Skip to main content

The Evolution and Diversification of Neotropical Generalist Herbivores: The Evolutionary History of the Grasshopper Genus Sphenarium Charpentier, 1842

  • Chapter
  • First Online:
Evolutionary Ecology of Plant-Herbivore Interaction

Abstract

We present the current understanding on the diversification of the Mesoamerican genus Sphenarium, a group of generalist-herbivorous grasshoppers that could play a major role on the evolution of defense mechanisms and life history traits of plants along to their distribution range. We discuss their phylogenetic relationships and how geological and climatic history, as well as environmental variation, could favor their expansion and diversification. Furthermore, in a phylogenetical framework, we considered future directions on the study of their interactions with the plants with which their populations have evolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams PA, Leimar O, Nylin S, Wiklund C (1996) The effect of flexible growth rates on optimal sizes and development times in a seasonal environment. Am Nat 147:381. https://doi.org/10.1086/285857

    Article  Google Scholar 

  • Adamu RS, Dike MC, Ogunlana MO (1999) Insects associated with soybean (Glycine max (L) Merr.) in Northern Nigeria. J Sustainable Agricult Environ 1:272–278

    Google Scholar 

  • Ane N, Hussain M (2015) Diversity of insect pests in major rice growing areas of the world. J Entomol Zool Stud 4:36–41

    Google Scholar 

  • Avanesyan A, Culley TM (2015) Herbivory of native and exotic North-American prairie grasses by nymph Melanoplus grasshoppers. Plant Ecol 216:451–464. https://doi.org/10.1007/s11258-015-0449-9

    Article  Google Scholar 

  • Bernays EA, Chapman RF (1977) Deterrent chemicals as a basis of oligophagy in Locusta migratoria (L.). Ecol Entomol. https://doi.org/10.1111/j.1365-2311.1977.tb00861.x

  • Berner D, Körner C, Blanckenhorn WU (2004) Grasshopper populations across 2000 m of altitude: Is there life history adaptation? Ecography (Cop) 27:733–740. https://doi.org/10.1111/j.0906-7590.2005.04012.x

    Article  Google Scholar 

  • Bryson RW, García-Vázquez UO, Riddle BR (2011) Phylogeography of Middle American gophersnakes: mixed responses to biogeographical barriers across the Mexican Transition Zone. J Biogeogr 38:1570–1584. https://doi.org/10.1111/j.1365-2699.2011.02508.x

    Article  Google Scholar 

  • Bryson RW, García-vázquez UO, Riddle BR (2012) Molecular phylogenetics and evolution relative roles of Neogene vicariance and quaternary climate change on the historical diversification of bunchgrass lizards (Sceloporus scalaris group) in Mexico. Mol Phylogenet Evol 62:447–457. https://doi.org/10.1016/j.ympev.2011.10.014

    Article  PubMed  Google Scholar 

  • Buckley LB, Davies TJ, Ackerly DD et al (2010) Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. Proc R Soc B Biol Sci 277:2131–2138. https://doi.org/10.1098/rspb.2010.0179

    Article  Google Scholar 

  • Cano-Santana Z, Castellanos-Vargas I (2009) Historia natural y ecología de Sphenarium purpurascens (Orthoptera : Pyrgomorphidae). In: Biodiversidad del Ecosistema del Pedregal de San Ángel. Universidad Nacional Autonoma de Mexico, pp 337–346

    Google Scholar 

  • Castillo G, Cruz LL, Tapia-López R et al (2014) Selection mosaic exerted by specialist and generalist herbivores on chemical and physical defense of Datura stramonium. PLoS One 9. https://doi.org/10.1371/journal.pone.0102478

  • Cavender-Bares J, Ackerly DD, Kozak KH (2012) Integrating ecology and phylogenetics: the footprint of history in modern-day communities. Ecology

    Google Scholar 

  • Cerritos R, Cano-Santana Z (2008) Harvesting grasshoppers Sphenarium purpurascens in Mexico for human consumption: a comparison with insecticidal control for managing pest outbreaks. Crop Prot 27:473–480. https://doi.org/10.1016/j.cropro.2007.08.001

    Article  Google Scholar 

  • Cigliano MM, Braun H, Eades DC, Otte D (2019) Orthoptera species file. Version 5.0/5.0. [1/8/2018]. http://orthoptera.speciesfile.org/Common/basic/Taxa.aspx?TaxonNameID=1109732

  • Cueva del Castillo R (2003) Body size and multiple copulations in a neotropical grasshopper with an extraordinary mate-guarding duration. J Insect Behav 16:503–522. https://doi.org/10.1023/A:1027303323242

    Article  Google Scholar 

  • Cueva del Castillo R, Nunez-Farfan J (1999) Sexual selection on maturation time and body size in Sphenarium purpurascens (Orthoptera : Pyrgomorphidae): correlated response to selection. Evolution (NY) 53:209–215

    Article  Google Scholar 

  • Cueva del Castillo R, Núñez-Farfán J (2002) Female mating success and risk of pre-reproductive death in a protandrous grasshopper. Oikos 2:217–224. https://doi.org/10.1034/j.1600-0706.2002.960203.x

    Article  Google Scholar 

  • Cueva del Castillo R, Núñez-Farfán J, Cano-Santana Z (1999) The role of body size in mating success of Sphenarium purpurascens in Central Mexico. Ecol Entomol 24:146–155. https://doi.org/10.1046/j.1365-2311.1999.00188.x

    Article  Google Scholar 

  • Debbarma A, Jayaraj J, Chandramani P, Senthil N, Ananthan M, Prabakaran K (2017) A survey on occurrence and diversity of insect pests of cauliflower in Dindigul and Theni districts of Tamil Nadu, India. Int J Curr Microbiol App Sci 6(8):2495–2505

    Google Scholar 

  • Descamps M (1975) Etude du peuplement acridien de L’etat de Veracruz (Mexique). Folia Entomológica Mex 31:3–98

    Google Scholar 

  • Dingle H, Mousseau TA, Scott SM (1990) Altitudinal variation in life cycle syndromes of California populations of the grasshopper, Melanoplus sanguinipes (F.). Oecologia 84:199–206. https://doi.org/10.1007/BF00318272

    Article  PubMed  Google Scholar 

  • Duennes MA, Lozier JD, Hines HM, Cameron SA (2012) Geographical patterns of genetic divergence in the widespread Mesoamerican bumble bee Bombus ephippiatus (Hymenoptera: Apidae). Mol Phylogenet Evol 64:219–231

    Article  Google Scholar 

  • Eberhard WG (2010) Evolution of genitalia: theories, evidence, and new directions. Genetica 138:5–18. https://doi.org/10.1007/s10709-009-9358-y

    Article  PubMed  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution (NY) 18:586. https://doi.org/10.2307/2406212

    Article  Google Scholar 

  • Fassakin K (1991) Studies on the effect of sowing depth and planting density on vegetative growth and leaf yield of two local cultivars of Ceratotheca sesamoides. Master of Science Project. University of Ilorin, Ilorin

    Google Scholar 

  • Ferrari L, Orozco-Esquivel T, Manea V, Manea M (2012) The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics 522:122–149

    Article  Google Scholar 

  • Fornoni J, Valverde PL, Núñez-Farfán J (2003) Quantitative genetics of plant tolerance and resistance against natural enemies of two natural populations of Datura stramonium. Evol Ecol Res

    Google Scholar 

  • Futuyma DJ, Agrawal AA (2009) Evolutionary history and species interactions. Proc Natl Acad Sci 106:18043–18044. https://doi.org/10.1073/pnas.0910334106

    Article  CAS  PubMed  Google Scholar 

  • Gerhold P, Cahill JF, Winter M et al (2015) Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct Ecol 29:600–614. https://doi.org/10.1111/1365-2435.12425

    Article  Google Scholar 

  • Gupta SK and Chandra K (2013). Annotated list of orthopteran insect pests in India. Bionotes: 117–122

    Google Scholar 

  • Heinrichs EA, Barrion AT (2004) Rice-feeding insects and selected natural enemies in West Africa: biology, ecology and identification. International Rice Research Institute and Abidjan (Côte d’Ivoire): WARDA–The Africa Rice Center, Los Baños

    Google Scholar 

  • Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev Camb Philos Soc 80:489–513. https://doi.org/10.1017/S1464793105006767

    Article  PubMed  Google Scholar 

  • Hosken DJ, Stockley P (2004) Sexual selection and genital evolution. Trends Ecol Evol 19:87–93. https://doi.org/10.1016/j.tree.2003.11.012

    Article  PubMed  Google Scholar 

  • IITA (1984) Annual report for 1982. IITA, Ibadan

    Google Scholar 

  • Jago ND (1998) The world-wide magnitude of orthoptera as pests. J Orthoptera Res 7:117–124

    Google Scholar 

  • Jarvis E (1927) Notes on insects damaging sugar cane in Queensland. Division of Entomology. Bureau of Sugar Experiment Stations, 9–11 pp

    Google Scholar 

  • Joern A (1979) Feeding patterns in grasshoppers (Orthoptera: Acrididae): Factors influencing diet specialization. Oecologia 38:325–347. https://doi.org/10.1007/BF00345192

    Article  PubMed  Google Scholar 

  • Kekeunou S, Weise S, Messi J (2006) Insect pest incidence and variation due to forest landscape degradation in the humid forest zone of southern Cameroon: farmers’ perception and need for adopting an integrated pest management strategy. Afri J Biotech 5:555–562

    Google Scholar 

  • Kevan DKM (1977) The American Pyrgomorphidae (Orthoptera). Rev la Soc Entomológica Argentina 36:3–28

    Google Scholar 

  • Kevan DKM, Hsiung C-C (1985) The tropical and southern African species of Pyrgomorpha Audinet-Serville, 1838, other than the P. conica-group (Orthoptera: Acridoidea: Pyrgomorphidae). J Ent Soc Sth Afr

    Google Scholar 

  • Khaemba BM, Mutinga MJ (1982) Insect pests of sunflower (Helianthus annuus l.) in Kenya. Insect Sci Applicts 3:281–286

    Google Scholar 

  • Kobayashi T, Hasegawa T, Kegasawa K (1972) Major insect pests of leguminous crops in Japan. Trop Agric Res Ser, Japan 6:109–126

    Google Scholar 

  • Kraft NJB, Cornwell WK, Webb CO, Ackerly DD (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am Nat 170:271. https://doi.org/10.2307/4541080

    Article  PubMed  Google Scholar 

  • Lee DW, Park JC, Kim DS, Kim CS, Choo HY (2007) Kinds and occurring time of insect pests in medicinal plant Garden. https://agris.fao.org/aos/records/KR2008003318

  • Lentz DL, Bye R, Sánchez-Cordero V (2008) Ecological niche modeling and distribution of wild sunflower (Helianthus annuus L.) in Mexico. Int J Plant Sci 169:541–549. https://doi.org/10.1086/528754

    Article  Google Scholar 

  • Mahabir S (1980) Relative toxicity of some insecticides to Chrotogonus trachypterus Blanchard (Orthoptera: Pyrgomorphidae). Pesticides 14:14–15

    Google Scholar 

  • Mariño-Pérez R, Song H (2018) Phylogeny of the grasshopper family Pyrgomorphidae (Caelifera, Orthoptera) based on morphology. Syst Entomol 43:90–108. https://doi.org/10.1111/syen.12251

    Article  Google Scholar 

  • Mariño-Pérez R, Song H (2019) On the origin of the New World Pyrgomorphidae (Insecta: Orthoptera). Mol Phylogenet Evol 139. https://doi.org/10.1016/j.ympev.2019.106537

  • Márquez C (1962) Estudios de las especies del género Sphenarium basado en sus genitalia (Acrididae; Orthoptera), con la descripción de una nueva especie. An Inst Biol UNAM Ser Zool 33:247–258

    Google Scholar 

  • Márquez C (1965a) Contribución al estudio de ortópteros de México, III. Estudios ecológicos preliminares de ortópteros del valle de Mezcala, Guerrero. An Inst Biol UNAM Ser Zool 35:87–93

    Google Scholar 

  • Márquez C (1965b) Contribución al estudio de ortópteros de México, IV. Ortópteros del Pedregal de San Ángel, Villa Orbegón, DF. An Inst Biol UNAM Ser Zool 39:107–122

    Google Scholar 

  • Mason JB (1979) Acridoidea of south west Angola (Orthoptera). Eos 53:91–132

    Google Scholar 

  • Mastretta-Yanes A, Moreno-Letelier A, Pinero D et al (2015) Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the Trans-Mexican Volcanic Belt. J Biogeogr 42:1586–1600

    Article  Google Scholar 

  • Morbey YE (2013) Protandry, sexual size dimorphism, and adaptive growth. J Theor Biol 339:93–99. https://doi.org/10.1016/j.jtbi.2013.05.009

    Article  PubMed  Google Scholar 

  • Mousseau TA, Roff DA (1987) Natural selection and the heritability of fitness components. Heredity (Edinb) 59(Pt 2):181–197. https://doi.org/10.1038/hdy.1987.113

    Article  Google Scholar 

  • Núñez-Farfán J, Dirzo R (1994) Evolutionary ecology of Datura stramonium l. in central Mexico: natural selection for resistance to herbivorous insects. Evolution (NY) 48:423–436. https://doi.org/10.1111/j.1558-5646.1994.tb01321.x

    Article  Google Scholar 

  • Otte D, Joern A (1976) On feeding patterns in desert grasshoppers and the evolution of specialized diets. Proc Acad Nat Sci Philadelphia 128:89–126. https://doi.org/10.1038/scientificamerican09231854-16

    Article  Google Scholar 

  • Oyama K, Cano-Santana Z, Careaga S (1994) Estudios sobre la interacción herbívoro-planta en el Pedregal de San Ángel, México, D. F. In: Reserva ecológica behaviour “El Pedregal” de San Ángel: ecología, historia natural y manejo. Universidad Nacional Autónoma de México, Mexico City, pp 301–311

    Google Scholar 

  • Page WW, Harris JRW, Youdeowei A (1980) Defoliation and consequent crop loss in cassava caused by the grasshopper (L.) (Orthoptera: Pyrgomorphidae) in southern Nigeria. Bull Entomol Res 70(1):151–163

    Google Scholar 

  • Paraïso AA, Douro-kpindu OK, Onzo A et al (2012) The acridoidea of Benin (Orthoptera): an annotated checklist. Inter J Sci Advan Tech 2:22–52

    Google Scholar 

  • Patra S, Rahman Z, Bhumita P, Saikia K, Thakur NSA (2013) Study on pest complex and crop damage in maize in medium altitude hill of Meghalaya. Bioscan 8(3):825–828

    Google Scholar 

  • Ramos-Elorduy J, Moreno JMP (1989) Los Insectos comestibles en el México antiguo: estudio etnoentomológico. AGT, Mexico City

    Google Scholar 

  • Reznick DN, Ricklefs RE (2009) Darwin’s bridge between microevolution and macroevolution. Nature 457:837–842. https://doi.org/10.1038/nature07894

    Article  CAS  PubMed  Google Scholar 

  • Ríos-Casanova L, Cano-Santana Z (1994) Análisis cuantitativo de los artrópodos epifitos del Pedregal de San Ángel. In: Rojo A (ed) Reserva Ecológica “El Pedregal” de San Ángel: Ecología. Historia Natural y Manejo. Universidad Nacional Autonoma de Mexico, Mexico City, pp 275–281

    Google Scholar 

  • Roff D (1980) Optimizing development time in a seasonal environment: The “ups and downs” of clinal variation. October 45:202–208. https://doi.org/10.1007/BF00346461

    Article  Google Scholar 

  • Sanabria-Urbán S, Song H, Oyama K et al (2015) Body size adaptations to altitudinal climatic variation in neotropical grasshoppers of the genus Sphenarium (Orthoptera: Pyrgomorphidae). PLoS One 10:e0145248. https://doi.org/10.1371/journal.pone.0145248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanabria-Urbán S, Song H, Oyama K et al (2017) Integrative taxonomy reveals cryptic diversity in neotropical grasshoppers: Taxonomy, phylogenetics, and evolution of the genus Sphenarium Charpentier, 1842 (Orthoptera: Pyrgomorphidae). Zootaxa 4274:1–86. https://doi.org/10.11646/zootaxa.4274.1.1

    Article  PubMed  Google Scholar 

  • Schaffner U, Rindenour WM, Wolf VC et al (2011) Plant invasions, generalist herbivores, and novel defense weapons. Ecology 92:829–835. https://doi.org/10.2307/41739278

    Article  PubMed  Google Scholar 

  • Seino RA, Ghogomu RT, Kekeunou S, Chifon RN, Manjeli Y (2013) An inventory of short horn grasshoppers in the Menoua Division, West Region of Cameroon. Agric Biol J N Am 4(3):291–299

    Google Scholar 

  • Seino RA, Njoya MTM (2018) Species diversity of Pyrgomorphidae (Orthoptera: Caelifera) grasshoppers in the north west region of Cameroon. Int J Zool Appl Biosci 3:104–109

    Google Scholar 

  • Soomro I, Sultana R, Wagan Ms, Kumar S, Solangi FH (2014) Mating strategies of Poekilocerus pictus (Fabricus, 1775) (Pyrgomorphidae: Acridoidea: Orthoptera). Pak J Entomol 29:21–25

    Google Scholar 

  • Swamy BCH, Rajagopal D, Farooqi AA, Chakcravarthy AK (1993) Insect pests of Costus speciosus, a medicinal plant. Myforest 29:101–103

    Google Scholar 

  • Thakur SK, Thakur MS (2011) Orthopteran crop-pest relationship in roper wetland and its environ Punjab, India. Int J Plant Anim Environ Sci 2:52–54

    Google Scholar 

  • Tandon SK (1986) Grasshoppers of economic importance in India. In: Manual: Collection, preservation of insects and mites of economic importance. Zool Surv India, Calcutta: 35-46.

    Google Scholar 

  • Valverde PL, Fornoni J, Núñez-Farfán J (2001) Defensive role of leaf trichomes in resistance to herbivorous insects in Datura stramonium. J Evol Biol 14:424–432. https://doi.org/10.1046/j.1420-9101.2001.00295.x

    Article  Google Scholar 

  • Villalobos F, Carotenuto F, Raia P, Diniz-Filho JAF (2016) Phylogenetic fields through time: temporal dynamics of geographical co-occurrence and phylogenetic structure within species ranges. Philos Trans R Soc B Biol Sci 371:20150220. https://doi.org/10.1098/rstb.2015.0220

    Article  CAS  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448

    Article  Google Scholar 

  • Yang L, Nitin R, Marino-Perez R, et al (2019) Predictability in the evolution of Orthopteran cardenolide insensitivity. Philos Trans R Soc B. https://doi.org/10.6084/m9.figshare.c.4472423

Download references

Acknowledgments

We thank to Dr. Ken Oyama (Laboratory of Genetic and Molecular Ecology, ENES Morelia) and Dr. Hojun Song (The Song Lab of Insect Systematics and Evolution, Texas A&M University) for all the facilities provided. This research was funded by the projects CONACYT 57009 and PAPIIT-UNAM granted to RCC, as well as by the Theodore J. Cohn Research Fund granted to SSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Cueva del Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanabria-Urbán, S., Cueva del Castillo, R. (2020). The Evolution and Diversification of Neotropical Generalist Herbivores: The Evolutionary History of the Grasshopper Genus Sphenarium Charpentier, 1842. In: Núñez-Farfán, J., Valverde, P. (eds) Evolutionary Ecology of Plant-Herbivore Interaction. Springer, Cham. https://doi.org/10.1007/978-3-030-46012-9_15

Download citation

Publish with us

Policies and ethics