Skip to main content

Ventricular Non-Compaction in Children

  • Living reference work entry
  • First Online:
Pediatric Cardiology
  • 30 Accesses

Abstract

Since 1969, when a bizarre, coarse, and trabecular appearance of the right and left ventricular myocardium was demonstrated angiographically and confirmed pathologically in an infant with complex cyanotic heart disease, recognition of the prevalence and clinical impact of the entity commonly known as ventricular noncompaction has grown exponentially. Ventricular noncompaction was recognized as a genetic cardiomyopathy in 2006 by the American Heart Association and as an unclassified cardiomyopathy by the European Society of Cardiology in 2008, despite the lack of consensus on the morphologic definition of this entity. Initial reports of ventricular noncompaction described significant mortality and morbidity in patients who were identified after presenting with ventricular dysfunction, heart failure, or arrhythmias. As the availability of echocardiography, cardiac MRI, and cardiac CT has increased, ventricular hypertrabeculation has been described in populations that range from critically ill patients with a dilated or hypertrophic cardiomyopathy phenotype, congenital heart disease, arrhythmia, or genetic syndrome to asymptomatic, competitive athletes and pregnant women undergoing cardiac screening. Clinical presentations and outcomes mirror this heterogeneity, with some patients remaining asymptomatic for years and others at risk for death or significant morbidities. Considerable advances in identifying the genetic variants associated with ventricular noncompaction have been made, with some suggestion of a genotype-phenotype correlation. Given the wide disparity in clinical outcomes and the growing number of patients who have some degree of hypertrabeculation on screening imaging, there is a pressing need to develop risk prediction models that will avoid over- or underdiagnosis and treatment of patients with this entity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Feldt RH, Rahimtoola SH, Davis GD, Swan HJ, Titus JL. Anomalous ventricular myocardial patterns in a child with complex congenital heart disease. Am J Cardiol. 1969;23(5):732–4.

    Article  CAS  PubMed  Google Scholar 

  2. Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation. 1990;82(2):507–13.

    Article  CAS  PubMed  Google Scholar 

  3. Vaidya VR, Lyle M, Miranda WR, Farwati M, Isath A, Patlolla SH, et al. Long-term survival of patients with left ventricular noncompaction. J Am Heart Assoc. 2021;10(2):e015563.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ritter M, Oechslin E, Sutsch G, Attenhofer C, Schneider J, Jenni R. Isolated noncompaction of the myocardium in adults. Mayo Clin Proc. 1997;72(1):26–31.

    Article  CAS  PubMed  Google Scholar 

  5. Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol. 2000;36(2):493–500.

    Article  CAS  PubMed  Google Scholar 

  6. Gerecke BJ, Engberding R. Noncompaction cardiomyopathy – history and current knowledge for clinical practice. J Clin Med. 2021;10(11):2457.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ivanov A, Dabiesingh DS, Bhumireddy GP, Mohamed A, Asfour A, Briggs WM, et al. Prevalence and prognostic significance of left ventricular noncompaction in patients referred for cardiac magnetic resonance imaging. Circ Cardiovasc Imaging. 2017;10(9):e006174.

    Article  PubMed  Google Scholar 

  8. Grigoratos C, Barison A, Ivanov A, Andreini D, Amzulescu MS, Mazurkiewicz L, et al. Meta-analysis of the prognostic role of late gadolinium enhancement and global systolic impairment in left ventricular noncompaction. JACC Cardiovasc Imaging. 2019;12(11 Pt 1):2141–51.

    Article  PubMed  Google Scholar 

  9. Gati S, Rajani R, Carr-White GS, Chambers JB. Adult left ventricular noncompaction: reappraisal of current diagnostic imaging modalities. JACC Cardiovasc Imaging. 2014;7(12):1266–75.

    Article  PubMed  Google Scholar 

  10. Stollberger C, Gerecke B, Engberding R, Grabner B, Wandaller C, Finsterer J, et al. Interobserver agreement of the echocardiographic diagnosis of LV hypertrabeculation/noncompaction. JACC Cardiovasc Imaging. 2015;8(11):1252–7.

    Article  PubMed  Google Scholar 

  11. Bleyl SB, Mumford BR, Brown-Harrison MC, Pagotto LT, Carey JC, Pysher TJ, et al. Xq28-linked noncompaction of the left ventricular myocardium: prenatal diagnosis and pathologic analysis of affected individuals. Am J Med Genet. 1997;72(3):257–65.

    Article  CAS  PubMed  Google Scholar 

  12. Ichida F, Tsubata S, Bowles KR, Haneda N, Uese K, Miyawaki T, et al. Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation. 2001;103(9):1256–63.

    Article  CAS  PubMed  Google Scholar 

  13. Chen R, Tsuji T, Ichida F, Bowles KR, Yu X, Watanabe S, et al. Mutation analysis of the G4.5 gene in patients with isolated left ventricular noncompaction. Mol Genet Metab. 2002;77(4):319–25.

    Article  CAS  PubMed  Google Scholar 

  14. Freedom RM, Yoo SJ, Perrin D, Taylor G, Petersen S, Anderson RH. The morphological spectrum of ventricular noncompaction. Cardiol Young. 2005;15(4):345–64.

    Article  PubMed  Google Scholar 

  15. Liu Y, Chen H, Shou W. Potential common pathogenic pathways for the left ventricular noncompaction cardiomyopathy (LVNC). Pediatr Cardiol. 2018;39(6):1099–106.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Choquet C, Kelly RG, Miquerol L. Defects in trabecular development contribute to left ventricular noncompaction. Pediatr Cardiol. 2019;40(7):1331–8.

    Article  PubMed  Google Scholar 

  17. Dong X, Fan P, Tian T, Yang Y, Xiao Y, Yang K, et al. Recent advancements in the molecular genetics of left ventricular noncompaction cardiomyopathy. Clin Chim Acta. 2017;465:40–4.

    Article  CAS  PubMed  Google Scholar 

  18. Miller EM, Hinton RB, Czosek R, Lorts A, Parrott A, Shikany AR, et al. Genetic testing in pediatric left ventricular noncompaction. Circ Cardiovasc Genet. 2017;10(6):e001735.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Miszalski-Jamka K, Jefferies JL, Mazur W, Glowacki J, Hu J, Lazar M, et al. Novel genetic triggers and genotype-phenotype correlations in patients with left ventricular noncompaction. Circ Cardiovasc Genet. 2017;10(4):e001763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Towbin JA, Jefferies JL. Cardiomyopathies due to left ventricular noncompaction, mitochondrial and storage diseases, and inborn errors of metabolism. Circ Res. 2017;121(7):838–54.

    Article  CAS  PubMed  Google Scholar 

  21. Li S, Zhang C, Liu N, Bai H, Hou C, Wang J, et al. Genotype-positive status is associated with poor prognoses in patients with left ventricular noncompaction cardiomyopathy. J Am Heart Assoc. 2018;7(20):e009910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van Waning JI, Caliskan K, Hoedemaekers YM, van Spaendonck-Zwarts KY, Baas AF, Boekholdt SM, et al. Genetics, clinical features, and long-term outcome of noncompaction cardiomyopathy. J Am Coll Cardiol. 2018;71(7):711–22.

    Article  PubMed  Google Scholar 

  23. van Waning JI, Caliskan K, Michels M, Schinkel AFL, Hirsch A, Dalinghaus M, et al. Cardiac phenotypes, genetics, and risks in familial noncompaction cardiomyopathy. J Am Coll Cardiol. 2019;73(13):1601–11.

    Article  PubMed  Google Scholar 

  24. Finsterer J, Stollberger C. Left ventricular noncompaction syndrome: genetic insights and therapeutic perspectives. Curr Cardiol Rep. 2020;22(9):84.

    Article  PubMed  Google Scholar 

  25. Ichida F. Left ventricular noncompaction – risk stratification and genetic consideration. J Cardiol. 2020;75(1):1–9.

    Article  PubMed  Google Scholar 

  26. van Waning JI, Moesker J, Heijsman D, Boersma E, Majoor-Krakauer D. Systematic review of genotype-phenotype correlations in noncompaction cardiomyopathy. J Am Heart Assoc. 2019;8(23):e012993.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jensen B, van der Wal AC, Moorman AFM, Christoffels VM. Excessive trabeculations in noncompaction do not have the embryonic identity. Int J Cardiol. 2017;227:325–30.

    Article  PubMed  Google Scholar 

  28. Caselli S, Attenhofer Jost CH, Jenni R, Pelliccia A. Left ventricular noncompaction diagnosis and management relevant to pre-participation screening of athletes. Am J Cardiol. 2015;116(5):801–8.

    Article  PubMed  Google Scholar 

  29. Stollberger C, Streit N, Yoshida T, Wegner C, Finsterer J. Left ventricular hypertrabeculation/noncompaction and pregnancy. Int J Cardiol. 2014;172(1):271–3.

    Article  PubMed  Google Scholar 

  30. Ueda Y, Kamiya CA, Nakanishi A, Horiuchi C, Miyoshi T, Hazama R, et al. Cardiomyopathy phenotypes and pregnancy outcomes with left ventricular noncompaction cardiomyopathy. Int Heart J. 2018;59(4):862–7.

    Article  PubMed  Google Scholar 

  31. de la Chica JA, Gomez-Talavera S, Garcia-Ruiz JM, Garcia-Lunar I, Oliva B, Fernandez-Alvira JM, et al. Association between left ventricular noncompaction and vigorous physical activity. J Am Coll Cardiol. 2020;76(15):1723–33.

    Article  PubMed  Google Scholar 

  32. Sandhu R, Finkelhor RS, Gunawardena DR, Bahler RC. Prevalence and characteristics of left ventricular noncompaction in a community hospital cohort of patients with systolic dysfunction. Echocardiography. 2008;25(1):8–12.

    PubMed  Google Scholar 

  33. Ronderos R, Avegliano G, Borelli E, Kuschnir P, Castro F, Sanchez G, et al. Estimation of prevalence of the left ventricular noncompaction among adults. Am J Cardiol. 2016;118(6):901–5.

    Article  PubMed  Google Scholar 

  34. Weir-McCall JR, Yeap PM, Papagiorcopulo C, Fitzgerald K, Gandy SJ, Lambert M, et al. Left ventricular noncompaction: anatomical phenotype or distinct cardiomyopathy? J Am Coll Cardiol. 2016;68(20):2157–65.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kawel N, Nacif M, Arai AE, Gomes AS, Hundley WG, Johnson WC, et al. Trabeculated (noncompacted) and compact myocardium in adults: the multi-ethnic study of atherosclerosis. Circ Cardiovasc Imaging. 2012;5(3):357–66.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ross SB, McGeechan K, Barratt A, Semsarian C. Overdiagnosis of left ventricular non-compaction in adults: the data tells the story. Eur Heart J. 2019;40(38):3206.

    Article  PubMed  Google Scholar 

  37. Ross SB, Jones K, Blanch B, Puranik R, McGeechan K, Barratt A, et al. A systematic review and meta-analysis of the prevalence of left ventricular non-compaction in adults. Eur Heart J. 2020;41(14):1428–36.

    Article  PubMed  Google Scholar 

  38. Stollberger C, Finsterer J. Understanding left ventricular hypertrabeculation/noncompaction: pathomorphologic findings and prognostic impact of neuromuscular comorbidities. Expert Rev Cardiovasc Ther. 2019;17(2):95–109.

    Article  PubMed  Google Scholar 

  39. Bardhi E, Faralli I, Deroma M, Galoppi P, Ventriglia F, Giancotti A, et al. Non-compaction cardiomyopathy in pregnancy: a case report of spongy myocardium in both mother and foetus and systematic review of literature. J Matern Fetal Neonatal Med. 2021;34(17):2910–7.

    Article  PubMed  Google Scholar 

  40. Kilic ID, Tanriverdi H, Evrengul H, Uslu S, Sungur MA. Left ventricular non-compaction in pregnancy. Cardiovasc J Afr. 2013;24(3):e1–2.

    Article  PubMed  Google Scholar 

  41. Plastiras SC, Pamboucas C, Toumanidis S. Noncompaction cardiomyopathy and pregnancy: an alarming coexistence ending in a favourable outcome. Exp Clin Cardiol. 2012;17(3):136–8.

    PubMed  PubMed Central  Google Scholar 

  42. Gati S, Chandra N, Bennett RL, Reed M, Kervio G, Panoulas VF, et al. Increased left ventricular trabeculation in highly trained athletes: do we need more stringent criteria for the diagnosis of left ventricular non-compaction in athletes? Heart. 2013;99(6):401–8.

    Article  CAS  PubMed  Google Scholar 

  43. Nel S, Khandheria BK, Libhaber E, Peters F, Ferreira Dos Santos C, Matioda H, et al. Prevalence and significance of isolated left ventricular non-compaction phenotype in normal black Africans using echocardiography. Int J Cardiol Heart Vasc. 2020;30:100585.

    PubMed  PubMed Central  Google Scholar 

  44. Nugent AW, Daubeney PEF, Chondros P, Carlin JB, Cheung M, Wilkinson LC, et al. The epidemiology of childhood cardiomyopathy in Australia. N Engl J Med. 2003;348(17):1639–46.

    Article  PubMed  Google Scholar 

  45. Lee TM, Hsu DT, Kantor P, Towbin JA, Ware SM, Colan SD, et al. Pediatric cardiomyopathies. Circ Res. 2017;121(7):855–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jefferies JL, Wilkinson JD, Sleeper LA, Colan SD, Lu M, Pahl E, et al. Cardiomyopathy phenotypes and outcomes for children with left ventricular myocardial noncompaction: results from the Pediatric Cardiomyopathy Registry. J Card Fail. 2015;21(11):877–84.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hughes ML, Carstensen B, Wilkinson JL, Weintraub RG. Angiographic diagnosis, prevalence and outcomes for left ventricular noncompaction in children with congenital cardiac disease. Cardiol Young. 2007;17(1):56–63.

    Article  PubMed  Google Scholar 

  48. Marques LC, Liguori GR, Amarante Souza AC, Aiello VD. Left ventricular noncompaction is more prevalent in ventricular septal defect than other congenital heart defects: a morphological study. J Cardiovasc Dev Dis. 2020;7(4):39.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Stahli BE, Gebhard C, Biaggi P, Klaassen S, Valsangiacomo Buechel E, Attenhofer Jost CH, et al. Left ventricular non-compaction: prevalence in congenital heart disease. Int J Cardiol. 2013;167(6):2477–81.

    Article  PubMed  Google Scholar 

  50. Choudhary P, Strugnell W, Puranik R, Hamilton-Craig C, Kutty S, Celermajer DS. LV non-compaction in patients with coarctation of the aorta: prevalence and effects on cardiac function. Cardiol Young. 2021;31(9):1445–50.

    Article  PubMed  Google Scholar 

  51. Hirono K, Hata Y, Miyao N, Okabe M, Takarada S, Nakaoka H, et al. Left ventricular noncompaction and congenital heart disease increases the risk of congestive heart failure. J Clin Med. 2020;9(3):785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang C, Yu X, Ichida F. Survival in young patients with noncompaction may not only depend on cardiac but also on neuromuscular comorbidity – reply. Circ J. 2017;81(8):1239.

    Article  PubMed  Google Scholar 

  53. Stollberger C, Blazek G, Gessner M, Bichler K, Wegner C, Finsterer J. Neuromuscular comorbidity, heart failure, and atrial fibrillation as prognostic factors in left ventricular hypertrabeculation/noncompaction. Herz. 2015;40(6):906–11.

    Article  PubMed  Google Scholar 

  54. Stollberger C, Blazek G, Wegner C, Winkler-Dworak M, Finsterer J. Neuromuscular and cardiac comorbidity determines survival in 140 patients with left ventricular hypertrabeculation/noncompaction. Int J Cardiol. 2011;150(1):71–4.

    Article  PubMed  Google Scholar 

  55. Stollberger C, Finsterer J. Chromosomal abnormalities and neuromuscular disorders predict severity and outcome of noncompaction in addition to cardiac comorbidities. J Am Soc Echocardiogr. 2010;23(3):338. (Author reply 339)

    Article  PubMed  Google Scholar 

  56. Gati S, Papadakis M, Van Niekerk N, Reed M, Yeghen T, Sharma S. Increased left ventricular trabeculation in individuals with sickle cell anaemia: physiology or pathology? Int J Cardiol. 2013;168(2):1658–60.

    Article  CAS  PubMed  Google Scholar 

  57. Panduranga P, Al-Mukhaini M. Sickle cell disease with left ventricular non-compaction: a rare association. J Cardiol Cases. 2011;3(2):e75–e7.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Qiu YG, Zheng JY, Han L, Ding WH, Li TC, Zhao JH. Congenital atresia of the left main coronary artery with left ventricular noncompaction: from infancy to adulthood. Anatol J Cardiol. 2021;25(2):143–7.

    PubMed  PubMed Central  Google Scholar 

  59. Chen MA. Noncompaction cardiomyopathy and multiple coronary-cameral fistulae in an octogenarian. J Cardiol Cases. 2020;21(6):227–30.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yuki H, Arima Y, Utsunomiya D, Fujisue K, Kidoh M, Oda S, et al. Coronary arterial microfistulae with meandering dilated coronary arteries and noncompaction-like myocardium. Cardiol J. 2019;26(1):95–6.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chen Y, Zhang Z, Li F, Fu L, Wu J, Zhang Y, et al. A case of non-compaction ventricular myocardium and multiple coronary artery-to-right ventricle fistulae. Int J Cardiol. 2015;184:659–63.

    Article  PubMed  Google Scholar 

  62. Ozyilmaz I, Ergul Y, Guzeltas A, Odemis E. Possible link between right ventricular coronary sinusoids and noncompaction sinusoids in pulmonary atresia with intact ventricular septum patients that later develop left ventricular noncompaction. Med Hypotheses. 2014;83(1):53–5.

    Article  PubMed  Google Scholar 

  63. Ma Y, Li Y, Ren W, Hou Y, Li D, Wang W. Assessment of left coronary artery-to-left ventricle fistulae with left ventricular non-compaction by multimodality imaging in a child. Int J Cardiol. 2014;177(1):e34–6.

    Article  PubMed  Google Scholar 

  64. Jiang B, Yang Y, Li F, Ma N, Wu S, Li R, et al. Giant aneurysm of right coronary artery fistula into left ventricle coexisting with noncompaction of left ventricular myocardium. Ann Thorac Surg. 2014;98(4):e85–6.

    Article  PubMed  Google Scholar 

  65. Nguyen N, Rigsby CK, Gambetta K, Kaushal S. Bilateral coronary artery fistulas and left ventricle noncompaction in a neonate: diagnosis and management. Pediatr Cardiol. 2011;32(6):815–7.

    Article  PubMed  Google Scholar 

  66. Masso AH, Uribe C, Willerson JT, Cheong BY, Davis BR. Left ventricular noncompaction detected by cardiac magnetic resonance screening: a reexamination of diagnostic criteria. Tex Heart Inst J. 2020;47(3):183–93.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rohde S, Muslem R, Kaya E, Dalinghaus M, van Waning JI, Majoor-Krakauer D, et al. State-of-the art review: noncompaction cardiomyopathy in pediatric patients. Heart Fail Rev. 2021;27(1):15–28.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Madan S, Mandal S, Bost JE, Mishra MD, Bailey AL, Willaman D, et al. Noncompaction cardiomyopathy in children with congenital heart disease: evaluation using cardiovascular magnetic resonance imaging. Pediatr Cardiol. 2012;33(2):215–21.

    Article  PubMed  Google Scholar 

  69. Cherian AG, Lankala P, Krupa J, Roshan J. Ventricular noncompaction and long QT syndrome – a deadly double hit for the foetus. Indian Pacing Electrophysiol J. 2021;21(3):186–90.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nozaki Y, Kato Y, Uike K, Yamamura K, Kikuchi M, Yasuda M, et al. Co-phenotype of left ventricular non-compaction cardiomyopathy and atypical catecholaminergic polymorphic ventricular tachycardia in association with R169Q, a ryanodine receptor type 2 missense mutation. Circ J. 2020;84(2):226–34.

    Article  PubMed  Google Scholar 

  71. Ibarrola M, Perez-Riera AR, Gonzalez MD. Left ventricular noncompaction and orthodromic atrioventricular tachycardia observed in a patient with neurofibromatosis type 1. Oxf Med Case Rep. 2019;2019(3):omz021.

    Article  Google Scholar 

  72. Howard TS, Valdes SO, Hope KD, Morris SA, Landstrom AP, Schneider AE, et al. Association of Wolff-Parkinson-White with left ventricular noncompaction cardiomyopathy in children. J Card Fail. 2019;25(12):1004–8.

    Article  PubMed  Google Scholar 

  73. Kimura M, Kawano K, Yaoita H, Kure S. Successful treatment of an infant with left ventricular noncompaction presenting with fatal ventricular arrhythmia treated with cardiac resynchronization therapy and an implantable cardioverter defibrillator. Case Rep Cardiol. 2018;2018:9562326.

    PubMed  PubMed Central  Google Scholar 

  74. Alonso-Fernandez-Gatta M, Gallego-Delgado M, Caballero R, Villacorta E, Diaz-Pelaez E, Garcia-Berroca LB, et al. A rare HCN4 variant with combined sinus bradycardia, left atrial dilatation, and hypertrabeculation/left ventricular noncompaction phenotype. Rev Esp Cardiol. 2020;74(9):781–9.

    PubMed  Google Scholar 

  75. Yokoyama R, Kinoshita K, Hata Y, Abe M, Matsuoka K, Hirono K, et al. A mutant HCN4 channel in a family with bradycardia, left bundle branch block, and left ventricular noncompaction. Heart Vessels. 2018;33(7):802–19.

    Article  PubMed  Google Scholar 

  76. Schweizer PA, Koenen M, Katus HA, Thomas D. A distinct cardiomyopathy: HCN4 syndrome comprising myocardial noncompaction, bradycardia, mitral valve defects, and aortic dilation. J Am Coll Cardiol. 2017;69(9):1209–10.

    Article  PubMed  Google Scholar 

  77. Roston TM, Guo W, Krahn AD, Wang R, Van Petegem F, Sanatani S, et al. A novel RYR2 loss-of-function mutation (I4855M) is associated with left ventricular non-compaction and atypical catecholaminergic polymorphic ventricular tachycardia. J Electrocardiol. 2017;50(2):227–33.

    Article  PubMed  Google Scholar 

  78. Lombardi M, Tagliente MR, Pirolo T, Massari E, Vairo U. Long QT syndrome in isolated ventricular noncompaction. J Cardiovasc Med. 2017;18(10):784–7.

    Article  Google Scholar 

  79. Kharbanda M, Hunter A, Tennant S, Moore D, Curtis S, Hancox JC, et al. Long QT syndrome and left ventricular noncompaction in 4 family members across 2 generations with KCNQ1 mutation. Eur J Med Genet. 2017;60(5):233–8.

    Article  PubMed  Google Scholar 

  80. Jahnke C, Paetsch I, Hindricks G, Richter S. Non-compaction cardiomyopathy and incessant supraventricular tachycardia: an unusual first presentation. Eur Heart J. 2017;38(34):2633–4.

    Article  PubMed  Google Scholar 

  81. Ishikawa T, Ohno S, Murakami T, Yoshida K, Mishima H, Fukuoka T, et al. Sick sinus syndrome with HCN4 mutations shows early onset and frequent association with atrial fibrillation and left ventricular noncompaction. Heart Rhythm. 2017;14(5):717–24.

    Article  PubMed  Google Scholar 

  82. Glancy DL, Helmcke FR, Hoang AP. Bradycardia, syncope, and left ventricular noncompaction cardiomyopathy. Am J Cardiol. 2017;120(4):716–7.

    Article  PubMed  Google Scholar 

  83. Ruperto C, Mina C, Brun F, Liotta R, Pyxaras S, Clemenza F, et al. Arrhythmogenic cardiomyopathy with biventricular involvement and noncompaction. J Cardiovasc Med. 2016;17(Suppl 2):e244–6.

    Article  Google Scholar 

  84. Tamiya R, Saito Y, Fukamachi D, Nagashima K, Aizawa Y, Ohkubo K, et al. Desmin-related myopathy characterized by non-compaction cardiomyopathy, cardiac conduction defect, and coronary artery dissection. ESC Heart Fail. 2020;7(3):1338–43.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ishikawa T, Mishima H, Barc J, Takahashi MP, Hirono K, Terada S, et al. Cardiac emerinopathy: a nonsyndromic nuclear envelopathy with increased risk of thromboembolic stroke due to progressive atrial standstill and left ventricular noncompaction. Circ Arrhythm Electrophysiol. 2020;13(10):e008712.

    Article  PubMed  Google Scholar 

  86. Gollob MH. Expanding the clinical phenotype of emerinopathies: atrial standstill and left ventricular noncompaction. Circ Arrhythm Electrophysiol. 2020;13(10):e009338.

    Article  PubMed  Google Scholar 

  87. Thakur V, Jaeggi ET, Nield LE. A unique foetal case of left ventricular non-compaction associated with arrhythmia, structural cardiac anomalies, and agenesis of the ductus venosus. Cardiol Young. 2016;26(2):368–70.

    Article  PubMed  Google Scholar 

  88. Friedberg MK, Ursell PC, Silverman NH. Isomerism of the left atrial appendage associated with ventricular noncompaction. Am J Cardiol. 2005;96(7):985–90.

    Article  PubMed  Google Scholar 

  89. Dagdeviren B, Eren M, Oguz E. Noncompaction of ventricular myocardium, complete atrioventricular block and minor congenital heart abnormalities: case report of an unusual coexistence. Acta Cardiol. 2002;57(3):221–4.

    Article  PubMed  Google Scholar 

  90. Kannan A, Das A, Janardhanan R. An interesting case of cryptogenic stroke in a young man due to left ventricular non-compaction: role of cardiac MRI in the accurate diagnosis. BMJ Case Rep. 2014;2014:bcr2014204230.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kulhari A, Kalra N, Sila C. Noncompaction cardiomyopathy and stroke: case report and literature review. J Stroke Cerebrovasc Dis. 2015;24(8):e213–7.

    Article  PubMed  Google Scholar 

  92. Lee GH, Kim DK, Song YJ, Yang JI, Shin HC, Ong S, et al. Stroke in a young individual with left ventricular noncompaction and left atrium standstill. Korean Circ J. 2015;45(5):432–8.

    Article  PubMed  Google Scholar 

  93. Vijayvergiya R, Jha A, Panda SN, Grover A. Biventricular non-compaction – the rare cause of stroke in a young boy. Int J Cardiol. 2008;129(3):e84–5.

    Article  PubMed  Google Scholar 

  94. Sedaghat-Hamedani F, Haas J, Zhu F, Geier C, Kayvanpour E, Liss M, et al. Clinical genetics and outcome of left ventricular non-compaction cardiomyopathy. Eur Heart J. 2017;38(46):3449–60.

    Article  CAS  PubMed  Google Scholar 

  95. Ramchand J, Podugu P, Obuchowski N, Harb SC, Chetrit M, Milinovich A, et al. Novel approach to risk stratification in left ventricular non-compaction using a combined cardiac imaging and plasma biomarker approach. J Am Heart Assoc. 2021;10(8):e019209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Szemraj-Rogucka ZM, Szemraj J, Masiarek K, Majos A. Circulating microRNAs as biomarkers for myocardial fibrosis in patients with left ventricular non-compaction cardiomyopathy. Arch Med Sci. 2019;15(2):376–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Minamisawa M, Koyama J, Ikeda U. Left ventricular noncompaction cardiomyopathy: recent update on genetics, usefulness of biomarkers, and speckle imaging. J Cardiol. 2019;73(1):95–6.

    Article  PubMed  Google Scholar 

  98. Luczak-Wozniak K, Werner B. Left ventricular noncompaction – a systematic review of risk factors in the pediatric population. J Clin Med. 2021;10(6):1232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zemrak F, Ahlman MA, Captur G, Mohiddin SA, Kawel-Boehm N, Prince MR, et al. The relationship of left ventricular trabeculation to ventricular function and structure over a 9.5-year follow-up: the MESA study. J Am Coll Cardiol. 2014;64(19):1971–80.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Aung N, Doimo S, Ricci F, Sanghvi MM, Pedrosa C, Woodbridge SP, et al. Prognostic significance of left ventricular noncompaction: systematic review and meta-analysis of observational studies. Circ Cardiovasc Imaging. 2020;13(1):e009712.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sigvardsen PE, Fuchs A, Kuhl JT, Afzal S, Kober L, Nordestgaard BG, et al. Left ventricular trabeculation and major adverse cardiovascular events: the Copenhagen General Population Study. Eur Heart J Cardiovasc Imaging. 2021;22(1):67–74.

    Article  PubMed  Google Scholar 

  102. Kim H, Kim IC, Chung JW. Clinical outcomes in patients with left ventricle trabeculation or noncompaction. Int J Cardiovasc Imaging. 2021;37(2):467–77.

    Article  PubMed  Google Scholar 

  103. Zemrak F, Raisi-Estabragh Z, Khanji MY, Mohiddin SA, Bruder O, Wagner A, et al. Left ventricular hypertrabeculation is not associated with cardiovascular morbity or mortality: insights from the EuroCMR Registry. Front Cardiovasc Med. 2020;7:158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wengrofsky P, Armenia C, Oleszak F, Kupferstein E, Rednam C, Mitre CA, et al. Left ventricular trabeculation and noncompaction cardiomyopathy: a review. EC Clin Exp Anat. 2019;2(6):267–83.

    Google Scholar 

  105. Shi WY, Moreno-Betancur M, Nugent AW, Cheung M, Colan S, Turner C, et al. Long-term outcomes of childhood left ventricular noncompaction cardiomyopathy: results from a national population-based study. Circulation. 2018;138(4):367–76.

    Article  PubMed  Google Scholar 

  106. Pignatelli RH, McMahon CJ, Dreyer WJ, Denfield SW, Price J, Belmont JW, et al. Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation. 2003;108(21):2672–8.

    Article  PubMed  Google Scholar 

  107. Hanke SP, Gardner AB, Lombardi JP, Manning PB, Nelson DP, Towbin JA, et al. Left ventricular noncompaction cardiomyopathy in Barth syndrome: an example of an undulating cardiac phenotype necessitating mechanical circulatory support as a bridge to transplantation. Pediatr Cardiol. 2012;33(8):1430–4.

    Article  PubMed  Google Scholar 

  108. Ramachandran P, Woo JG, Ryan TD, Bryant R, Heydarian HC, Jefferies JL, et al. The impact of concomitant left ventricular non-compaction with congenital heart disease on perioperative outcomes. Pediatr Cardiol. 2016;37(7):1307–12.

    Article  PubMed  Google Scholar 

  109. Hussey AD, Weintraub RG. Drug treatment of heart failure in children: focus on recent recommendations from the ISHLT guidelines for the management of pediatric heart failure. Paediatr Drugs. 2016;18(2):89–99.

    Article  PubMed  Google Scholar 

  110. Kantor PF, Lougheed J, Dancea A, McGillion M, Barbosa N, Chan C, et al. Presentation, diagnosis, and medical management of heart failure in children: Canadian Cardiovascular Society guidelines. Can J Cardiol. 2013;29(12):1535–52.

    Article  PubMed  Google Scholar 

  111. Priori SG, Blomstrom-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Rev Esp Cardiol. 2016;69(2):176.

    PubMed  Google Scholar 

  112. Epstein AE, DiMarco JP, Ellenbogen KA, Estes NA III, Freedman RA, Gettes LS, et al. ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices) developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;51(21):e1–62.

    Article  PubMed  Google Scholar 

  113. Stollberger C, Wegner C, Finsterer J. CHADS2- and CHA2DS2VASc scores and embolic risk in left ventricular hypertrabeculation/noncompaction. J Stroke Cerebrovasc Dis. 2013;22(6):709–12.

    Article  PubMed  Google Scholar 

  114. Lal AK, Pruitt E, Hong BJ, Lin KY, Feingold B. Left ventricular non-compaction cardiomyopathy in children listed for heart transplant: analysis from the Pediatric Heart Transplant Study Group. J Heart Lung Transplant. 2016;35(4):540–2.

    Article  PubMed  Google Scholar 

  115. Al-Kindi SG, El-Amm C, Ginwalla M, Hoit BD, Park SJ, Oliveira GH. Heart transplant outcomes in patients with left ventricular non-compaction cardiomyopathy. J Heart Lung Transplant. 2015;34(6):761–5.

    Article  PubMed  Google Scholar 

  116. Uribarri A, Rojas SV, Avsar M, Hanke JS, Napp LC, Berliner D, et al. First series of mechanical circulatory support in non-compaction cardiomyopathy: is LVAD implantation a safe alternative? Int J Cardiol. 2015;197:128–32.

    Article  PubMed  Google Scholar 

  117. Schweiger M, Vanderpluym C, Jeewa A, Canter CE, Jansz P, Parrino PE, et al. Outpatient management of intra-corporeal left ventricular assist device system in children: a multi-center experience. Am J Transplant. 2015;15(2):453–60.

    Article  CAS  PubMed  Google Scholar 

  118. Nathan M, Camacho M, Hardin JT, Starr JP. Abiomed biventricular assist device as a bridge to transplantation in a 14-year-old with cardiomyopathy resulting from ventricular noncompaction. Pediatr Cardiol. 2010;31(8):1249–51.

    Article  PubMed  Google Scholar 

  119. Kumar N, Troianos CA, Baisden JS. Left ventricular assist device insertion in a patient with biventricular noncompaction cardiomyopathy, Ebstein anomaly, and a left atrial mass: a case report. A A Case Rep. 2016;7(12):251–5.

    Article  PubMed  Google Scholar 

  120. Kornberger A, Stock UA, Risteski P, Beiras Fernandez A. Left ventricular non-compaction cardiomyopathy and left ventricular assist device: a word of caution. J Cardiothorac Surg. 2016;11(1):108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Huenges K, Panholzer B, Cremer J, Haneya A. Ventricular assist device implantation in a young patient with non-compaction cardiomyopathy and hereditary spherocytosis. Eur J Cardiothorac Surg. 2018;53(4):879–80.

    Article  PubMed  Google Scholar 

  122. Hashemi H, Raza FS, Harmon DM, Alias T, Felius J, Sherwood MJ. Usefulness of a left ventricular assist device in patients with left ventricular noncompaction. Proceedings. 2018;31(1):61–3.

    Google Scholar 

  123. Cerar A, Ksela J, Poglajen G, Vrtovec B, Knezevic I. LVAD as a bridge to heart transplantation in a patient with left ventricular noncompaction cardiomyopathy and advanced heart failure. Heart Surg Forum. 2016;19(3):E128–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daphne T. Hsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hsu, D.T. (2023). Ventricular Non-Compaction in Children. In: Abdulla, Ri., et al. Pediatric Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-42937-9_78-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42937-9_78-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42937-9

  • Online ISBN: 978-3-030-42937-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics