Skip to main content

Renewing the Mainstream Theory of Field and Thermal Electron Emission

  • Chapter
  • First Online:
Modern Developments in Vacuum Electron Sources

Part of the book series: Topics in Applied Physics ((TAP,volume 135))

Abstract

Mainstream field electron emission (FE) theory—the theory normally used by FE experimentalists—employs a Sommerfeld-type free-electron model to describe FE from a metal emitter with a smooth planar surface of very large extent. This chapter reviews the present state of mainstream FE theory, noting aspects of the history of FE and thermal electron emission theory. It sets out ways of improving the theory’s presentation, with the ultimate aim of making it easier to reliably compare theory and experiment. This includes distinguishing between (a) emission theory and (b) device/system theory (which deals with field emitter behaviour in electrical circuits), and between ideal and non-ideal device behaviours. The main focus is the emission theory. Transmission regimes and emission current density regimes are discussed. With FE, a method of classifying different FE equations is outlined. With theories that assume tunnelling through a Schottky-Nordheim (SN) (“planar-image-rounded”) barrier, a careful distinction is needed between the barrier form correction factor ν (“nu”) and the special mathematical function v (“vee”). This function v is presented as dependent on the Gauss variable x. The pure mathematics of v(x) is summarised, and reasons are given for preferring the use of x over the older convention of using the Nordheim parameter y [=+√x]. It is shown how the mathematics of v(x) is applied to wave-mechanical transmission theory for basic Laurent-form barriers (which include the SN barrier). A brief overview of FE device/system theory defines and discusses different auxiliary parameters currently in use, outlines a preferred method for characterising ideal devices when using FN plots and notes difficulties in characterising non-ideal devices. The chapter concludes by listing some of the future tasks involved in upgrading FE science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Prof. Marshall Stoneham (now deceased), a former President of the UK Institute of Physics, thought that some of the most difficult unsolved problems in theoretical physics were in field electron emission (private communication to the author, 2001).

  2. 2.

    Reference [55] contains a typographical error, in that the numerical value in his equation (5) should be 6.97 × 106, as given correctly in Table 9.1 later in the paper. The modern value is slightly lower, as can be shown from (9.12).

  3. 3.

    A well-behaved barrier has no regions inside it where M(z) is negative.

  4. 4.

    ‘Corpuscle’ was J.J. Thomson’s original term for what we now call the electron.

References

  1. M.I. Elinson (ed.), Unheated Cathodes (Soviet Radio, Moscow, 1974). (in Russian)

    Google Scholar 

  2. A. Modinos, Field, Thermionic, and Secondary Electron Emission Spectroscopy (Plenum, New York, 1984) (Reprinted by: Springer, online, 2013)

    Google Scholar 

  3. G.A. Mesyats, Explosive Electron Emission (URO-Press, Ekaterinburg, 1998)

    Google Scholar 

  4. V.M. Zhukov, Surface Processes in Field Electron Emission (Isdatelstvo, St Petersburg, 2007). (in Russian)

    Google Scholar 

  5. W. Zhu (ed.), Vacuum Microelectronics (Wiley, New York, 2001)

    Google Scholar 

  6. G.N. Fursey, Field Emission in Vacuum Microelectronics (Kluwer, New York, 2001)

    Google Scholar 

  7. K.L. Jensen, Electron emission physics. Adv. Imaging Electron. Phys. 149, 1–338 (2007)

    Article  Google Scholar 

  8. Y. Saito (ed.), Carbon Nanotube and Related Field Emitters (Wiley, Weinheim, 2010)

    Google Scholar 

  9. N.V. Egorov, E.P. Sheshin, Field Emission: Principles and Practice (Intellect, Russia, 2011). (in Russian) (Reference [13] is the English edition)

    Google Scholar 

  10. S.-D. Liang, Quantum Tunnelling and Field Electron Emission Theories (World Scientific, Singapore, 2014)

    Book  Google Scholar 

  11. M. Bronsgeest, Physics of Schottky Electron Sources (Pan Stanford, Singapore, 2014)

    Google Scholar 

  12. A. Evtukh, H. Hartnagel, O. Yilmazoglu, H. Mimura, D. Paylidis, Vacuum Nanoelectronic Devices (Wiley, Chichester, 2015)

    Book  Google Scholar 

  13. N.V. Egorov, E.P. Sheshin, Field Emission Electronics (Springer, 2017)

    Google Scholar 

  14. K.L. Jensen, Introduction to the Physics of Electron Emission (Wiley, Hoboken, NJ, 2018)

    Google Scholar 

  15. L.W. Swanson, G.A. Schwind, Review of ZrO/W Schottky cathode, in Charged Particle Optics, 2nd edn., ed. by J. Orloff (CRC Press, Baton Rouge, 2009)

    Google Scholar 

  16. L.W. Swanson, G.A. Schwind, A review of the cold-field electron cathode, in Cold Field Emission and the Scanning Transmission Electron Microscope, ed. by P. Hawkes. Adv. Imaging Electron Phys. 159, 63–100 (2009)

    Google Scholar 

  17. R.G. Forbes, The theory of bright field electron and field ion emission sources, in Nanfabrication Using Focused Ion and Electron Beams, ed. by I. Utke, S. Moshkalev, P. Russell (Oxford University Press, Oxford, 2012)

    Google Scholar 

  18. Z.-B. Li, Density functional theory for field emission from carbon nanostructures. Ultramicroscopy 159, 162–172 (2015)

    Article  Google Scholar 

  19. V. Filip, L.D. Filip, H. Wong, Review on peculiar issues of field emission in vacuum nanoelectronic devices. Solid State Electron. 138, 3–15 (2017)

    Article  ADS  Google Scholar 

  20. R.G. Forbes, J.H.B. Deane, A. Fischer, M.S. Mousa, Fowler-Nordheim plot analysis: a progress report. Jordan J. Phys. 8, 125–147 (2015). arXiv:1504.06134v7

  21. R.G. Forbes, J.H.B. Deane, A.G. Kolosko, S.V. Fillipov, E.O. Popov, Reinvigorating our approach to field emission area extraction (because Murphy-Good plots are better than Fowler-Nordheim plots), in 32nd International Vacuum Nanoelectronics Conference & 12th International Vacuum Electron Sources Conference, Cincinnatti, July 2019. Technical Digest, p. 23. https://doi.org/10.13140/rg.2.2.32112.81927

  22. Bureau International des Poid et Mesures (BIPM), The International System of Units, 9th ed. (“The SI Brochure”) (BIPM, Sèvres, 2019). http://www.bipm.org/en/publications/si-brochure/

  23. International Standards Organization (ISO), International Standard ISO 80000-1:2009. Quantities and units. Part I: General (ISO, Geneva, 2009, corrected 2011)

    Google Scholar 

  24. R. Gomer, Field Emission and Field Ionization (Harvard University Press, Cambridge, MA, 1961; Reprinted by: AIP, New York, 1993)

    Google Scholar 

  25. Adapted from an earlier version of, and consistent with, Reference [23], Section 3.20, Note 2

    Google Scholar 

  26. H. Yanagisawa, C. Hafner, P. Dona, M. Klöckner, D. Leuenberger, T. Greber, J. Osterwalder, M. Hengsberger, Laser-induced field emission from a tungsten tip: optical control of emission sites and the emission process. Phys. Rev. B 81, 115429 (2010)

    Article  ADS  Google Scholar 

  27. P. Hommelhoff, M.F. Kling, Attosecond Nanophysics (Wiley, Weinheim, 2015)

    Google Scholar 

  28. H.R. Reiss, Unsuitability of the Keldysh parameter for laser fields. Phys. Rev. A 82, 023418 (2010)

    Article  ADS  Google Scholar 

  29. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, 1999)

    Google Scholar 

  30. L.D Landau, E.M. Lifshitz, L.P. Pitaevskii, Electrodynamics of Continuous Media, 2nd edn. (English translation published by: Butterworth-Heinemann, Oxford, reprinted 1995)

    Google Scholar 

  31. W.P. Dyke, J.K. Trolan, W.W. Dolan, G. Barnes, The field emitter: fabrication, electron microscopy, and electric field calculations. J. Appl. Phys. 24, 570–576 (1953)

    Article  ADS  Google Scholar 

  32. J.J. Thomson, Cathode rays. Phil. Mag. 44, 293–316 (1897)

    Article  Google Scholar 

  33. T.E. Stern, B.S. Gossling, R.H. Fowler, Further studies in the emission of electrons from cold metals. Proc. R. Soc. Lond. A 124, 699–723 (1929)

    Article  ADS  Google Scholar 

  34. R.H. Fowler, L. Nordheim, Electron emission in intense electric fields. Proc. R. Soc. Lond. A 119, 173–181 (1928)

    Article  ADS  MATH  Google Scholar 

  35. R.G. Forbes, J.H.B. Deane, Transmission coefficients for the exact triangular barrier: an exact general analytical theory that can replace Fowler & Nordheim’s 1928 theory. Proc. R. Soc. Lond. A 467, 2927–2947 (2011). See electronic supplementary material for details of universal constants used in field emission

    Google Scholar 

  36. A. Modinos, Theoretical analysis of field emission data. Solid State Electron. 45, 809–816 (2001)

    Article  ADS  Google Scholar 

  37. B. Lepetit, Electronic field emission models beyond the Fowler-Nordheim one. J. Appl. Phys. 122, 215105 (2017)

    Article  ADS  Google Scholar 

  38. B. Lepetit, A three-dimensional quantum-mechanical model of electronic field emission from metallic surfaces with nanoscale corrugation. J. Appl. Phys. 125, 025107 (2019)

    Article  ADS  Google Scholar 

  39. C. Herring, M.H. Nichols, Thermionic emission. Rev. Mod. Phys. 21, 185–270 (1949)

    Article  ADS  Google Scholar 

  40. A. Sommerfeld, Zur Elektronentheorie der Metalle. Naturwiss. 15, 825–832 (1927)

    Article  ADS  MATH  Google Scholar 

  41. A. Sommerfeld, H. Bethe, Electronentheorie der Metalle, in Handbuch der Physik, vol. 24, ed. by H. Geiger, H. Scheel (Berlin, Springer, 1933), pp. 333–675

    Google Scholar 

  42. A. Sommerfeld, Thermodynamics and Statistical Mechanics (Academic, London, 1964)

    Google Scholar 

  43. R.G. Forbes, Comparison of the Lepetit field emission current-density calculations with the Modinos-Forbes uncertainty limits, in 31st International Vacuum Nanoelectronics Conference, Kyoto, July 2018. Technical Digest, pp. 126–127. https://doi.org/10.13140/rg.2.2.17153.10080

  44. D. Biswas, R. Kumar, Validation of current formula for a metallic nanotipped emitter. J. Vac. Sci. Technol. B 37, 049603 (2019)

    Google Scholar 

  45. E.O. Popov, A.G. Kolosko, S.V. Fillipov, R.G. Forbes, Emission area extraction for needle-shaped and post-shaped emitters, in 32nd International Vacuum Nanoelectronics Conference & 12th International Vacuum Electron Sources Conference, Cincinnatti, July 2019. Technical Digest, p. 96. https://doi.org/10.13140/rg.2.2.35337.19041

  46. I.S. Newton, Philosophiæ Naturalis Principia Mathematica (Royal Society, London, 1676) (in Latin) (English edition re-published by: Snowball Publishing, 2010). See Axioms, Law II (p. 19)

    Google Scholar 

  47. K.T. Compton, I. Langmuir, Electrical discharges in gases: part I. Survey of fundamental processes. Rev. Mod. Phys. 2, 124–242 (1930)

    Google Scholar 

  48. W. Thomson, On electrical images, Report of the 17th Meeting of the British Association for the Advancement of Science, Oxford, June 1847, Transactions of the Sections pp. 6–7 (John Murray, London, 1848)

    Google Scholar 

  49. W. Thomson, On the mathematical theory of electricity in equilibrium: V—effects of electrical influence on internal spherical, and on plane conducting surfaces. Camb. Dublin Math. J. 4, 276–284 (1849)

    Google Scholar 

  50. W. Thomson, Reprint of Papers on Electricity and Magnetism (Macmillan, London, 1872)

    Google Scholar 

  51. J.C. Maxwell, A Treatise on Electricity and Magnetism, 1st edn. (Clarendon, Oxford, 1873)

    MATH  Google Scholar 

  52. W. Schottky, Über den Einfluss von Strukturwirkungen, besonders der Thomsonschen Bildkft, auf die Electronenemission der Metalle. Phys. Z. 15, 872–878 (1914). (in German)

    Google Scholar 

  53. J.J. Thomson, Conduction of Electricity through Gases, 1st edn. (Cambridge University Press, 1903)

    Google Scholar 

  54. R.F. Earhart, XI. The sparking distances between plates for small distances. Phil. Mag. 1, 147–159 (1901)

    Google Scholar 

  55. W. Schottky, Über kalte und warme Electronenentladungen. Z. Phys. 14, 63–106 (1923)

    Article  ADS  Google Scholar 

  56. L.W. Nordheim, The effect of the image force on the emission and reflexion of electrons by metals. Proc. R. Soc. Lond. A 121, 626–639 (1928)

    Article  ADS  MATH  Google Scholar 

  57. J.H.B. Deane, R.G. Forbes, The formal derivation of an exact series expansion for the Principal Schottky-Nordheim Barrier Function v, using the Gauss hypergeometric differential equation. J. Phys. A Math. Theor. 41, 395301 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  58. R.A. Millikan, C.C. Lauritsen, Relations of field-currents to thermionic-currents. Proc. Nat. Acad. Sci. 14, 45–49 (1928)

    Article  ADS  Google Scholar 

  59. L.D. Landau, E.M. Lifschitz, Quantum Mechanics (Pergamon, Oxford, 1958)

    Google Scholar 

  60. R.H. Fowler, The restored theory of metals and thermionic formulae. Proc. R. Soc. Lond. A 117, 549–552 (1928)

    Article  ADS  MATH  Google Scholar 

  61. E.L. Murphy, R.H. Good, Thermionic emission, field emission and the transition region. Phys. Rev. 102, 1464–1473 (1956)

    Article  ADS  Google Scholar 

  62. E.H. Delaval, J. Canton, A letter from John Canton to Benjamin Franklin, containing some remarks on Mr Delaval’s electrical experiments. Phil. Trans. 52, 457–461 (1761–1762)

    Google Scholar 

  63. J. Priestly, The History and Present State of Electricity, with Original Experiments (1st edition 1775; 5th edition, corrected, published by: Johnson & Rivington, London, 1794) (5th edition reprinted by: ECCO Print Editions)

    Google Scholar 

  64. F. Guthrie, Magnetism and Electricity (Collins, London, 1876)

    Google Scholar 

  65. O.W. Richardson, The Emission of Electricity from Hot Bodies (Longmans Green, London, 1st edition 1916, 2nd edition 1921) (2nd edition republished as: Thermionic Emission from Hot Bodies, Watchmaker Publishing, online, 2003)

    Google Scholar 

  66. A.L. Reimann, Thermionic Emission (Chapman & Hall, London, 1934) (Reprinted by: Facsimile Publisher, Delhi, 2015)

    Google Scholar 

  67. T.A. Edison, Electrical indicator, US Patent Specification No. 307031 (Filed: 15 Nov. 1883; granted 21 Oct. 1884)

    Google Scholar 

  68. G.J. Stoney, Of the “electron”, or atom of electricity. Phil. Mag. (Series 5) 38, 418–420 (1894)

    Google Scholar 

  69. S. Dushman, Thermionic Emission. Rev. Mod. Phys. 2, 381–476 (1930)

    Article  ADS  Google Scholar 

  70. J.A. Becker, Thermionic electron emission and adsorption: part I. Thermionic emission. Rev. Mod. Phys. 7, 95–128 (1935)

    Google Scholar 

  71. W.B. Nottingham, Thermionic emission, in: S. Flugge (ed.) Encyclopedia of Physics, Vol. 21: Electron Emission Gas Discharges I (Springer, Berlin, 1956); based on technical report of same title available on line via websearch

    Google Scholar 

  72. S. Yamamato, Fundamental physics of vacuum electron sources. Rept. Prog. Phys. 69, 181–232 (2006)

    Article  ADS  Google Scholar 

  73. J.A. Eichmeier, M. Thumm (eds.), Vacuum Electronics (Springer, Berlin, 2008)

    Google Scholar 

  74. O.W. Richardson, On the negative radiation from hot platinum. Proc. Camb. Phil. Soc. 11, 286–295 (1900–1902)

    Google Scholar 

  75. O.W. Richardson, The emission of electrons from tungsten at high temperatures: an experimental proof that the electric current in metals is carried by electrons. Phil. Mag. 26, 345–350 (1913)

    Article  Google Scholar 

  76. O.W. Richardson, Some applications of the electron theory of matter. Phil. Mag. 23, 594–627 (1912)

    Article  MATH  Google Scholar 

  77. S. Dushman, Electron emission from metals as a function of temperature. Phys. Rev. 21, 623–636 (1923)

    Article  ADS  Google Scholar 

  78. A. Sommerfeld, Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik. Z. Phys. 47, 1–32 (1928). (in German)

    Article  ADS  MATH  Google Scholar 

  79. G.E. Uhlenbeck, S. Goudsmit, Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons. Naturwiss. 13, 953–954 (1925). (in German)

    Article  ADS  MATH  Google Scholar 

  80. R.H. Fowler, The thermionic emission constant A. Proc. R. Soc. Lond. A 122, 36–48 (1929)

    Article  ADS  MATH  Google Scholar 

  81. K.L. Jensen, Exchange-correlation, dipole and image-charge potentials for electron sources: temperature and field variations of the barrier height. J. Appl. Phys. 85, 2667–2680 (1999)

    Article  ADS  Google Scholar 

  82. R.G. Forbes, Comments on the continuing widespread and unnecessary use of a defective emission equation in field emission related literature. J. Appl. Phys. 126, 210191 (2019)

    Article  Google Scholar 

  83. R.G. Forbes, Use of energy-space diagrams in free-electron models of field electron emission. Surf. Interface Anal. 36, 395–401 (2004)

    Article  Google Scholar 

  84. E. Guth, C.J. Mullin, Electron emission of metals in electric fields: III. The transition from thermionic to cold emission. Phys. Rev. 61, 339–348 (1942)

    Google Scholar 

  85. R.E. Burgess, H. Kroemer, J.M. Houston, Corrected values of Fowler-Nordheim field emission functions v(y) and s(y). Phys. Rev. 90, 515 (1953)

    Article  ADS  MATH  Google Scholar 

  86. R.G. Forbes, J.H.B. Deane, Reformulation of the standard theory of Fowler-Nordheim tunnelling and cold field electron emission. Proc. R. Soc. Lond. A 463, 2907–2927 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  87. R.G. Forbes, Field electron emission theory (October 2016), v2. arXiv:1801.08251v2

  88. A. Kyritsakis, J.P. Xanthakis, Extension of the general thermal field equation for nanosized emitters. J. Appl. Phys. 119, 045303 (2016)

    Article  ADS  Google Scholar 

  89. A. Kyritsakis, F. Djurabekova, A general computational method for electron emission and thermal effects in field emitting nanotips. Comput. Mater. Sci. 128, 15–21 (2017)

    Article  Google Scholar 

  90. L.W. Swanson, A.E. Bell, Recent advances in field electron microscopy of metals. Adv. Electr. Electron Phys. 32, 193–309 (1973)

    Article  Google Scholar 

  91. A.S. Bahm, G.A. Schwind, L.W. Swanson, Range of validity of field emission equations. J. Vac. Sci. Technol. B 26, 2080–2084 (2008)

    Article  Google Scholar 

  92. K.L. Jensen, M. Cahay, General thermal-field emission equation. Appl. Phys. Lett. 88, 154105 (2006)

    Article  ADS  Google Scholar 

  93. K.L. Jensen, General formulation of thermal, field, and photoinduced electron emission. J. Appl. Phys. 102, 024911 (2007)

    Article  ADS  Google Scholar 

  94. K.L. Jensen, A reformulated general thermal-field emission equation. J. Appl. Phys. 126, 065302 (2019)

    Article  ADS  Google Scholar 

  95. X.Z. Qin, W.L. Wang, N.S. Xu, Z.B. Li, R.G. Forbes, Analytical treatment of cold field electron emission from a nanowall emitter, including quantum confinement effects. Proc. R. Soc. Lond. A 467, 1029–1051 (2011)

    ADS  Google Scholar 

  96. A.A. Patterson, A.I. Akinwande, Elementary framework for cold field emission from quantum-confined, non-planar emitters. J. Appl. Phys. 117, 174311 (2015)

    Article  ADS  Google Scholar 

  97. P.E. Mason, F. Uhlig, V. Vanek, T. Buttersack, S. Bauerecker, P. Jungwirth, Coulomb explosion during the early stages of the reaction of alkali metals with water. Nat. Chem. 7, 250–254 (2015)

    Article  Google Scholar 

  98. R.G. Forbes, Simple derivation of the formula for Sommerfeld supply density used in electron-emission physics and limitations on its use. J. Vac. Sci. Technol. B 28, 1326–1329 (2010)

    Article  Google Scholar 

  99. R.H. Fowler, Statistical Mechanics, 2nd edn. (Cambridge University Press, Cambridge, 1936; re-issued by Cambridge University Press, New York, 2011)

    Google Scholar 

  100. N. Fröman, P.O. Fröman, Physical Problems Solved by the Phase-Integral Method (Cambridge University Press, Cambridge, 2002)

    Book  MATH  Google Scholar 

  101. R.G. Forbes, Derivation “in SI units” of the Landau and Lifschitz formula for field ionization rate-constant. arXiv:1412.1821

    Google Scholar 

  102. A. Mayer, Exact solutions for the field electron emission achieved from a flat metal surface using the standard Fowler-Nordheim equation with a correction factor that accounts for the electric field, the work function and the Fermi energy of the emitter. J. Vac. Sci. Technol. B 29, 021803 (2011)

    Article  Google Scholar 

  103. N. Fröman, P.O. Fröman, JWKB Approximation: Contributions to the Theory (North-Holland, Amsterdam, 1965)

    MATH  Google Scholar 

  104. R.G. Forbes, On the need for a tunneling pre-factor in Fowler-Nordheim tunneling theory. J. Appl. Phys. 103, 114911 (2008)

    Article  ADS  Google Scholar 

  105. E.C. Kemble, A contribution to the theory of the B. W. K. method. Phys. Rev. 48, 549–561 (1935)

    Google Scholar 

  106. E.C. Kemble, The Fundamental Principles of Quantum Mechanics with Elementary Applications (Dover, New York, 1937)

    Google Scholar 

  107. S.C. Miller, R.H. Good, A WKB-type approximation to the Schrödinger equation. Phys. Rev. 91, 174–179 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  108. M. Razavy, Quantum Theory of Tunnelling (World Scientific, Hackensack, 2003)

    Book  MATH  Google Scholar 

  109. R.G. Forbes, Development of a simple quantitative test for lack of field emission orthodoxy. Proc. R. Soc. Lond. A 469, 20130271 (2013)

    ADS  Google Scholar 

  110. R.G. Forbes, The Murphy-Good plot: a better method of analysing field emission data. Roy. Soc. Open. Sci. 6, 190212 (2019)

    Google Scholar 

  111. R.G. Forbes, Field emission: new theory for the derivation of emission area from a Fowler-Nordheim plot. J. Vac. Sci. Technol. B 17, 525–533 (1999)

    Google Scholar 

  112. See p. 357 in Reference [99]

    Google Scholar 

  113. W.P. Dyke, W.W. Dolan, Field emission. Adv. Electr. Electron Phys. 8, 89–185 (1956)

    Article  Google Scholar 

  114. R.G. Forbes, A. Fischer, M.S. Mousa, Improved approach to Fowler-Nordheim plot analysis. J. Vac. Sci. Technol. B 31, 02B103 (2013)

    Article  Google Scholar 

  115. R.G. Forbes, Simple good approximations for the special elliptic functions in standard Fowler-Nordheim tunnelling theory for a Schottky-Nordheim barrier. Appl. Phys. Lett. 89, 113122 (2006)

    Article  ADS  Google Scholar 

  116. R.G. Forbes, Use of a spreadsheet for Fowler-Nordheim equation calculations. J. Vac. Sci. Technol. B 17, 534–541 (1999)

    Article  Google Scholar 

  117. R.G. Forbes, J.H.B. Deane, Comparison of approximations for the principal Schottky-Nordheim barrier function v(f), and comments on Fowler-Nordheim plots. J. Vac. Sci. Technol. B 28, C2A33–C2A42 (2010)

    Google Scholar 

  118. B.C. Carlson, Elliptic integrals, in NIST Handbook of Mathematical Functions, ed. by F.W.J. Olver et al. (NIST & Cambridge University Press, 2010), see formula 19.6.1

    Google Scholar 

  119. R.G. Forbes, ISQ derivation of the Murphy-Good second-order Taylor-expansion correction factor t2(f), in 32nd International Vacuum Nanoelectronics Conference & 12th International Vacuum Electron Sources Conference, Cincinnatti, July 2019. Technical Digest, p. 101

    Google Scholar 

  120. R.G. Forbes, C.J. Edgcombe, U. Valdré, Some comments on models for field enhancement. Ultramicroscopy 95, 57–65 (2003)

    Article  Google Scholar 

  121. A.I. Zhbanov, E.G. Pogolerov, Y.-C. Chang, Y.-G. Lee, Screened field enhancement factor for the floating sphere model of a carbon nanotube array. J. Appl. Phys. 110, 114311 (2011)

    Article  ADS  Google Scholar 

  122. J.R. Harris, K.L. Jensen, D.A. Shiffler, Dependence of optimal spacing on applied field in ungated field emitter arrays. AIP Adv. 5, 087183 (2015)

    Article  ADS  Google Scholar 

  123. R.G. Forbes, Physical electrostatics of small field emitter arrays/clusters. J. Appl. Phys. 120, l054302 (2016)

    Article  ADS  Google Scholar 

  124. T. de Assis, F.F. Dall’Agnol, Evidence of universal inverse-third power law for the shielding-induced fractional decreasee in apex field enhancement factor at large spacings: a response via accurate Laplace-type calculations. J. Phys.: Condens. Matter 30, 195301 (2018)

    ADS  Google Scholar 

  125. D. Biswas, R. Rudra, Shielding effects in random large-area emitters, the field enhancement factor distribution, and current calculation. Physics Plasmas 26, 083105 (2018)

    Article  ADS  Google Scholar 

  126. E. Minoux, O. Groening, K.B.K. Teo et al., Achieving high-current carbon nanotube emitters. Nano Lett. 5, 2135 (2005)

    Article  ADS  Google Scholar 

  127. R.G. Forbes, Field emission: the theoretical link between voltage loss, reduction in field enhancement factor, and Fowler-Nordheim-plot saturation. Appl. Phys. Lett. 110, 133109 (2017)

    Article  ADS  Google Scholar 

  128. R.G. Forbes, Use of the concept “area efficiency of emission” in equations describing field emission from large area electron sources. J. Vac. Sci. Technol. B27, 1200–1203 (2009)

    Article  Google Scholar 

  129. R.G. Forbes, Extraction of emission parameters for large-area field emitters, using a technically complete Fowler-Nordheim-type equation. Nanotechnology 23, 095706 (2012)

    Article  ADS  Google Scholar 

  130. R.G. Forbes, Why converting field emission voltages to macroscopic fields before making a Fowler-Nordheim plot has often led to spurious characterization results. J. Vac. Sci. Technol. B 37, 051802 (2019)

    Article  Google Scholar 

  131. M.M. Allaham, R.G. Forbes, M.S. Mousa, Applying the field emission orthodoxy test to Murphy-Good plots. Jordan J. Phys. 13, 101–110 (2020)

    Google Scholar 

  132. M.M. Allaham, R.G. Forbes, A. Knápek, M.S. Mousa, Implementation of the orthodoxy test as a validity check on experimental field emission data. J. Electr. Eng. Slovak 71, 37–42 (2020)

    Google Scholar 

  133. M. Bachmann, F. Dams, F. Düsberg, M. Hofmann, A. Pahlke, Extraction of the characteristics of current-limiting elements from field emission measurement data. J. Vac. Sci. Technol. B 35, 02C103 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Forbes .

Editor information

Editors and Affiliations

Appendices

Appendix 9.1. Fundamental and Universal Constants Used in Field Emission Theory

Table 9.4 presents values of the fundamental constants used in FE theory, both in SI units and in the ‘field emission customary units’ in which they are often given. Both sets of units are defined in the context of ISQ-based equations, and the normal rules of quantity algebra apply to their values. These customary units take the electronvolt, rather than the joule, as the unit of energy, and normally measure field in V/nm and charge in units equal to the elementary positive charge. Their use greatly simplifies basic calculations when energies are measured in eV and fields in V/nm, as is often the case. The numerical values of the constants, measured in both sets of units, are based on the values of the fundamental constants given in October 2019 on the website of the US National Institute of Standards and Technology (NIST) (see http://physics.nist.gov/constants). These values incorporate the SI system changes made in May 2019.

Table 9.4 The May 2019 values of the electronvolt (eV) and fundamental constants used in emission physics, given in SI units (either exactly or to 11 significant figures), and in field emission customary units (to 7 significant figures). Asterisks indicate constants where (since May 2019) the value in SI units is specified exactly

Table 9.5 gives the values, in FE customary units, of many universal constants, and combinations thereof, that are used in field emission theory. Where necessary, the tabulated values take the May 2019 changes into account. The third column in Table 9.5 is interesting, because it shows that several of the universal constants used in field emission are related in a relatively simple way to the constants κe and zS, which are very basic universal constants that appear centrally in the Schrödinger equation and in statistical mechanics, respectively.

Table 9.5 Some fundamental constants used in field emission and related theory. Values are given in field emission customary units

Appendix 9.2. High-Precision Formulae for v(x) and u(x)

This Appendix provides formulae for estimating high-precision values of the FE special mathematical functions v(x) and u(x) [≡ –dv/dx] (and hence of all the FE special mathematical functions). The parameter x is the Gauss variable. The two functions are estimated by the following series, derived from those given in [86] by replacing the symbol l' by the symbol x now preferred, and by slightly adjusting the form of the resulting series for v(x) (without changing its numerical predictions)

$$\text{v}(x) \, \cong \, (1 - x)\left( {1 + \sum\limits_{i = 1}^{4} {p_{i} x^{i} } } \right) + x\ln x\sum\limits_{i = 1}^{4} {q_{i} x^{i - 1} }$$
(9.86)
$$\text{u}(x) \, \cong \, \text{u}_{1} - (1 - x)\sum\limits_{i = 0}^{5} {s_{i} x^{i} } - \ln x\sum\limits_{i = 0}^{4} {t_{i} x^{i} }$$
(9.87)

Values of the constant coefficients pi, qi, si and ti are shown in Table 9.6.

Table 9.6 Numerical constants for use in connection with (9.86) and (9.87)

It can be seen that at the values x = 0, 1, formula (9.86) generates the correct values v(0) = 1, v(1) = 0, and that at x = 1, formula (9.87) generates the correct value u(1) = u1 = 3π/8√2.

Equation (9.86) mimics the form of the lower-order terms in the (infinite) exact series expansion for v(x) [57], but the coefficients in Table 9.6 have been determined by numerical fitting to exact expressions for v(x) and u(x) (in term of complete elliptic integrals) evaluated by the computer algebra package MAPLE™. In the range 0 ≤ x ≤ 1, v(x) takes values lying in the range 1 ≥ v(x) ≥ 0, and the maximum error associated with formulae (9.86) and (9.87) is less than 8×10−10 [57]. In Murphy-Good-type FE equations, these formulae are applied by setting x = fC.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Forbes, R.G. (2020). Renewing the Mainstream Theory of Field and Thermal Electron Emission. In: Gaertner, G., Knapp, W., Forbes, R.G. (eds) Modern Developments in Vacuum Electron Sources. Topics in Applied Physics, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-030-47291-7_9

Download citation

Publish with us

Policies and ethics