki A (2008) Protective mechanisms of resveratrol against ischemia-reperfusion-induced damage in hearts obtained from Zucker obese rats: the role of GLUT-4 and endothelin. Am J Physiol Heart Circ Physiol 294:H859–H866. https://doi.org/10.1152/ajpheart.01048.2007

    Article  CAS  PubMed  Google Scholar 

  163. Aubin MC, Lajoie C, Clement R, Gosselin H, Calderone A, Perrault LP (2008) Female rats fed a high-fat diet were associated with vascular dysfunction and cardiac fibrosis in the absence of overt obesity and hyperlipidemia: therapeutic potential of resveratrol. J Pharmacol Exp Ther 325:961–968. https://doi.org/10.1124/jpet.107.135061

    Article  CAS  PubMed  Google Scholar 

  164. Louis XL, Thandapilly SJ, MohanKumar SK, Yu L, Taylor CG, Zahradka P, Netticadan T (2012) Treatment with low-dose resveratrol reverses cardiac impairment in obese prone but not in obese resistant rats. J Nutr Biochem 23:1163–1169. https://doi.org/10.1016/j.jnutbio.2011.06.010

    Article  CAS  PubMed  Google Scholar 

  165. Qin F, Siwik DA, Luptak I, Hou X, Wang L, Higuchi A, Weisbrod RM, Ouchi N, Tu VH, Calamaras TD, Miller EJ, Verbeuren TJ, Walsh K, Cohen RA, Colucci WS (2012) The polyphenols resveratrol and S17834 prevent the structural and functional sequelae of diet-induced metabolic heart disease in mice. Circulation 125:1757–1764. https://doi.org/10.1161/circulationaha.111.067801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lu Y, Lu X, Wang L, Yang W (2019) Resveratrol attenuates high fat diet-induced mouse cardiomyopathy through upregulation of estrogen related receptor-alpha. Eur J Pharmacol 843:88–95. https://doi.org/10.1016/j.ejphar.2018.10.018

    Article  CAS  PubMed  Google Scholar 

  167. Xia N, Forstermann U, Li H (2014) Resveratrol and endothelial nitric oxide. Molecules 19:16102–16121. https://doi.org/10.3390/molecules191016102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Huang JP, Hsu SC, Li DE, Chen KH, Kuo CY, Hung LM (2018) Resveratrol mitigates high-fat diet-induced vascular dysfunction by activating the Akt/eNOS/NO and Sirt1/ER pathway. J Cardiovasc Pharmacol 72:231–241. https://doi.org/10.1097/FJC.0000000000000621

    Article  CAS  PubMed  Google Scholar 

  169. Arzola-Paniagua MA, Garcia-Salgado Lopez ER, Calvo-Vargas CG, Guevara-Cruz M (2016) Efficacy of an orlistat-resveratrol combination for weight loss in subjects with obesity: a randomized controlled trial. Obesity (Silver Spring) 24:1454–1463. https://doi.org/10.1002/oby.21523

    Article  CAS  Google Scholar 

  170. Xue M, Weickert MO, Qureshi S, Kandala NB, Anwar A, Waldron M, Shafie A, Messenger D, Fowler M, Jenkins G, Rabbani N, Thornalley PJ (2016) Improved glycemic control and vascular function in overweight and obese subjects by glyoxalase 1 inducer formulation. Diabetes 65:2282–2294. https://doi.org/10.2337/db16-0153

    Article  CAS  PubMed  Google Scholar 

  171. Most J, Timmers S, Warnke I, Jocken JW, van Boekschoten M, de Groot P, Bendik I, Schrauwen P, Goossens GH, Blaak EE (2016) Combined epigallocatechin-3-gallate and resveratrol supplementation for 12 wk increases mitochondrial capacity and fat oxidation, but not insulin sensitivity, in obese humans: a randomized controlled trial. Am J Clin Nutr 104:215–227. https://doi.org/10.3945/ajcn.115.122937

    Article  CAS  PubMed  Google Scholar 

  172. Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, Hoeks J, van der Krieken S, Ryu D, Kersten S, Moonen-Kornips E, Hesselink MK, Kunz I, Schrauwen-Hinderling VB, Blaak EE, Auwerx J, Schrauwen P (2011) Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 14:612–622. https://doi.org/10.1016/j.cmet.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  173. Wong RH, Berry NM, Coates AM, Buckley JD, Bryan J, Kunz I, Howe PR (2013) Chronic resveratrol consumption improves brachial flow-mediated dilatation in healthy obese adults. J Hypertens 31:1819–1827. https://doi.org/10.1097/HJH.0b013e328362b9d6

    Article  CAS  PubMed  Google Scholar 

  174. Dash S, Xiao C, Morgantini C, Szeto L, Lewis GF (2013) High-dose resveratrol treatment for 2 weeks inhibits intestinal and hepatic lipoprotein production in overweight/obese men. Arterioscler Thromb Vasc Biol 33:2895–2901. https://doi.org/10.1161/ATVBAHA.113.302342

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Netticadan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lieben Louis, X., Krishnan, S., Wigle, J.T., Netticadan, T. (2020). Obesity and Cardiovascular Disease: Impact of Resveratrol as a Therapeutic. In: Tappia, P.S., Bhullar, S.K., Dhalla, N.S. (eds) Biochemistry of Cardiovascular Dysfunction in Obesity. Advances in Biochemistry in Health and Disease, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-47336-5_15

Download citation

Publish with us

Policies and ethics