Skip to main content

Overview of Nanopesticide Environmental Safety Aspects and Regulatory Issues: The Case of Nanoatrazine

  • Chapter
  • First Online:
Nanopesticides

Abstract

The use of nanotechnology to create new formulations has shown great potential to reduce the indiscriminate use of pesticides and provide environmentally safer alternatives. Pesticides formulated using controlled release nanosystems are designed to efficiently provide sufficient and targeted quantities of active ingredients to target organisms, thus improving crop yields and reducing environmental contamination with pesticides. However, the possible harmful effects of these nanomaterials on the environment are not yet well understood, highlighting the need for studies assessing the fate and behavior of nanopesticides in the environment. This chapter will discuss the major challenges and advances in the research regarding nanopesticide risk analysis. It will also discuss the difficulty in developing regulations about the commercialization of nanoproducts, due to the underlying specific features of nanomaterials that drive their reactivity and toxicity. Finally, the case of nanoatrazine will be reviewed, providing an example of how the nanoencapsulation can affect herbicide efficiency and influence its toxicity to different non-target organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adisa IO, Pullagural VLR, Peralta-Vide JR et al (2019) Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environ Sci Nano 6:2002–2030

    Article  CAS  Google Scholar 

  • Albuquerque FP, Oliveira JL, Moschini-Carlos V, Fraceto LF (2020) An overview of the potential impacts of atrazine in aquatic environments: perspectives for tailored solutions based on nanotechnology. Sci Total Environ 700:1–9

    Article  CAS  Google Scholar 

  • Amenta V, Aschberger K, Arena M et al (2015) Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul Toxicol Pharmacol 73:463–476

    Article  PubMed  Google Scholar 

  • Andrade LL, Pereira AES, Fraceto LF et al (2019) Can atrazine loaded nanocapsules reduce the toxic effects of this herbicide on the fish Prochilodus lineatus? A multibiomarker approach. Sci Total Environ 663:548–559

    Article  PubMed  CAS  Google Scholar 

  • Bagheri A, Bondori A, Allahyari MS et al (2019) Modeling farmers’ intention to use pesticides: an expanded version of the theory of planned behavior. J Environ Manag 248:109291

    Article  Google Scholar 

  • Ballesteros ML, Rivetti NG, Morillo DO et al (2017) Multi-biomarker responses in fish (Jenynsia multidentata) to assess the impact of pollution in rivers with mixtures of environmental contaminants. Sci Total Environ 595:711–722

    Article  CAS  PubMed  Google Scholar 

  • Benfenati E, Chaudhry Q, Gini G et al (2019) Integrating in silico models and read-across methods for predicting toxicity of chemicals: a step-wise strategy. Environ Int 131:105060

    Article  CAS  PubMed  Google Scholar 

  • Bombo AB, Pereira AES, Lusa MG et al (2019) A mechanistic view of interactions of a nanoherbicide with target organism. J Agric Food Chem 67:4453–4462

    Article  CAS  PubMed  Google Scholar 

  • Camara MC, Campos EVR, Monteiro RA et al (2019) Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture. J Nanobiotechnology 17:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerrillo C, Barandika G, Igartua A et al (2017) Key challenges for nanotechnology: Standardization of ecotoxicity testing. J Environ Sci Health Part C 35(2):104–126

    Google Scholar 

  • Chariou P, Dogan AB, Welsh AG et al (2019) Soil mobility of synthetic and virus-based model nanopesticides. Nat Nanotechnol 14:712–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15:15–22

    Article  CAS  Google Scholar 

  • Clemente Z, Grillo R, Jonsson M (2014) Ecotoxicological evaluation of poly (epsilon-caprolactone) nanocapsules containing triazine herbicides. J Nanosci Nanotechnol 13:1–7

    Google Scholar 

  • Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health 8:1402–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng R, Lin D, Zhu L et al (2017) Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology 11:591–612

    Article  CAS  PubMed  Google Scholar 

  • Fojtová D, Vašíčková J, Grillo R (2019) Nanoformulations can significantly affect pesticide degradation and uptake by earthworms and plants. Environ Chem 16:470–481

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–2540

    Article  CAS  PubMed  Google Scholar 

  • Gebre SH, Sendeku MG (2019) New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications: an overview. SN Appl Sci 1:928

    Article  CAS  Google Scholar 

  • Gomes SIL, Scott-Fordsmand JJ, Campos EVR et al (2019) On the safety of nanoformulations to non-target soil invertebrates-an atrazine case study. Environ Sci Nano 6(6):1950–1958

    Article  CAS  Google Scholar 

  • Grillo R, Melo NFS, Lourenço LR (2010) Characterization of atrazine-loaded biodegradable poly (hydroxybutyrate-cohydroxyvalerate) microspheres. J Polym Environ 18:26–32

    Article  CAS  Google Scholar 

  • Grillo R, Dos Santos NZP, Maruyama CR et al (2012) Poly(ɛ-caprolactone) nanocapsules as carrier systems for herbicides: physic-chemical characterization and genotoxicity evaluation. J Hazard Mater 231:1–9

    Article  PubMed  CAS  Google Scholar 

  • Handford CE, Dean M, Spence M et al (2015) Awareness and attitudes towards the emerging use of nanotechnology in the agri-food sector. Food Control 57:24–34

    Article  Google Scholar 

  • He X, Fu P, Aker WG et al (2018) Toxicity of engineered nanomaterials mediated by nano-bio-eco interactions. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 36:21–42

    Article  CAS  PubMed  Google Scholar 

  • He X, Deng H, Hwang H (2019) The current application of nanotechnology in food and agriculture. J Food Drug Anal 27:1–21

    Article  PubMed  CAS  Google Scholar 

  • Henchion M, McCarthy M, Dillon EJ et al (2019) Big issues for a small technology: consumer trade-offs in acceptance of nanotechnology in food. Innov Food Sci Emerg Technol 58:102210

    Article  CAS  Google Scholar 

  • Holden PA, Nisbet RM, Lenihan HS et al (2013) Ecological nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels. Acc Chem Res 463:813–822

    Article  CAS  Google Scholar 

  • Iavicoli I, Leso V, Beezhold DH et al (2017) Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicol Appl Pharmacol 329:96–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isigonis P, Hristozov D, Benighaus C et al (2019) Risk governance of nanomaterials: review of criteria and tools for risk communication, evaluation, and mitigation. Nano 9:696

    CAS  Google Scholar 

  • Jacques MT, Oliveira JL, Campos EVR (2017) Safety assessment of nanopesticides using the roundworm Caenorhabditis elegans. Ecotoxicol Environ Saf 139:245–253

    Article  CAS  PubMed  Google Scholar 

  • Jantunen APK, Gottardo S, Rasmussen K et al (2018) An inventory of ready-to-use and publicly available tools for the safety assessment of nanomaterials. NanoImpact 12:18–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Kah M, Beulke S, Tiede K et al (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43:1823–1867

    Article  CAS  Google Scholar 

  • Kah M, Machinski P, Koerner P et al (2014) Analysing the fate of nanopesticides in soil and the applicability of regulatory protocols using a polymer-based nanoformulation of atrazine. Environ Sci Pol 21(20):11699–11707

    Article  CAS  Google Scholar 

  • Kah M, Kookana RS, Gogos A et al (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol 13:677–684

    Article  CAS  PubMed  Google Scholar 

  • Kah M, Tufenkji N, White JC et al (2019) Nano-enabled strategies to enhance crop nutrition and protection. Nat Nanotechnol 14:532–540

    Article  CAS  PubMed  Google Scholar 

  • Karimi M, Sadeghi R, Kokini J (2018) Human exposure to nanoparticles through trophic transfer and the biosafety concerns that nanoparticle-contaminated foods pose to consumers. Trends Food Sci Technol 75:129–145

    Article  CAS  Google Scholar 

  • Kim KH, Kabir E, Jahan SA (2017) Exposure to pesticides and the associated human health effects. Sci Total Environ 575:525–535

    Article  CAS  PubMed  Google Scholar 

  • Kim D-Y, Kadam A, Shinde S et al (2018) Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. J Sci Food Agric 98:849–865

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Bhanjana G, Sharma A (2017) Development of nanoformulation approaches for the control of weeds. Sci Total Environ 586:1272–1278

    Article  CAS  PubMed  Google Scholar 

  • Lai RWS, Yeung KWY, Yung MMN et al (2018) Regulation of engineered nanomaterials: current challenges, insights and future directions. Environ Sci Pollut Res Int 25:3060–3077

    Article  CAS  PubMed  Google Scholar 

  • Li L, Xu Z, Kah M et al (2019) Nanopesticides: a comprehensive assessment of environmental risk is needed before widespread agricultural application. Environ Sci Technol 53:7923–7924

    Article  CAS  PubMed  Google Scholar 

  • Lombi E, Donner E, Dusinska M (2019) One health approach to managing the applications and implications of nanotechnologies in agriculture. Nat Nanotechnol 14:523–531

    Article  CAS  PubMed  Google Scholar 

  • Lushchak VI, Matviishyna TM, Husaka VV et al (2018) Pesticide toxicity: a mechanistic approach. EXCLI J 17:1101–1136

    PubMed  PubMed Central  Google Scholar 

  • Makarenko NA, Makarenko VV (2019) Nanotechnologies in crop cultivation: ecotoxicological aspects. Biosyst Divers 27(2):148–155

    Article  Google Scholar 

  • Mansano AS, Moreira RA, Dornfeld HC et al (2017) Effects of diuron and carbofuran and their mixtures on the microalgae Raphidocelis subcapitata. Ecotoxicol Environ Saf 142:312–321

    Article  CAS  PubMed  Google Scholar 

  • Marucci RC, Freitas LM, Santos-Rasera JR et al (2019) Are cerium oxide nanoparticles transferred from plants to the aphid Myzus persicae (Hemiptera: Aphididae)? Fla Entomol 102:555–561

    Article  Google Scholar 

  • Miernicki M, HofmannT EI et al (2019) Legal and practical challenges in classifying nanomaterials according to regulatory definitions. Nat Nanotechnol 14:208–216

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Wickson F (2015) Risk analysis of nanomaterials: exposing nanotechnology’s naked emperor. Rev Policy Res 32:485–512

    Article  Google Scholar 

  • Mitter N, Hussey K (2019) Moving policy and regulation forward for nanotechnology applications in agriculture. Nat Nanotechnol 14:508–510

    Article  CAS  PubMed  Google Scholar 

  • Mossa AT, Abbassy M (2012) Adverse haematological and biochemical effects of certain formulated insecticides in male rats. Res J Environ Toxicol 6:160–168

    Article  CAS  Google Scholar 

  • Nguyen MH, Hwang IC, Bui CB et al (2016) Effects of the physical state of nanocarriers on their penetration into the root and upward transportation to the stem of soybean plants using confocal laser scanning microscopy. Crop Prot 87:25–30

    Article  CAS  Google Scholar 

  • Nuruzzaman M, Rahman MM, Liu Y et al (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64:1447–1483

    Article  CAS  PubMed  Google Scholar 

  • Oliveira HC, Stolf MR, Martinez CBR et al (2015a) Nanoencapsulation enhances the post-emergence herbicidal activity of atrazine against mustard plants. PLoS One 10:1–12

    Google Scholar 

  • Oliveira JL, Campos EVR, Silva CMG et al (2015b) Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. J Agric Food Chem 63:422–432

    Article  PubMed  CAS  Google Scholar 

  • Oliveira HC, Stolf-Moreira R, Martinez CBR (2015c) Evaluation of the side effects of poly(epsilon-caprolactone) nanocapsules containing atrazine toward maize plants. Front Chem 3:1–9

    Article  CAS  Google Scholar 

  • Oomen AG, Steinhäuser KG, Bleeker EAJ et al (2018) Risk assessment frameworks for nanomaterials: scope, link to regulations, applicability, and outline for future directions in view of needed increase in efficiency. NanoImpact 9:1–13

    Article  Google Scholar 

  • Pandey S, Giri K, Kumar R et al (2018) Nanopesticides: opportunities in crop protection and associated environmental risks. Proc Natl Acad Sci India Sect B Biol Sci 88:1287–1308

    Article  CAS  Google Scholar 

  • Pereira AES, Grillo R, Mello NFS et al (2014) Application of poly (epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215

    Article  CAS  PubMed  Google Scholar 

  • Pourzahedi L, Pandorf M, Ravikumar D et al (2018) Life cycle considerations of nano-enabled agrochemicals: are today’s tools up to the task? Environ Sci Nano 5:1057–1069

    Article  CAS  Google Scholar 

  • Prasad A, Astete CE, Bodoki AE et al (2018) Zein nanoparticles uptake and translocation in hydroponically grown sugar cane plants. J Agric Food Chem 66:6544–6551

    Article  CAS  PubMed  Google Scholar 

  • Preisler AC, Pereira AE, Campos EV et al (2020) Atrazine nanoencapsulation improves pre-emergence herbicidal activity against Bidens pilosa without enhancing long-term residual effect on Glycine max. Pest Manag Sci 76:141–149

    Article  CAS  PubMed  Google Scholar 

  • Puglis HJ, Boone MD (2011) Effects of technical-grade active ingredient vs. commercial formulation of seven pesticides in the presence or absence of UV radiation on survival of green frog tadpoles. Arch Environ Contam Toxicol 60:145–155

    Article  CAS  PubMed  Google Scholar 

  • Roig A (2018) Nanotechnology governance: from risk regulation to informal platforms. Nano Ethics 12:115–121

    Google Scholar 

  • Romero-Franco M, Godwin HA, Bilal M et al (2017) Needs and challenges for assessing the environmental impacts of engineered nanomaterials (ENMs). Beilstein J Nanotechnol 8:989–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnoor B, Elhendawy A, Joseph S et al (2018) Engineering atrazine loaded poly (lactic-co-glycolic acid) nanoparticles to ameliorate environmental challenges. J Agric Food Chem 66:7889–7898

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Kumar V, Chauhan A et al (2018) Toxicity, degradation and analysis of the herbicide atrazine. Environ Chem Lett 16(1):211–237

    Google Scholar 

  • Slattery M, Harper B, Harper S (2019) Pesticide encapsulation at the nanoscale drives changes to the hydrophobic partitioning and toxicity of an active ingredient. Nanomaterials 9:81

    Article  PubMed Central  CAS  Google Scholar 

  • Sørensen SN, Baun A, Burkard M et al (2019) Evaluating environmental risk assessment models for nanomaterials according to requirements along the product innovation stage-gate process. Environ Sci Nano 6:505–518

    Article  Google Scholar 

  • Sousa GFM, Gomes DG, Campos EVR et al (2018) Post-emergence herbicidal activity of nanoatrazine against susceptible weeds. Front Environ Sci 6:1–6

    Article  Google Scholar 

  • Souza PMS, Lobo FA, Rosa AH et al (2012) Desenvolvimento de nanocápsulas de poli-e-caprolactona contendo o herbicida atrazina. Quim Nova 35:132–137

    Article  CAS  Google Scholar 

  • Sun Y, Liang J, Tang L et al (2019) Nano-pesticides: a great challenge for biodiversity? Nano Today 28:100757

    Article  Google Scholar 

  • Tangaa SR, Selck H, Winther-Nielsen M et al (2016) Trophic transfer of metal-based nanoparticles in aquatic environments: a review and recommendations for future research focus. Environ Sci Nano 3:966–981

    Article  CAS  Google Scholar 

  • Taverna ME, Busatto CA, Lescano MR et al (2018) Microparticles based on ionic and organosolv lignins for the controlled release of atrazine. J Hazard Mater 359:139–147

    Article  CAS  PubMed  Google Scholar 

  • Trump BD, Hristozov D, Malloy T et al (2018) Risk associated with engineered nanomaterials: different tools for different ways to govern. Nano Today 21:9–13

    Article  CAS  Google Scholar 

  • Villaverde JJ, Sevilla-Morán B, López-Goti C et al (2018) Considerations of nano-QSAR/QSPR models for nanopesticide risk assessment within the European legislative framework. Sci Total Environ 634:1530–1539

    Article  CAS  PubMed  Google Scholar 

  • Walker GW, Kookana RS, Smith NE et al (2018) Ecological risk assessment of nano-enabled pesticides: a perspective on problem formulation. J Agric Food Chem 66:6480–6486

    Article  CAS  PubMed  Google Scholar 

  • Werlin R, Priester JH, Mielke RE et al (2011) Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nat Nanotechnol 6:65–71

    Article  CAS  PubMed  Google Scholar 

  • Xiao-Ting C, Wang T (2019) Preparation and characterization of atrazine-loaded biodegradable PLGA nanospheres. J Integr Agric 18:1035–1041

    Article  Google Scholar 

  • Yue L, Ge C, Feng D et al (2017) Adsorption–desorption behavior of atrazine on agricultural soils in China. J Environ Sci 57:180–189

    Article  CAS  Google Scholar 

  • Zhao X, Cui H, Wang Y et al (2018) Development strategies and prospects of nano-based smart pesticide formulation. J Agric Food Chem 66:6504–6512

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank São Paulo Research Foundation (FAPESP, Grant Number 2017/21004-5) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grant Number 306583/2017-8) for financial support. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Halley Caixeta Oliveira or Vera Lucia S. S. de Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Albuquerque, F.P., Preisler, A.C., Fraceto, L.F., Oliveira, H.C., de Castro, V.L.S.S. (2020). Overview of Nanopesticide Environmental Safety Aspects and Regulatory Issues: The Case of Nanoatrazine. In: Fraceto, L.F., S.S. de Castro, V.L., Grillo, R., Ávila, D., Caixeta Oliveira, H., Lima, R. (eds) Nanopesticides. Springer, Cham. https://doi.org/10.1007/978-3-030-44873-8_9

Download citation

Publish with us

Policies and ethics