Skip to main content

Fundamentals of Silver Nanoparticles and Their Toxicological Aspects

  • Chapter
  • First Online:
Polymer Nanocomposites Based on Silver Nanoparticles

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The silver nanoparticles have their unique optical, thermal, electrical and biological properties and are being used in various consumer products that range from photovoltaics to chemical sensors and biological health-care products owing to their strong antimicrobial properties. This chapter documents the updates information on various aspects silver nanoparticles. The historical background and brief description on their evolution from the ancient history to present era are elaborated herein. The basic techniques of synthesis of silver nanoparticles including their pros and cons are also given in this chapter. A brief account on various properties of silver nanoparticles, especially their biological properties owing to the strong antimicrobial activity, are discussed in detail. In this chapter, special emphasis is given to the potential environmental threats due to the increasing use of silver nanoparticles in modern materials and ensures large amount of silver release into ecosystem. This chapter also focuses the various toxicity effects of silver nanoparticles in different organism and human beings based on the updated studies. Furthermore, the toxicity effects of silver nanoparticles on various part of the body, illustrating gaps in current knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramenko, N.B., Demidova, T.B., Abkhalimov, E.V., Ershov, B.G., Krysanov, E.Y., Kustov, L.M.: Ecotoxicity of different-shaped silver nanoparticles: case of zebrafish embryos. J. Hazard. Mater. 347, 89–94 (2018). https://doi.org/10.1016/j.jhazmat.2017.12.060

    Article  CAS  Google Scholar 

  • Aillon, K.L., Xie, Y., El-Gendy, N., Berkland, C.J., Forrest, M.L.: Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev. 61, 457–466 (2009). https://doi.org/10.1016/j.addr.2009.03.010

    Article  CAS  Google Scholar 

  • Amin, R.M., Mohamed, M.B., Ramadan, M.A., Verwanger, T., Krammer, B.: Rapid and sensitive microplate assay for screening the effect of silver and gold nanoparticles on bacteria. Nanomedicine 4, 637–643 (2009). https://doi.org/10.2217/nnm.09.50

    Article  CAS  Google Scholar 

  • Aryal, S., Park, H., Leary, J.F.: For Molecular Imaging and Drug Delivery (2019)

    Google Scholar 

  • Asharani, P.V., Low, G., Mun, K., Hande, M.P., Valiyaveettil, S.: Cytotoxicity and genotoxicity of silver. ACS Nano 3, 279–290 (2009)

    Article  CAS  Google Scholar 

  • Austin, C.A., Umbreit, T.H., Brown, K.M., Barber, D.S., Dair, B.J., Francke-Carroll, S., Feswick, A., Saint-Louis, M.A., Hikawa, H., Siebein, K.N., Goering, P.L.: Distribution of silver nanoparticles in pregnant mice and developing embryos. Nanotoxicology 6, 912–922 (2012). https://doi.org/10.3109/17435390.2011.626539

    Article  CAS  Google Scholar 

  • Bao, S., Tang, W., Fang, T.: Sex-dependent and organ-specific toxicity of silver nanoparticles in livers and intestines of adult zebrafish. Chemosphere, 249 (2020). https://doi.org/10.1016/j.chemosphere.2020.126172

  • Blaser, S.A., Scheringer, M., MacLeod, M., Hungerbühler, K.: Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. Sci. Total Environ. 390, 396–409 (2008a). https://doi.org/10.1016/j.scitotenv.2007.10.010

  • Blaser, S.A., Scheringer, M., MacLeod, M., Hungerbühler, K.: Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. Sci. Total Environ. 390, 396–409 (2008b). https://doi.org/10.1016/j.scitotenv.2007.10.010

  • Cao, H., Liu, X., Meng, F., Chu, P.K.: Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials 32, 693–705 (2011). https://doi.org/10.1016/j.biomaterials.2010.09.066

    Article  CAS  Google Scholar 

  • Carey Lea, M.: Allotropic forms of silver. Am. J. Sci. 37, 467–491 (1889)

    Google Scholar 

  • Cha, K., Hong, H.W., Choi, Y.G., Lee, M.J., Park, J.H., Chae, H.K., Ryu, G., Myung, H.: Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol. Lett. 30, 1893–1899 (2008). https://doi.org/10.1007/s10529-008-9786-2

    Article  CAS  Google Scholar 

  • Chen, N., Zheng, Y., Yin, J., Li, X., Zheng, C.: Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro. J. Virol. Methods 193, 470–477 (2013). https://doi.org/10.1016/j.jviromet.2013.07.020

    Article  CAS  Google Scholar 

  • Chiang, W.C., Schroll, C., Hilbert, L.R., Miller, P., Tolker-Nielsen, T.: Silver-Palladium surfaces inhibit biofilm formation. Appl. Environ. Microbiol. 75, 1674–1678 (2009). https://doi.org/10.1128/AEM.02274-08

    Article  CAS  Google Scholar 

  • De Jong, W.H., Van Der Ven, L.T.M., Sleijffers, A., Park, M.V.D.Z., Jansen, E.H.J.M., Van Loveren, H., Vandebriel, R.J.: Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials 34, 8333–8343 (2013). https://doi.org/10.1016/j.biomaterials.2013.06.048

    Article  CAS  Google Scholar 

  • East, B.W., Boddy, K., Williams, E.D., Macintyre, D., McLay, A.L.C.: Silver retention, total body silver and tissue silver concentrations in argyria associated with exposure to an anti-smoking remedy containing silver acetate. Clin. Exp. Dermatol. 5, 305–311 (1980). https://doi.org/10.1111/j.1365-2230.1980.tb01708.x

    Article  CAS  Google Scholar 

  • El-Nouri, M.A., Mahmoud, A.O., Ibraheim, E.A.O., Ragab2, A.M.H., El-Sayed Abdel-Majied, E.: Study of the effects of silver nanoparticles exposure on the ovary of Rat. Life Sci. J. 10, 1887–1894 (2013)

    Google Scholar 

  • Ema, M., Okuda, H., Gamo, M., Honda, K.: A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reprod. Toxicol. 67, 149–164 (2017). https://doi.org/10.1016/j.reprotox.2017.01.005

    Article  CAS  Google Scholar 

  • Espinosa-Cristobal, L.F., Martinez-Castañon, G.A., Loyola-Rodriguez, J.P., Patiño-Marin, N., Reyes-Macías, J.F., Vargas-Morales, J.M., Ruiz, F.: Toxicity, distribution, and accumulation of silver nanoparticles in Wistar rats. J. Nanoparticle Res. 15, (2013). https://doi.org/10.1007/s11051-013-1702-6

  • Fabrega, J., Fawcett, S.R., Renshaw, J.C., Lead, J.R.: Silver nanoparticle impact on bacterial growth: Effect of pH, concentration, and organic matter. Environ. Sci. Technol. 43, 7285–7290 (2009). https://doi.org/10.1021/es803259g

    Article  CAS  Google Scholar 

  • Furchner, J.E., Richmond, C.R., Drake, G.A.: Comparative metabolism of radionuclides in mammals—IV. retention of silver-110 m in the mouse, rat, monkey, and dog. Health Phys. 15, 505–514 (1968). https://doi.org/10.1097/00004032-196812000-00005

  • Geoprincy, G., Poonguzhali, U., Srri, B.N.V., Renganathan, S., Gandhi, N.N.: Academic sciences asian journal of pharmaceutical and clinical research. Asian J. Pharm. Clin. Res. 6 (2013)

    Google Scholar 

  • Gaikwad, S., Ingle, A., Gade, A., Rai, M., Falanga, A., Incoronato, N., Russo, L., Galdiero, S., Galdiero, M.: Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int. J. Nanomedicine. 8, 4303–4314 (2013). https://doi.org/10.2147/IJN.S50070

    Article  CAS  Google Scholar 

  • Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V., Galdiero, M.: Silver nanoparticles as potential antiviral agents. Molecules 16, 8894–8918 (2011). https://doi.org/10.3390/molecules16108894

    Article  CAS  Google Scholar 

  • Gnanadhas, D.P., Thomas, M. Ben, Thomas, R., Raichur, A.M., Chakravortty, D.: Interaction of silver nanoparticles with serum proteins affects their antimicrobial activity in vivo. Antimicrob. Agents Chemother. 57, 4945–4955 (2013). https://doi.org/10.1128/AAC.00152-13

  • Gopinath, V., MubarakAli, D., Priyadarshini, S., Priyadharsshini, N.M., Thajuddin, N., Velusamy, P.: Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloid Surf. B Biointerface 96, 69–74 (2012). https://doi.org/10.1016/j.colsurfb.2012.03.023

    Article  CAS  Google Scholar 

  • Gromadzka-Ostrowska, J., Dziendzikowska, K., Lankoff, A., Dobrzyńska, M., Instanes, C., Brunborg, G., Gajowik, A., Radzikowska, J., Wojewódzka, M., Kruszewski, M.: Silver nanoparticles effects on epididymal sperm in rats. Toxicol. Lett. 214, 251–258 (2012). https://doi.org/10.1016/j.toxlet.2012.08.028

    Article  CAS  Google Scholar 

  • Gubarev, A.S., Lezov, A.A., Mikhailova, M.E., Senchukova, A.S., Ubyivovk, E.V., Nekrasova, T.N., Girbasova, N.V., Bilibin, A.Y., Tsvetkov, N.V.: Ag(0) nanoparticles stabilized with Poly(Ethylene Glycol)s modified with amino groups: formation and properties in solutions. Colloid J. 81, 226–234 (2019). https://doi.org/10.1134/S1061933X19030062

    Article  CAS  Google Scholar 

  • Gupta, A., Maynes, M., Silver, S.: Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl. Environ. Microbiol. 64, 5042–5045 (1998). https://doi.org/10.1128/aem.64.12.5042-5045.1998

    Article  CAS  Google Scholar 

  • Haase, A., Rott, S., Mantion, A., Graf, P., Plendl, J., Thünemann, A.F., Meier, W.P., Taubert, A., Luch, A., Reiser, G.: Effects of silver nanoparticles on primary mixed neural cell cultures: uptake, oxidative stress and acute calcium responses. Toxicol. Sci. 126, 457–468 (2012). https://doi.org/10.1093/toxsci/kfs003

    Article  CAS  Google Scholar 

  • Hadrup, N., Gao, X., Lam, H.R., Loeschner, K., Vogel, U., Bergström, A., Frandsen, H.L., Mortensen, A., Wilcks, A., Larsen, E.H.: Subacute oral toxicity investigation of nanoparticulate and ionic silver in rats. Arch. Toxicol. 86, 543–551 (2012a). https://doi.org/10.1007/s00204-011-0759-1

    Google Scholar 

  • Hadrup, N., Lam, H.R., Loeschner, K., Mortensen, A., Larsen, E.H., Frandsen, H.: Nanoparticulate silver increases uric acid and allantoin excretion in rats, as identified by metabolomics. J. Appl. Toxicol. 32, 929–933 (2012b). https://doi.org/10.1002/jat.2779

  • Hadrup, N., Lam, H.R.: Oral toxicity of silver ions, silver nanoparticles and colloidal silver—a review. Regul. Toxicol. Pharmacol. 68, 1–7 (2014). https://doi.org/10.1016/j.yrtph.2013.11.002

    Article  CAS  Google Scholar 

  • Hamdy, S., Elamanchili, P., Alshamsan, A., Molavi, O., Satou, T., Samuel, J.: Responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly (D, L-lactic-co-glycolic acid) nanoparticles. J. Biomed. Mater. Res. Part A (2006). https://doi.org/10.1002/jbm.a

    Article  Google Scholar 

  • Havarinasab, S., Pollard, K.M., Hultman, P.: Gold- and silver-induced murine autoimmunity—Requirement for cytokines and CD28 in murine heavy metal-induced autoimmunity. Clin. Exp. Immunol. 155, 567–576 (2009). https://doi.org/10.1111/j.1365-2249.2008.03831.x

    Article  CAS  Google Scholar 

  • Hong, J.S., Kim, S., Lee, S.H., Jo, E., Lee, B., Yoon, J., Eom, I.C., Kim, H.M., Kim, P., Choi, K., Lee, M.Y., Seo, Y.R., Kim, Y., Lee, Y., Choi, J., Park, K.: Combined repeated-dose toxicity study of silver nanoparticles with the reproduction/developmental toxicity screening test. Nanotoxicology. 8, 349–362 (2014). https://doi.org/10.3109/17435390.2013.780108

    Article  CAS  Google Scholar 

  • Hu, Z., Chandran, K., Grasso, D., Smets, B.F.: Impact of metal sorption and internalization on nitrification inhibition. Environ. Sci. Technol. 37, 728–734 (2003). https://doi.org/10.1021/es025977d

    Article  CAS  Google Scholar 

  • Hussain, S.M., Hess, K.L., Gearhart, J.M., Geiss, K.T., Schlager, J.J.: In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. Vitr. 19, 975–983 (2005). https://doi.org/10.1016/j.tiv.2005.06.034

    Article  CAS  Google Scholar 

  • Jain, P., Pradeep, T.: Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng. 90, 59–63 (2005). https://doi.org/10.1002/bit.20368

    Article  CAS  Google Scholar 

  • Jensen, L.S., Peterson, R.P., Falen, L.: Inducement of enlarged hearts and muscular dystrophy in turkey poults with dietary silver. Poult. Sci. 53, 57–64 (1974). https://doi.org/10.3382/ps.0530057

    Article  CAS  Google Scholar 

  • Jeong, G.N., Jo, U.B., Ryu, H.Y., Kim, Y.S., Song, K.S., Yu, I.J.: Histochemical study of intestinal mucins after administration of silver nanoparticles in Sprague-Dawley rats. Arch. Toxicol. 84, 63–69 (2010). https://doi.org/10.1007/s00204-009-0469-0

    Article  CAS  Google Scholar 

  • Karak, N., Konwarh, R., Voit, B.: Catalytically active vegetable-oil-based thermoplastic hyperbranched polyurethane/ silver nanocomposites. Macromol. Mater. Eng. 295, 159–169 (2010). https://doi.org/10.1002/mame.200900211

    Article  CAS  Google Scholar 

  • Kim, S.M., Lee, D.H., Choi, J.W., Choi, B.S., In, H.S.: Diagnosis of Vertebral Artery Ostial Stenosis on Contrast-Enhanced MR Angiography: usefulness of a Thin-Slab MIP Technique. J. Korean Soc. Magn. Reson. Med. 15, 77 (2011). https://doi.org/10.13104/jksmrm.2011.15.1.77

  • Kim, Y.S., Kim, J.S., Cho, H.S., Rha, D.S., Kim, J.M., Park, J.D., Choi, B.S., Lim, R., Chang, H.K., Chung, Y.H., Kwon, I.H., Jeong, J., Han, B.S., Yu, I.J.: Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol. 20, 575–583 (2008). https://doi.org/10.1080/08958370701874663

    Article  CAS  Google Scholar 

  • Kim, Y.S., Song, M.Y., Park, J.D., Song, K.S., Ryu, H.R., Chung, Y.H., Chang, H.K., Lee, J.H., Oh, K.H., Kelman, B.J., Hwang, I.K., Yu, I.J.: Subchronic oral toxicity of silver nanoparticles. Part. Fibre Toxicol. 7 (2010a). https://dx.doi.org/10.1186%2F1743-8977-7-20

  • Kim, Y.S., Song, M.Y., Park, J.D., Song, K.S., Ryu, H.R., Chung, Y.H., Chang, H.K., Lee, J.H., Oh, K.H., Kelman, B.J., Hwang, I.K., Yu, I.J.: Subchronic oral toxicity of silver nanoparticles. Part. Fibre Toxicol. 7, 1–11 (2010b). https://doi.org/10.1186/1743-8977-7-20

  • Kleiven, M., Macken, A., Oughton, D.H.: Growth inhibition in Raphidocelis subcapita—evidence of nanospecific toxicity of silver nanoparticles. Chemosphere 221, 785–792 (2019). https://doi.org/10.1016/j.chemosphere.2019.01.055

    Article  CAS  Google Scholar 

  • Lara, H.H., Ayala-Nuñez, N.V., Ixtepan-Turrent, L., Rodriguez-Padilla, C.: Mode of antiviral action of silver nanoparticles against HIV-1. J. Nanobiotechnol. 8, 1–10 (2010). https://doi.org/10.1186/1477-3155-8-1

    Article  CAS  Google Scholar 

  • Latif, U., Al-Rubeaan, K., Saeb, A.T.M.: A review on antimicrobial chitosan-silver nanocomposites: a roadmap toward pathogen targeted synthesis. Int. J. Polym. Mater. Polym. Biomater. 64, 448–458 (2015). https://doi.org/10.1080/00914037.2014.958834

    Article  CAS  Google Scholar 

  • Lekamge, S., Miranda, A.F., Abraham, A., Li, V., Shukla, R., Bansal, V., Nugegoda, D.: The toxicity of silver nanoparticles (AgNPs) to three freshwater invertebrates with different life strategies: Hydra vulgaris, Daphnia carinata, and Paratya australiensis. Front. Environ. Sci. 6, 1–13 (2018). https://doi.org/10.3389/fenvs.2018.00152

    Article  Google Scholar 

  • León-Silva, S., Fernández-Luqueño, F., López-Valdez, F.: Silver nanoparticles (AgNP) in the environment: a review of potential risks on human and environmental health. Water. Air. Soil Pollut. 227 (2016). https://doi.org/10.1007/s11270-016-3022-9

  • Li, C.W., Fu, R.Q., Yu, C.P., Li, Z.H., Guan, H.Y., Hu, D.Q., Zhao, D.H., Lu, L.C.: Silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofibers as wound dressings: a preclinical study. Int. J. Nanomedicine. 8, 4131–4145 (2013). https://doi.org/10.2147/IJN.S51679

    Article  CAS  Google Scholar 

  • Li, Y., Pothukuchi, S., Wong, C.P.: Development of a novel polymer-metal nanocomposite obtained through the route of in situ reduction and it’s dielectric properties. Proc. Electron. Compon. Technol. Conf. 1, 507–513 (2004)

    Google Scholar 

  • Loeschner, K., Hadrup, N., Qvortrup, K., Larsen, A., Gao, X., Vogel, U., Mortensen, A., Lam, H.R., Larsen, E.H.: Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part. Fibre Toxicol. 8, 1–14 (2011). https://doi.org/10.1186/1743-8977-8-18

    Article  CAS  Google Scholar 

  • Lukman, A.I., Gong, B., Marjo, C.E., Roessner, U., Harris, A.T.: Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J. Colloid Interface Sci. 353, 433–444 (2011). https://doi.org/10.1016/j.jcis.2010.09.088

    Article  CAS  Google Scholar 

  • Lv, Y., Liu, H., Wang, Z., Liu, S., Hao, L., Sang, Y., Liu, D., Wang, J., Boughton, R.I.: Silver nanoparticle-decorated porous ceramic composite for water treatment. J. Memb. Sci. 331, 50–56 (2009). https://doi.org/10.1016/j.memsci.2009.01.007

    Article  CAS  Google Scholar 

  • Marambio-Jones, C., Hoek, E.M.V.: A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanoparticle Res. 12, 1531–1551 (2010). https://doi.org/10.1007/s11051-010-9900-y

    Article  CAS  Google Scholar 

  • Mathur, P., Jha, S., Ramteke, S., Jain, N.K.: Pharmaceutical aspects of silver nanoparticles. Artif. Cells, Nanomed. Biotechnol. 46, 115–126 (2018). https://doi.org/10.1080/21691401.2017.1414825

  • Matuk, Y., Ghosh, M., McCulloch, C.: Distribution of silver in the eyes and plasma proteins of the albino rat. Can. J. Ophthalmol. 16, 145–150 (1981)

    CAS  Google Scholar 

  • Miresmaeili, S.M., Halvaei, I., Fesahat, F., Fallah, A., Nikonahad, N., Taherinejad, M.: Evaluating the role of silver nanoparticles on acrosomal reaction and spermatogenic cells in rat. Iran. J. Reprod. Med. 11, 423–430 (2013)

    CAS  Google Scholar 

  • Moudry, Z.V.: Process of Producing Olgodynamic Metal Bocides, (1960)

    Google Scholar 

  • Murugadoss, A., Goswami, P., Paul, A., Chattopadhyay, A.: “Green” chitosan bound silver nanoparticles for selective C–C bond formation via in situ iodination of phenols. J. Mol. Catal. A Chem. 304, 153–158 (2009). https://doi.org/10.1016/j.molcata.2009.02.006

    Article  CAS  Google Scholar 

  • Nakkala, J.R., Mata, R., Gupta, A.K., Sadras, S.R.: Biological activities of green silver nanoparticles synthesized with Acorous calamus rhizome extract. Eur. J. Med. Chem. 85, 784–794 (2014). https://doi.org/10.1016/j.ejmech.2014.08.024

    Article  CAS  Google Scholar 

  • Olcott, C.T.: Experimental argyrosis; hypertrophy of the left ventricle of the heart in rats ingesting silver salts. Arch. Pathol. Lab. Med. 49, 138–149 (1950)

    Google Scholar 

  • Pal, S., Tak, Y.K., Song, J.M.: Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73, 1712–1720 (2007). https://doi.org/10.1128/AEM.02218-06

    Article  CAS  Google Scholar 

  • Park, E.J., Bae, E., Yi, J., Kim, Y., Choi, K., Lee, S.H., Yoon, J., Lee, B.C., Park, K.: Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ. Toxicol. Pharmacol. 30, 162–168 (2010). https://doi.org/10.1016/j.etap.2010.05.004

    Article  CAS  Google Scholar 

  • Peterson, R.P., Jensen, L.S., Harrison, P.C.: Effect of silver-induced enlarged hearts during the first four weeks of life on subsequent performance of turkeys author(s): R.P. Peterson, L.S. Jensen and P. C. Harrison Published by : American Association of Avian Pathologists Stable URL : h. American Association of Avian Pathologist is Collaboration with JSTOR to Digital Preservartion extend access to Avian Dis. 17, 802–806 (1973)

    Google Scholar 

  • Philbrook, N.A., Winn, L.M., Afrooz, A.R.M.N., Saleh, N.B., Walker, V.K.: The effect of TiO 2 and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxicol. Appl. Pharmacol. 257, 429–436 (2011). https://doi.org/10.1016/j.taap.2011.09.027

    Article  CAS  Google Scholar 

  • Prabhu, S., Poulose, E.K.: Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2, 1–10 (2012a). https://doi.org/10.1186/2228-5326-2-32

  • Prabhu, S., Poulose, E.K.: Silver nanoparticles: mechanism of antimicrobial. Int. Nano Lett. 2, 32–41 (2012b). https://doi.org/10.1186/2228-5326-2-32

  • Prucek, R., Tuček, J., Kilianová, M., Panáček, A., Kvítek, L., Filip, J., Kolář, M., Tománková, K., Zbořil, R.: The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials 32, 4704–4713 (2011). https://doi.org/10.1016/j.biomaterials.2011.03.039

    Article  CAS  Google Scholar 

  • Rahman, M.F., Wang, J., Patterson, T.A., Saini, U.T., Robinson, B.L., Newport, G.D., Murdock, R.C., Schlager, J.J., Hussain, S.M., Ali, S.F.: Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol. Lett. 187, 15–21 (2009). https://doi.org/10.1016/j.toxlet.2009.01.020

    Article  CAS  Google Scholar 

  • Rao, C.N.R., Kulkarni, G.U., Thomas, P.J., Edwards, P.P.: Metal nanoparticles and their assemblies. Chem. Soc. Rev. 29, 27–35 (2000). https://doi.org/10.1039/a904518j

    Article  CAS  Google Scholar 

  • Repar, N., Li, H., Aguilar, J.S., Li, Q.Q., Drobne, D., Hong, Y.: Silver nanoparticles induce neurotoxicity in a human embryonic stem cell-derived neuron and astrocyte network. Nanotoxicology 12, 104–116 (2018). https://doi.org/10.1080/17435390.2018.1425497

    Article  CAS  Google Scholar 

  • Sardari, R.R.R.: Toxicological effects of silver nanoparticles in rats. Afr. J. Microbiol. Res. 6, 5587–5593 (2012). https://doi.org/10.5897/ajmr11.1070

    Article  CAS  Google Scholar 

  • Shahare, B., Yashpal, M., Singh, G.: Toxic effects of repeated oral exposure of silver nanoparticles on small intestine mucosa of mice. Toxicol. Mech. Methods 23, 161–167 (2013). https://doi.org/10.3109/15376516.2013.764950

    Article  CAS  Google Scholar 

  • Silver, S.: Bacterial silver resistance: Molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev. 27, 341–353 (2003). https://doi.org/10.1016/S0168-6445(03)00047-0

    Article  CAS  Google Scholar 

  • Sintubin, L., De Gusseme, B., Van Der Meeren, P., Pycke, B.F.G., Verstraete, W., Boon, N.: The antibacterial activity of biogenic silver and its mode of action. Appl. Microbiol. Biotechnol. 91, 153–162 (2011). https://doi.org/10.1007/s00253-011-3225-3

    Article  CAS  Google Scholar 

  • Stensberg, M.C., Wei, Q., McLamore, E.S., Porterfield, D.M., Wei, A., Sepúlveda, M.S.: Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine. 6, 879–898 (2011). https://doi.org/10.2217/nnm.11.78

    Article  CAS  Google Scholar 

  • Swathy, B.: A review on metallic silver nanoparticles. IOSR J. Pharm. 4, 38–44 (2014). https://doi.org/10.9790/3013-0407038044

  • Thomas, V., Bajpai, M., Bajpai, S.K.: In situ formation of silver nanoparticles within chitosan-attached cotton fabric for antibacterial property. J. Ind. Text. 40, 229–245 (2011). https://doi.org/10.1177/1528083710371490

    Article  CAS  Google Scholar 

  • Van Der Zande, M., Vandebriel, R.J., Van Doren, E., Kramer, E., Herrera Rivera, Z., Serrano-Rojero, C.S., Gremmer, E.R., Mast, J., Peters, R.J.B., Hollman, P.C.H., Hendriksen, P.J.M., Marvin, H.J.P., Peijnenburg, A.A.C.M., Bouwmeester, H.: Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano. 6, 7427–7442 (2012). https://doi.org/10.1021/nn302649p

  • Wang, X., Li, T., Su, X., Li, J., Li, W., Gan, J., Wu, T., Kong, L., Zhang, T., Tang, M., Xue, Y.: Genotoxic effects of silver nanoparticles with/without coating in human liver HepG2 cells and in mice. J. Appl. Toxicol. 39, 908–918 (2019). https://doi.org/10.1002/jat.3779

    Article  CAS  Google Scholar 

  • Xiang, D., Zheng, Y., Duan, W., Li, X., Yin, J., Shigdar, S., O’Connor, M.L., Marappan, M., Zhao, X., Miao, Y., Xiang, B., Zheng, C.: Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. Int. J. Nanomedicine. 8, 4103–4114 (2013). https://doi.org/10.2147/IJN.S53

    Article  Google Scholar 

  • Xiu, Z.M., Zhang, Q.B., Puppala, H.L., Colvin, V.L., Alvarez, P.J.J.: Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 12, 4271–4275 (2012). https://doi.org/10.1021/nl301934w

    Article  CAS  Google Scholar 

  • Xu, F., Piett, C., Farkas, S., Qazzaz, M., Syed, N.I.: Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons. Mol. Brain. 6, 1–15 (2013). https://doi.org/10.1186/1756-6606-6-29

    Article  CAS  Google Scholar 

  • Yan, N., Xiao, C., Kou, Y.: Transition metal nanoparticle catalysis in green solvents. Coord. Chem. Rev. 254, 1179–1218 (2010). https://doi.org/10.1016/j.ccr.2010.02.015

    Article  CAS  Google Scholar 

  • Yasukawa, T., Miyamura, H., Kobayashi, S.: Polymer-incarcerated chiral Rh/Ag nanoparticles for asymmetric 1,4-addition reactions of arylboronic acids to enones: Remarkable effects of bimetallic structure on activity and metal leaching. J. Am. Chem. Soc. 134, 16963–16966 (2012). https://doi.org/10.1021/ja307913e

    Article  CAS  Google Scholar 

  • Yeshchenko, O.A., Dmitruk, I.M., Alexeenko, A.A., Kotko, A. V.: Surface plasmon as a probe for melting of silver nanoparticles. Nanotechnology 2 (2010). https://doi.org/10.1088/0957-4484/21/4/045203

  • Yin, N., Hu, B., Yang, R., Liang, S., Liang, S., Faiola, F.: Assessment of the developmental neurotoxicity of silver nanoparticles and silver ions with mouse embryonic stem cells in vitro. J. Interdiscip. Nanomed. 3, 133–145 (2018). https://doi.org/10.1002/jin2.49

    Article  CAS  Google Scholar 

  • Zhang, W., Zhang, Q., Wang, F., Yuan, L., Xu, Z., Jiang, F., Liu, Y.: Comparison of interactions between human serum albumin and silver nanoparticles of different sizes using spectroscopic methods. Luminescence 30, 397–404 (2015). https://doi.org/10.1002/bio.2748

    Article  CAS  Google Scholar 

  • Zielińska, A., Skwarek, E., Zaleska, A., Gazda, M., Hupka, J.: Preparation of silver nanoparticles with controlled particle size. Procedia Chem. 1, 1560–1566 (2009). https://doi.org/10.1016/j.proche.2009.11.004

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arya Uthaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uthaman, A., Lal, H.M., Thomas, S. (2021). Fundamentals of Silver Nanoparticles and Their Toxicological Aspects. In: Lal, H.M., Thomas, S., Li, T., Maria, H.J. (eds) Polymer Nanocomposites Based on Silver Nanoparticles. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-44259-0_1

Download citation

Publish with us

Policies and ethics