Skip to main content

Heavy Metal Stress in Plants: Effects on Nutrients and Water Uptake

  • Chapter
  • First Online:
Cellular and Molecular Phytotoxicity of Heavy Metals

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Plants are exposed to several biotic and abiotic stresses which invariably disturb their physiological processes. The contamination of the rhizosphere with heavy metals as a result of increased human activities is one of the leading abiotic constraints which hinder the growth and physiological functions of plants leading to reduced yields. Since water and nutrient uptake by plants play key roles in their physiological activities, imbalance in the uptake could severely interrupt the systematic occurrence of pathways involved in physiology leading to suppressed plant growth. Heavy metals in soils could compete with essential nutrients making their availability scarce for uptake by roots or they may contribute to osmotic stress. In either case, survivability and physiological responses of plants growing in contaminated environment are challenged. This chapter highlights the effects of heavy metal stress on the nutrient and water status of plants and consequent abnormalities associated with such stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad MSA, Ashraf M, Tabassam Q, Hussain M, Firdous H (2011a) Lead (Pb)-induced regulation of growth, photosynthesis, and mineral nutrition in maize (Zea mays L.) plants at early growth stages. Biol Trace Elem Res 144(1–3):1229–1239

    Google Scholar 

  • Ahmad MSA, Ashraf M, Hussain M (2011b) Phytotoxic effects of nickel on yield and concentration of macro-and micro-nutrients in sunflower (Helianthus annuus L.) achenes. J Hazard Mater 185(2–3):1295–1303

    Google Scholar 

  • Akhtar N, Hameed M, Hamid A, Nawaz F, Ahmad KS, Deng J et al (2018) Effects of nickel toxicity on morphological and physiological aspects of osmoregulation in Typha domingensis (Typhaceae) populations. Limnology 19(2):185–197

    Google Scholar 

  • Akinci IE, Akinci S, Yilmaz K (2010) Response of tomato (Solanum lycopersicum L.) to lead toxicity: growth, element uptake, chlorophyll and water content. Afr J Agric Res 5(6):416–423

    Google Scholar 

  • Ali S, Zeng F, Qiu L, Zhang G (2011) The effect of chromium and aluminum on growth, root morphology, photosynthetic parameters and transpiration of the two barley cultivars. Biol Plant 55(2):291–296

    Article  CAS  Google Scholar 

  • Ali N, Masood S, Mukhtar T, Kamran MA, Rafique M, Munis MFH, Chaudhary HJ (2015) Differential effects of cadmium and chromium on growth, photosynthetic activity, and metal uptake of Linum usitatissimum in association with Glomus intraradices. Environ Monit Assess 187(6):311

    Google Scholar 

  • Alloway BJ (ed) (2012) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability, vol 22. Springer Science & Business Media, Dordrecht

    Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Ashraf U, Khan I, Wang L (2017) Alteration in growth, leaf gas exchange, and photosynthetic pigments of maize plants under combined cadmium and arsenic stress. Water Air Soil Pollut 228(1):13

    Article  Google Scholar 

  • Barceló JUAN, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13(1):1–37

    Article  Google Scholar 

  • Bertoli AC et al (2012) Lycopersicon esculentum submitted to Cd-stressful conditions in nutrition solution: Nutrient contents and translocation. Ecotoxicol Environ Saf 86:176–181

    Article  Google Scholar 

  • Chandra R, Kang H (2016) Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. Forest Sci Technol 12(2):55–61

    Article  Google Scholar 

  • Eker S, Erdem H, Yazici MA, Barut H, Heybet EH (2013) Effects of cadmium on growth and nutrient composition of bread and durum wheat genotypes. Fresenius Environ Bull 22:1779–1786

    CAS  Google Scholar 

  • Feigl G, Kumar D, Lehotai N, Pető A, Molnár Á, Rácz É, Laskay G (2015) Comparing the effects of excess copper in the leaves of Brassica juncea (L. Czern) and Brassica napus (L.) seedlings: growth inhibition, oxidative stress and photosynthetic damage. Acta Biol Hung 66(2):205–221

    Article  CAS  PubMed  Google Scholar 

  • Ferreyroa GV, Lagorio MG, Trinelli MA, Lavado RS, Molina FV (2017) Lead effects on Brassica napus photosynthetic organs. Ecotoxicol Environ Saf 140:123–130

    Google Scholar 

  • Geebelen W, Vangronsveld J, Adriano DC, Van Poucke LC, Clijsters H (2002) Effects of Pb-EDTA and EDTA on oxidative stress reactions and mineral uptake in Phaseolus vulgaris. Physiol Plant 115(3):377–384

    Google Scholar 

  • Ghnaya T, Slama I, Messedi D, Grignon C, Ghorbel MH, Abdelly C (2007) Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: consequences on growth. Chemosphere 67(1):72–79

    Google Scholar 

  • Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223(6):1115–1122

    Article  PubMed  Google Scholar 

  • Gonçalves JF, Antes FG, Maldaner J, Pereira LB, Tabaldi LA, Rauber R et al (2009) Cadmium and mineral nutrient accumulation in potato plantlets grown under cadmium stress in two different experimental culture conditions. Plant Physiol Biochem 47(9):814–821

    Article  PubMed  Google Scholar 

  • Gupta DK, Huang HG, Nicoloso FT, Schetinger MR, Farias JG, Li TQ et al (2013) Effect of Hg, As and Pb on biomass production, photosynthetic rate, nutrients uptake and phytochelatin induction in Pfaffia glomerata. Ecotoxicology 22(9):1403–1412

    Google Scholar 

  • Gusman GS, Oliveira JA, Farnese FS, Cambraia J (2013) Mineral nutrition and enzymatic adaptation induced by arsenate and arsenite exposure in lettuce plants. Plant Physiol Biochem 71:307–314

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:872875, 37 pages

    Google Scholar 

  • Kastori R, Petrović M, Petrović N (1992) Effect of excess lead, cadmium, copper, and zinc on water relations in sunflower. J Plant Nutr 15(11):2427–2439

    Article  CAS  Google Scholar 

  • Kastori RR, Maksimovic IV, Kraljevic-Balalic MM, Kobiljski BD (2008) Physiological and genetic basis of plant tolerance to excess boron. Proc Nat Sci Matica Srpska Novi Sad 114:41–51

    Google Scholar 

  • Khan SA, Khan L, Hussain I, Marwat KB, Akhtar N (2008) Profile of heavy metals in selected medicinal plants. Pakistan J Weed Sci Res 14(1–2):101–110

    Google Scholar 

  • Kholodova V, Volkov K, Abdeyeva A, Kuznetsov V (2011) Water status in Mesembryanthemum crystallinum under heavy metal stress. Environ Exp Bot 71(3):382–389

    Google Scholar 

  • Koleva L (2010) Mineral nutrients content in zinc and cadmium treated durum wheat plants with similar growth inhibition. Gene Appl Plant Physiol 36:60–63

    CAS  Google Scholar 

  • Kováčik J, Klejdus B, Hedbavny J, Štork F, Bačkor M (2009) Comparison of cadmium and copper effect on phenolic metabolism, mineral nutrients and stress-related parameters in Matricaria chamomilla plants. Plant Soil 320(1–2):231

    Google Scholar 

  • Lamhamdi M, El Galiou O, Bakrim A, Nóvoa-Muñoz JC, Arias-Estevez M, Aarab A, Lafont R (2013) Effect of lead stress on mineral content and growth of wheat (Triticum aestivum) and spinach (Spinacia oleracea) seedlings. Saudi J Biol Sci 20(1):29–36

    Google Scholar 

  • Leal-Alvarado DA, Espadas-Gil F, Sáenz-Carbonell L, Talavera-May C, Santamaría JM (2016) Lead accumulation reduces photosynthesis in the lead hyper-accumulator Salvinia minima Baker by affecting the cell membrane and inducing stomatal closure. Aquat Toxicol 171:37–47

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhou Q, Sun X, Ren W (2016) Effects of cadmium on uptake and translocation of nutrient elements in different welsh onion (Allium fistulosum L.) cultivars. Food Chem 194:101–110

    Google Scholar 

  • Li Q, Chen HH, Qi YP, Ye X, Yang LT, Huang ZR, Chen LS (2019) Excess copper effects on growth, uptake of water and nutrients, carbohydrates, and PSII photochemistry revealed by OJIP transients in citrus seedlings. Environ Sci Pollut Res 26(29):30188–30205

    Article  CAS  Google Scholar 

  • Lin MZ, Jin MF (2018) Soil Cu contamination destroys the photosynthetic systems and hampers the growth of green vegetables. Photosynthetica 56(4):1336–1345

    Article  CAS  Google Scholar 

  • Liu JG, Liang JS, Li KQ, Zhang ZJ, Yu BY, Lu XL et al (2003) Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere 52(9):1467–1473

    Article  CAS  PubMed  Google Scholar 

  • Manivasagaperumal R, Vijayarengan P, Balamurugan S, Thiyagarajan G (2011) Effect of copper on growth, dry matter yield and nutrient content of Vigna radiata (L.) Wilczek. J Phytol 3:53–62

    Google Scholar 

  • Mathur S, Kalaji HM, Jajoo A (2016) Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant. Photosynthetica 54(2):185–192

    Article  CAS  Google Scholar 

  • Najeeb U, Jilanic G, Alia S, Sarward M, Xua L, Zhoua W (2011) Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. J Hazard Mater 186:565–574. https://doi.org/10.1016/j.jhazmat.2010.11.037

  • Nazarian H, Amouzgar D, Sedghianzadeh H (2016) Effects of different concentrations of cadmium on growth and morphological changes in basil (Ocimum basilicum L.). Pak J Bot 48(3):945–952

    Google Scholar 

  • Pandey N, Pathak GC (2006) Nickel alters antioxidative defense and water status in green gram. Indian J Plant Physiol 11(2):113

    CAS  Google Scholar 

  • Paunov M, Koleva L, Vassilev A, Vangronsveld J, Goltsev V (2018) Effects of different metals on photosynthesis: cadmium and zinc affect chlorophyll fluorescence in durum wheat. Int J Mol Sci 19(3):787

    Article  PubMed Central  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32(4):539–548

    Article  CAS  PubMed  Google Scholar 

  • Qi JY, Niu Z, Zhang J, Di XL, Tang S, Hua CQ et al (2018) Effects of heavy metal Lead on photosynthetic characteristics and fluorescence parameters of Potentilla sericea L. Acta Agrest Sin 2:25

    Google Scholar 

  • Quanji LIU, Chengxiao HU, Qiling TAN, Xuecheng SUN, Jingjun SU, Liang Y (2008) Effects of As on As uptake, speciation, and nutrient uptake by winter wheat (Triticum aestivum L.) under hydroponic conditions. J Environ Sci 20(3):326–331

    Google Scholar 

  • Rahman H, Sabreen S, Alam S, Kawai S (2005) Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J Plant Nutr 28(3):393–404

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M, Agrawal SB (2016) Impact of heavy metals on physiological processes of plants: with special reference to photosynthetic system. In: Plant responses to xenobiotics. Springer, Singapore, pp 127–140

    Chapter  Google Scholar 

  • Rossato LV, Nicoloso FT, Farias JG, Cargnelluti D, Tabaldi LA, Antes FG et al (2012) Effects of lead on the growth, lead accumulation and physiological responses of Pluchea sagittalis. Ecotoxicology 21(1):111–123

    Google Scholar 

  • Rucińska-Sobkowiak R (2016) Water relations in plants subjected to heavy metal stresses. Acta Physiol Plant 38(11):257

    Article  Google Scholar 

  • Shen X, Li R, Chai M, Cheng S, Niu Z, Qiu GY (2019) Interactive effects of single, binary and trinary trace metals (lead, zinc and copper) on the physiological responses of Kandelia obovata seedlings. Environ Geochem Health 41(1):135–148

    Google Scholar 

  • Singh PK, Tewari RK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24(1):107–112

    Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    PubMed  PubMed Central  Google Scholar 

  • Sirhindi G, Mir MA, Sharma P, Gill SS, Kaur H, Mushtaq R (2015) Modulatory role of jasmonic acid on photosynthetic pigments, antioxidants and stress markers of Glycine max L. under nickel stress. Physiol Mol Biol Plants 21(4):559–565

    Google Scholar 

  • Siedlecka A (2014) Some aspects of interactions between heavy metals and plant mineral nutrients. Acta Soc Bot Poloniae 64(3):265–272

    Google Scholar 

  • Sundaramoorthy P, Chidambaram A, Ganesh KS, Unnikannan P, Baskaran L (2010) Chromium stress in paddy: (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. CR Biol 333(8):597–607

    Article  CAS  Google Scholar 

  • Vernay P, Gauthier-Moussard C, Hitmi A (2007) Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 68(8):1563–1575

    Google Scholar 

  • Vezza ME, Llanes A, Travaglia C, Agostini E, Talano MA (2018) Arsenic stress effects on root water absorption in soybean plants: physiological and morphological aspects. Plant Physiol Biochem 123:8–17

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Zhang SH, Wang PF, Hou J, Zhang WJ, Li W, Lin ZP (2009a) The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere 75(11):1468–1476

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Zhang SH, Wang PF, Qian J, Hou J, Zhang WJ, Lu J (2009b) Excess Zn alters the nutrient uptake and induces the antioxidative responses in submerged plant Hydrilla verticillata (Lf) Royle. Chemosphere 76(7):938–945

    Google Scholar 

  • Wang C, Lu J, Zhang S, Wang P, Hou J, Qian J (2011) Effects of Pb stress on nutrient uptake and secondary metabolism in submerged macrophyte Vallisneria natans. Ecotoxicol Environ Saf 74(5):1297–1303

    Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167–179

    Article  CAS  Google Scholar 

  • Yang F, Huang S, Liu Y, Wang H (2018) Effects of heavy metals Cu, Zn and its compound stress on physiological characteristics of Cinnamomum camphora. In: 2018 7th international conference on energy, environment and sustainable development (ICEESD 2018). Atlantis Press

    Google Scholar 

  • Yoshihara T, Hodoshima H, Miyano Y, Shoji K, Shimada H, Goto F (2006) Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants. Plant Cell Rep 25(4):365–373

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siyar, S., Sami, S., Majeed, A. (2020). Heavy Metal Stress in Plants: Effects on Nutrients and Water Uptake. In: Faisal, M., Saquib, Q., Alatar, A.A., Al-Khedhairy, A.A. (eds) Cellular and Molecular Phytotoxicity of Heavy Metals. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-45975-8_6

Download citation

Publish with us

Policies and ethics