Skip to main content

Computational Parametric Studies for Preclinical Evaluation of Total Knee Replacements

  • Conference paper
  • First Online:
Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering (CMBBE 2019)

Abstract

Aseptic loosening remains a leading cause of long-term failure of total knee replacement (TKR) that can limit the lifetime of the implant past the second decade. To help accelerate and facilitate advances in TKR design, our goal was to develop a computational framework based on previous work, that could accurately and efficiently predict the effect of design, surgical, and patient variability on TKR wear. The framework can accommodate patient-specific, population-specific, or standardized motions and forces as inputs. The wear model that is fully integrated into the finite element model the framework is built around was calibrated from materials testing (wheel-on-flat) experiments. Validation of the model is carried out by comparison to pin-on-disk and mechanical knee simulator studies. We present two applications to test the effectiveness of the framework for performing parametric studies: one to test the sensitivity of TKR wear to the transverse-plane rotational alignment of the tibial component, and the second to test the sensitivity of TKR wear to femoral center of rotation. We demonstrate that wear is highly sensitive to femoral component alignment, consistent with previous studies, and that choice of femoral center of rotation is important during simulator testing of TKR components. The two reported applications represent initial attempts to study variability in component alignment- future work will include studying variability in kinematics and kinetics. In a design setting, the finished framework will allow new innovations to be tested as soon as they are developed, supplementing mechanical testing, and reducing the amount required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cross, M., et al.: The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann. Rheum. Dis. 73(7), 1323–1330 (2014). https://doi.org/10.1136/annrheumdis-2013-204763

    Article  Google Scholar 

  2. Chakravarty, R., Elmallah, R.D.K., Cherian, J.J., Kurtz, S.M., Mont, M.A.: Polyethylene wear in knee arthroplasty. J. Knee Surg. 28(5), 370–375 (2015). https://doi.org/10.1055/s-0035-1551833

    Article  Google Scholar 

  3. Crowninshield, R.D., Rosenberg, A.G., Sporer, S.M.: Changing demographics of patients with total joint replacement. Clin. Orthop. 443(Journal Article), 266–272 (2006). https://doi.org/10.1097/01.blo.0000188066.01833.4f

  4. Kurtz, S., Ong, K., Lau, E., Mowat, F., Halpern, M.: Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Jt. Surg. - Am. 89(4), 780–785 (2007)

    Article  Google Scholar 

  5. Kurtz, S.M., Ong, K.L., Lau, E., Bozic, K.J.: Impact of the economic downturn on total joint replacement demand in the United States: updated projections to 2021. J. Bone Jt. Surg. - Am. 96(8), 624–630 (2014). https://doi.org/10.2106/JBJS.M.00285

    Article  Google Scholar 

  6. Siqueira, M.B.P., Klika, A.K., Higuera, C.A., Barsoum, W.K.: Modes of failure of total knee arthroplasty: registries and realities. J. Knee Surg. 28(2), 127–138 (2015). https://doi.org/10.1055/s-0034-1396014

    Article  Google Scholar 

  7. Losina, E., Katz, J.N.: Total knee arthroplasty on the rise in younger patients: are we sure that past performance will guarantee future success? Arthritis Rheum. 64(2), 339–341 (2012). https://doi.org/10.1002/art.33371

    Article  Google Scholar 

  8. Wier, L.M., et al.: HCUP Facts and Figures: Statistics on Hospital-based Care in the United States: 2009 (2011)

    Google Scholar 

  9. Kurtz, S.M., Lau, E., Ong, K., Zhao, K., Kelly, M., Bozic, K.J.: Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030. Clin. Orthop. 467(10), 2606–2612 (2009). https://doi.org/10.1007/s11999-009-0834-6

    Article  Google Scholar 

  10. Ravi, B., Croxford, R., Reichmann, W.M., Losina, E., Katz, J.N., Hawker, G.A.: The changing demographics of total joint arthroplasty recipients in the United States and Ontario from 2001 to 2007. Best Pract. Res. Clin. Rheumatol. 26(5), 637–647 (2012). https://doi.org/10.1016/j.berh.2012.07.014

    Article  Google Scholar 

  11. Roberts, V.I., Esler, C.N.A., Harper, W.M.: A 15-year follow-up study of 4606 primary total knee replacements. J. Bone Joint Surg. Br. 89(11), 1452–1456 (2007). https://doi.org/10.1302/0301-620X.89B11.19783

    Article  Google Scholar 

  12. O’Connor, M.I.: Implant survival, knee function, and pain relief after TKA: are there differences between men and women? Clin. Orthop. 469(7), 1846–1851 (2011). https://doi.org/10.1007/s11999-011-1782-5

    Article  Google Scholar 

  13. Gallo, J., Goodman, S.B., Konttinen, Y.T., Wimmer, M.A., Holinka, M.: Osteolysis around total knee arthroplasty: a review of pathogenetic mechanisms. Acta Biomater. 9(9), 8046–8058 (2013). https://doi.org/10.1016/j.actbio.2013.05.005

    Article  Google Scholar 

  14. Fraser, J.F., Werner, S., Jacofsky, D.J.: Wear and loosening in total knee arthroplasty: a quick review. J. Knee Surg. 28(2), 139–144 (2015). https://doi.org/10.1055/s-0034-1398375

    Article  Google Scholar 

  15. Morrison, T.M.: Reporting of Computational Modeling Studies in Medical Device Submissions. U.S. Department of Health and Human Services Food and Drug Administration, 21 September 2016

    Google Scholar 

  16. Mell, S.P., Fullam, S., Wimmer, M.A., Lundberg, H.J.: Finite element evaluation of the newest ISO testing standard for polyethylene total knee replacement liners. In: Proceedings of the Institution of Mechanical Engineers, Part H, p. 0954411918770700, April 2018. https://doi.org/10.1177/0954411918770700

  17. Mell, S.P., Wimmer, M.A., Lundberg, H.J.: The choice of the femoral center of rotation affects material loss in total knee replacement wear testing - a parametric finite element study of ISO 14243-3. J. Biomech. 88, 104–112 (2019). https://doi.org/10.1016/j.jbiomech.2019.03.027

    Article  Google Scholar 

  18. Lundberg, H.J., Mell, S.P., Fullam, S., Wimmer, M.A.: Development and application of a computational total knee arthroplasty evaluation framework for preclinical parametric studies. Orthop. Proc. 101-B(Suppl. 5), 109 (2019). https://doi.org/10.1302/1358-992x.2019.5.109

    Article  Google Scholar 

  19. Schwenke, T., Wimmer, M.A.: Cross-shear in metal-on-polyethylene articulation of orthopaedic implants and its relationship to wear. Wear 301(1–2), 168–174 (2013)

    Article  Google Scholar 

  20. Strickland, M.A., Taylor, M.: In-silico wear prediction for knee replacements-methodology and corroboration. J. Biomech. 42(10), 1469–1474 (2009)

    Article  Google Scholar 

  21. Willing, R., Kim, I.Y.: A holistic numerical model to predict strain hardening and damage of UHMWPE under multiple total knee replacement kinematics and experimental validation. J. Biomech. 42(15), 2520–2527 (2009). https://doi.org/10.1016/j.jbiomech.2009.07.008

    Article  Google Scholar 

  22. Bergström, J.S., Kurtz, S.M., Rimnac, C.M., Edidin, A.A.: Constitutive modeling of ultra-high molecular weight polyethylene under large-deformation and cyclic loading conditions. Biomaterials 23(11), 2329–2343 (2002)

    Article  Google Scholar 

  23. Kurtz, S.M.: The UHMWPE Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement. Elsevier (2004)

    Google Scholar 

  24. O’Brien, S., Luo, Y., Wu, C., Petrak, M., Bohm, E., Brandt, J.-M.: Computational development of a polyethylene wear model for the articular and backside surfaces in modular total knee replacements. Tribol. Int. 59, 284–291 (2013). https://doi.org/10.1016/j.triboint.2012.03.020

    Article  Google Scholar 

  25. Godest, A.C., Beaugonin, M., Haug, E., Taylor, M., Gregson, P.J.: Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. J. Biomech. 35(2), 267–275 (2002)

    Article  Google Scholar 

  26. Halloran, J.P., Petrella, A.J., Rullkoetter, P.J.: Explicit finite element modeling of total knee replacement mechanics. J. Biomech. 38(2), 323–331 (2005). https://doi.org/10.1016/j.jbiomech.2004.02.046

    Article  Google Scholar 

  27. O’Brien, S.T., Bohm, E.R., Petrak, M.J., Wyss, U.P., Brandt, J.-M.: An energy dissipation and cross shear time dependent computational wear model for the analysis of polyethylene wear in total knee replacements. J. Biomech. 47(5), 1127–1133 (2014)

    Article  Google Scholar 

  28. ISO 14243-3: Implants for surgery – wear of total knee-joint prostheses – part 3: loading and displacement parameters for wear-testing machines with displacement control and corresponding environmental conditions for test. Int. Organ. Stand., no. Journal Article (2014)

    Google Scholar 

  29. Dassault Systems: Modeling Contact with Abaqus/Standard 6.14. Dassault Systemes (2014)

    Google Scholar 

  30. Dar, F.H., Meakin, J.R., Aspden, R.M.: Statistical methods in finite element analysis. J. Biomech. 35(9), 1155–1161 (2002)

    Article  Google Scholar 

  31. Dopico-González, C., New, A.M., Browne, M.: Probabilistic finite element analysis of the uncemented hip replacement—effect of femur characteristics and implant design geometry. J. Biomech. 43(3), 512–520 (2010). https://doi.org/10.1016/j.jbiomech.2009.09.039

    Article  Google Scholar 

  32. Fitzpatrick, C.K., Hemelaar, P., Taylor, M.: Computationally efficient prediction of bone–implant interface micromotion of a cementless tibial tray during gait. J. Biomech. 47(7), 1718–1726 (2014). https://doi.org/10.1016/j.jbiomech.2014.02.018

    Article  Google Scholar 

  33. Rohlmann, A., Boustani, H.N., Bergmann, G., Zander, T.: A probabilistic finite element analysis of the stresses in the augmented vertebral body after vertebroplasty. Eur. Spine J. 19(9), 1585–1595 (2010). https://doi.org/10.1007/s00586-010-1386-x

    Article  Google Scholar 

  34. Rohlmann, A., Nabil Boustani, H., Bergmann, G., Zander, T.: Effect of a pedicle-screw-based motion preservation system on lumbar spine biomechanics: a probabilistic finite element study with subsequent sensitivity analysis. J. Biomech. 43(15), 2963–2969 (2010). https://doi.org/10.1016/j.jbiomech.2010.07.018

    Article  Google Scholar 

  35. Fitzpatrick, C.K., Baldwin, M.A., Rullkoetter, P.J., Laz, P.J.: Combined probabilistic and principal component analysis approach for multivariate sensitivity evaluation and application to implanted patellofemoral mechanics. J. Biomech. 44(1), 13–21 (2011). https://doi.org/10.1016/j.jbiomech.2010.08.016

    Article  Google Scholar 

  36. Iman, R.L.: Latin hypercube sampling. In: Wiley StatsRef: Statistics Reference Online. American Cancer Society (2014)

    Google Scholar 

  37. Mckay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1), 55–61 (2000). https://doi.org/10.1080/00401706.2000.10485979

    Article  MATH  Google Scholar 

  38. Ralston, A.: Runge-Kutta methods with minimum error bounds. Math. Comput. 16(80), 431–437 (1962). https://doi.org/10.2307/2003133

    Article  MathSciNet  MATH  Google Scholar 

  39. ISO 14243-3: Implants for surgery – wear of total knee-joint prostheses – part 3: loading and displacement parameters for wear-testing machines with displacement control and corresponding environmental conditions for test. Int. Organ. Stand., no. Journal Article (2004)

    Google Scholar 

  40. Freed, R.D., Simon, J.C., Knowlton, C.B., Villaseñor, D.A.O., Wimmer, M.A., Lundberg, H.J.: Are instrumented knee forces representative of a larger population of cruciate-retaining total knee arthroplasties? J. Arthroplasty 32(7), 2268–2273 (2017). https://doi.org/10.1016/j.arth.2017.01.054

    Article  Google Scholar 

  41. Knowlton, C.B., Wimmer, M.A.: An autonomous mathematical reconstruction to effectively measure volume loss on retrieved polyethylene tibial inserts. J. Biomed. Mater. Res. B Appl. Biomater. 101(3), 449–457 (2013). https://doi.org/10.1002/jbm.b.32782

    Article  Google Scholar 

  42. Panni, A.S., et al.: Tibial internal rotation negatively affects clinical outcomes in total knee arthroplasty: a systematic review. Knee Surg. Sports Traumatol. Arthrosc. 26(6), 1636–1644 (2018). https://doi.org/10.1007/s00167-017-4823-0

    Article  Google Scholar 

  43. Sternheim, A., et al.: The benefit of revision knee arthroplasty for component malrotation after primary total knee replacement. Int. Orthop. 36(12), 2473–2478 (2012). https://doi.org/10.1007/s00264-012-1675-6

    Article  Google Scholar 

  44. Kuriyama, S., Ishikawa, M., Furu, M., Ito, H., Matsuda, S.: Malrotated tibial component increases medial collateral ligament tension in total knee arthroplasty. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 32(12), 1658–1666 (2014). https://doi.org/10.1002/jor.22711

    Article  Google Scholar 

  45. Liau, J.J., Cheng, C.K., Huang, C.H., Lo, W.H.: The effect of malalignment on stresses in polyethylene component of total knee prostheses–a finite element analysis. Clin. Biomech. Bristol Avon 17(2), 140–146 (2002)

    Article  Google Scholar 

  46. Osano, K., Nagamine, R., Todo, M., Kawasaki, M.: The effect of malrotation of tibial component of total knee arthroplasty on tibial insert during high flexion using a finite element analysis. Sci. World J. 2014, 695028 (2014). https://doi.org/10.1155/2014/695028

    Article  Google Scholar 

  47. Orozco, D., Schwenke, T., Wimmer, M.A.: Wear scar prediction based on wear simulator input data - a preliminary artificial neural network approach. J. ASTM Int. 3(9) (2006). https://doi.org/10.1520/jai100249

  48. Brockett, C.L., Abdelgaied, A., Haythornthwaite, T., Hardaker, C., Fisher, J., Jennings, L.M.: The influence of simulator input conditions on the wear of total knee replacements: an experimental and computational study. Proc. Inst. Mech. Eng. Part H 230(5), 429–439 (2016). https://doi.org/10.1177/0954411916645134

    Article  Google Scholar 

  49. DesJardins, J., Rusly, R.: Single flexion-axis selection influences femoral component alignment and kinematics during knee simulation. Proc. Inst. Mech. Eng. Part H 225(8), 762–768 (2011). https://doi.org/10.1177/0954411911400534

    Article  Google Scholar 

  50. Zietz, C., et al.: Experimental testing of total knee replacements with UHMW-PE inserts: impact of severe wear test conditions. J. Mater. Sci. Mater. Med. 26(3), 134 (2015). https://doi.org/10.1007/s10856-015-5470-y

    Article  Google Scholar 

  51. Brandt, J.-M., Charron, K.D.J., Zhao, L., MacDonald, S.J., Medley, J.B.: Commissioning of a displacement-controlled knee wear simulator and exploration of some issues related to the lubricant. Proc. Inst. Mech. Eng. Part H 225(8), 736–752 (2011). https://doi.org/10.1177/0954411911406061

    Article  Google Scholar 

  52. Schwenke, T., Wimmer, M.A., Kaddick, C.: Fluid composition influences wear testing of artificial knee implants. In: Medical Device Materials II - Proceedings of the Materials and Processes for Medical Devices Conference 2004, pp. 173–177 (2005)

    Google Scholar 

  53. Wang, A., Essner, A., Schmidig, G.: The effects of lubricant composition on in vitro wear testing of polymeric acetabular components. J. Biomed. Mater. Res. B Appl. Biomater. 68B(1), 45–52 (2004). https://doi.org/10.1002/jbm.b.10077

    Article  Google Scholar 

  54. Muratoglu, O.K., Rubash, H.E., Bragdon, C.R., Burroughs, B.R., Huang, A., Harris, W.H.: Simulated normal gait wear testing of a highly cross-linked polyethylene tibial insert. J. Arthroplasty 22(3), 435–444 (2007). https://doi.org/10.1016/j.arth.2006.07.014

    Article  Google Scholar 

Download references

Acknowledgements

We thank Michel Laurent for useful discussions and Catherine Yuh for help with figures. This work was supported by the National Institutes of Health (R01 AR059843, MAW). Zimmer-Biomet (Warsaw, IN) provided CAD models for FEA analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven P. Mell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mell, S.P., Fullam, S., Wimmer, M.A., Lundberg, H.J. (2020). Computational Parametric Studies for Preclinical Evaluation of Total Knee Replacements. In: Ateshian, G., Myers, K., Tavares, J. (eds) Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering. CMBBE 2019. Lecture Notes in Computational Vision and Biomechanics, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-43195-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43195-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43194-5

  • Online ISBN: 978-3-030-43195-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics