Skip to main content

Future Challenges of Multimodality Imaging

  • Chapter
  • First Online:
Molecular Imaging in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 216))

Abstract

During the last decade, positron emission tomography/computed tomography (PET/CT) and single-photon emission computed tomography/computed tomography (SPECT/CT) have procured advances in research and clinical application of fusion imaging. The recent introduction of digital PET/CT opens new horizons for multimodality molecular imaging. This system offers more precise, simultaneous morphologic, functional, and molecular information of a living system. Moreover, other combinations of anatomic and functional imaging modalities hold promise in basic medical research or in clinical medicine. These developments are paralleled by advances in the field of biomolecules and particles that will provide new agents useful for more than one imaging modality and will facilitate the study of the same target by different imaging devices. Digital PET/CT may emerge as a powerful multimodality technique with great clinical impact on the diagnosis and therapy assessment of oncological diseases due to its enhanced sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anger HO (1957) Scintillation camera. Rev Sci Instrum 29:27–33

    Google Scholar 

  2. Acuff SN, Jackson AS, Subramaniam RM, Osborne D (2018) Practical considerations for integrating PET/CT into radiation therapy planning. J Nucl Med Technol 46(4):343–348

    PubMed  Google Scholar 

  3. Bennett CF, Swayze EE (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 50:259–293

    CAS  PubMed  Google Scholar 

  4. Bennett CF, Baker BF, Pham N et al (2017) Pharmacology of antisense drugs. Annu Rev Pharmacol Toxicol 57:81–105

    CAS  PubMed  Google Scholar 

  5. Bergeret S, Charbit J, Ansquer C et al (2019) Novel PET tracers: added value for endocrine disorders. Endocrine 64(1):14–30

    CAS  PubMed  Google Scholar 

  6. Beyer T, Townsend DW, Brun T et al (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:1369–1379

    Google Scholar 

  7. Bundschuh R, Martínez-Möller A, Essler M et al (2008) Local motion correction for lung tumours in PET/CT—First results. Eur J Nucl Med Mol Imaging 35:1981–1988

    PubMed  Google Scholar 

  8. Catana C, Procissi D, Wu YB et al (2008) Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci USA 105:3705–3710

    CAS  PubMed  Google Scholar 

  9. Carne R, O’Brien T, Kilpatrick C et al (2004) MRI-negative PET-positive temporal lobe epilepsy: a distinct surgically remediable syndrome. Brain 127:2276–2285

    CAS  PubMed  Google Scholar 

  10. Chakrabarti A, Aruva MR, Sajankila SP (2005) Synthesis of novel peptide nucleic acid-peptide chimera for non-invasive imaging of cancer. Nucleosides Nucleotides Nucleic Acids 24:409–414

    CAS  PubMed  Google Scholar 

  11. Chakrabarti A, Zhang K, Aruva MR et al (2007) Radiohybridization PET imaging of KRAS G12D mRNA expression in human pancreas cancer xenografts with [64Cu]DO3A-peptide nucleic acid-peptide nanoparticles. Cancer Biol Ther 6:948–956

    CAS  PubMed  Google Scholar 

  12. Chang G, Chang T, Pan T, Clark JW Jr, Mawlawi OR (2010) Implementation of an automated respiratory amplitude gating technique for PET/CT: clinical evaluation. J Nucl Med 51:16–24

    PubMed  Google Scholar 

  13. Chandra PS, Salamon N, Huang J et al (2006) FDG-PET/MRI Coregistration and diffusion-tensor imaging distinguish epileptogenic tubers and cortex in patients with tuberous sclerosis complex: a preliminary report. Epilepsia 47:1543–1549

    PubMed  Google Scholar 

  14. Cheng NM, Yu CT, Ho KC, Wu YC, Liu YC, Wang CW, Yen TC (2009) Respiration-averaged CT for attenuation correction in non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 36:607–615

    PubMed  Google Scholar 

  15. Cherry SR, Louie AY, Jacobs RE (2008) The integration of positron emission tomography with magnetic resonance imaging. Proc IEEE 96:416–438

    CAS  Google Scholar 

  16. Cherry SR, Jones T, Karp JS et al (2018) Totalbody PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med 59:3–12

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Degenhardt C, Prescher G, Frach T et al (2009) The digital silicon photomultiplier: a novel sensor for the detection of scintillation light. In: IEEE Nuclear Science Conference Record 2383–2386

    Google Scholar 

  18. Dimitrakopoulou-Strauss A (2015) PET-based molecular imaging in personalized oncology: potential of the assessment of therapeutic outcome. Future Oncol 11(7):1083–1091

    CAS  PubMed  Google Scholar 

  19. Ehman E, Johnson G, Villanueva-Meyer J et al (2017) PET/MRI: where might it replace PET/CT? J Magn Reson Imaging 46(5):1247–1262

    PubMed  PubMed Central  Google Scholar 

  20. Faria SL, Menard S, Devic S, Sirois C, Souhami L, Lisbona R, Freeman CR (2008) Impact of FDG- PET/CT on radiotherapy volume delineation in non-small-cell lung cancer and correlation of imaging stage with pathologic findings. Int J Radiat Oncol Biol Phys 70:1035–1038

    PubMed  Google Scholar 

  21. Flavell R, Naeger D, Aparici C et al (2016) Malignancies with low fluorodeoxyglucose uptake at PET/CT: pitfalls and prognostic importance: resident and fellow education feature. RadioGraphics 36:293–294

    Google Scholar 

  22. Frach T, Prescher G, Degenhardt C et al (2009) The digital silicon photomultiplier: principle of operation and intrinsic detector performance. In: IEEE Nuclear Science Conference Record 1959–1965

    Google Scholar 

  23. Fuentes-Ocampo F, López-Mora DA, Flotats A et al (2019) Digital versus analog PET/CT: intra-subject comparison of the SUVmax in target lesions and reference regions. Eur J Nucl Med Mol Imaging. In press

    Google Scholar 

  24. Germano PM, Le SV, Oh DS et al (2004) Differential coupling of PAC1 SV1 splice variant of human colonic tumors to the activation of intracellular cAMP but not intracellular Ca2+ does not activate tumor proliferation. J Mol Neurosci 22:83–92

    PubMed  PubMed Central  Google Scholar 

  25. Goerres GW, Stupp R, Barghouth G et al (2005) The value of PET, CT and in-line PET/CT in patients with gastrointestinal stromal tumours: long-term outcome of treatment with imatinib mesylate. Eur J Nucl Med Mol Imaging 32:153–162

    CAS  Google Scholar 

  26. Guerra L, Ponti E, Morzenti S et al (2017) Respiratory motion management in PET/CT: applications and clinical usefulness. Curr Radiopharm 10(2):85–92

    CAS  PubMed  Google Scholar 

  27. Guido A, Fuccio L, Rombi B, Castellucci P, Cecconi A, Bunkheila F, Fuccio C, Spezi E, Angelini AL, Barbieri E (2009) Combined 18F-FDG-PET/CT imaging in radiotherapy target delineation for head-and-neck cancer. Int J Radiat Oncol Biol Phys 73:759–763

    PubMed  Google Scholar 

  28. Hersey P, Bastholt L, Chiarion-Sileni V, Cinat G, Dummer R, Eggermont AM, Espinosa E, Hauschild A, Quirt I, Robert C, Schadendorf D (2009) Small molecules and targeted therapies in distant metastatic disease. Ann Oncol 20(Suppl6):vi35–vi40

    Google Scholar 

  29. Heusch P, Buchbender C, Kohler J et al (2013) Correlation of the apparent diffusion coefficient (ADC) with the standardized uptake value (SUV) in hybrid 18F-FDG PET/MRI in non-small cell lung cancer (NSCLC) lesions: initial results RoFo 185:1056–1062

    Google Scholar 

  30. Hofmann M, Steinke F, Scheel V et al (2008) MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49:1875–1883

    PubMed  Google Scholar 

  31. Hutton BF (2014) The origin of SPECT and SPECT/CT. Eur J Nucl Med Mol Imaging 41(Suppl 1):S3–S16

    PubMed  Google Scholar 

  32. Inobushi M, Tatsumi M, Yamamoto Y et al (2018) European research trends in nuclear medicine. Ann Nucl Med 32:579–582

    Google Scholar 

  33. Judenhofer MS, Wehrl HF, Newport DF et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14:459–465

    CAS  PubMed  Google Scholar 

  34. Kang B, Lee JM, Song YS et al (2016) Added value of integrated whole-body PET/MRI for evaluation of colorectal cancer: comparison with contrast-enhanced MDCT. AJR Am J Roentgenol 206:W10–W20

    PubMed  Google Scholar 

  35. Koopman D, Groot Koerkamp M, Jager PL et al (2017) Digital PET compliance to EARL accreditation specifications. EJNMMI Phys 4:9. https://doi.org/10.1186/s40658-017-0176-5

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kuker R, Sztejnberg M, Gulec S (2017) I-124 imaging and dosimetry. Mol Imaging Radionucl Ther 26(suppl 1):66–73

    PubMed  PubMed Central  Google Scholar 

  37. Kumar P, Tripathi SK, Chen CP et al (2019) Evaluating Ga-68 peptide conjugates for targeting VPAC receptors: stability and pharmacokinetics. Mol Imaging Biol 21(1):130–139

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lendvai G, Estrada S, Bergström M (2009) Radiolabelled oligonucleotides for imaging of gene expression with PET. Curr Med Chem 16:4445–4461

    CAS  PubMed  Google Scholar 

  39. Ljungberg M, Preterius H (2018) SPET/CT: an update on technological developments and clinical applications. Br J Radiol 90:20160402

    Google Scholar 

  40. Lopez-Mora DA, Flotats A, Fuentes-Ocampo F et al (2019) Comparison of image quality and lesion detection between digital and analog PET/CT. Eur J Nucl Med Mol Imaging 46(6):1383–1390

    Google Scholar 

  41. Mehranian A, Arabi H, Zaidi H (2016) Vision 20/20: magnetic resonance imaging-guided attenuation correction in PET/MRI: challenges, solutions, and opportunities. Med Phys 43(3):1130–1155. https://doi.org/10.1118/1.4941014

  42. Messerli M, Stolzmann P, Egger-Sigg M et al (2018) Impact of a Bayesian penalized likelihood reconstruction algorithm on image quality in novel digital PET/CT: clinical implications for the assessment of lung tumors. EJNMMI Phys 5:27. https://doi.org/10.1186/s40658-018-0223-x

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mittra E, Quon A (2009) Positron emission tomography/computed tomography: the current technology and applications. Radiol Clin N Am 47:147–160

    PubMed  Google Scholar 

  44. Mollet P, Keereman Vincent, Bini J et al (2014) Improvement of attenuation correction in time-of-flight PET/MR imaging with a positron-emitting source. J Nucl Med 55(2):329–336

    Google Scholar 

  45. Nguyen N, Vercher-Conejero JL, Sattar A et al (2015) Image quality and diagnostic performance of a digital PET prototype in patients with oncologic diseases: initial experience and comparison with analog PET. J Nucl Med 56:1378–1385

    CAS  PubMed  Google Scholar 

  46. Patton JA, Townsend DW, Hutton BF (2009) Hybrid imaging technology: from dreams and vision to clinical devices. Semin Nucl Med 39:247–263

    PubMed  Google Scholar 

  47. Rausch I, Ruiz A, Valverde-Pascual I et al (2018) Performance evaluation of the Philips Vereos PET/CT system according to the NEMA NU2-2012 standard. J Nucl Med 60(4):561–567

    Google Scholar 

  48. Raylman RR, Majewski S, Lemieux SK et al (2006) Simultaneous MRI and PET imaging of a rat brain. Phys Med Biol 51:6371–6379

    PubMed  Google Scholar 

  49. Ruhlmann V, Ruhlmann M, Bellendorf A et al (2016) Hybrid imaging for detection of carcinoma of unknown primary: a preliminary comparison trial of whole-body PET/MRI versus PET/CT. Eur J Radiol 85:1941–1947

    PubMed  Google Scholar 

  50. Salamon N, Kung J, Shaw S et al (2008) FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology 71:1594–1601

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Santhanam P, Taieb D, Solnes L et al (2017) Utility of I-124 PET/CT in identifying radioiodine avid lesions in differentiated thyroid cancer: a systematic review and meta-analysis. Clin Endocrinol (Oxf) 86(5):645–651

    CAS  Google Scholar 

  52. Sawicki LM, Grueneisen J, Buchbender C et al (2016) Evaluation of the outcome of lung nodules missed on 18F-FDG PET/MRI compared with 18F-FDG PET/CT in patients with known malignancies. J Nucl Med 57:15–20

    CAS  PubMed  Google Scholar 

  53. Sawicki LM, Grueneisen J, Buchbender C et al (2016) Comparative performance of 18F-FDG PET/MRI and 18F-FDG PET/CT in detection and characterization of pulmonary lesions in 121 oncologic patients. J Nucl Med 57:582–586

    CAS  PubMed  Google Scholar 

  54. Schelhaas S, Heinzmann K, Bollineni VR (2017) Preclinical applications of 3′-deoxy-3′-[18F]fluoro-thymidine in oncology-A systematic review. Theranostics 7(1):40–50

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Schillaci O, Urbano N (2019) Digital PET/CT: a new intriguing chance for clinical nuclear medicine and personalized molecular imaging. Eur J Nucl Med Mol Imaging 46(6):1222–1225

    PubMed  Google Scholar 

  56. Schlemmer HPW, Pichler BJ, Schmand M et al (2008) Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 248:1028–1035

    PubMed  Google Scholar 

  57. Schmidt H, Brendle C, Schraml C et al (2013) Correlation of simultaneously acquired diffusion-weighted imaging and 2-deoxy-[18F] fluoro-2-D-glucose positron emission tomography of pulmonary lesions in a dedicated whole-body magnetic resonance/positron emission tomography system. Invest Radiol 48:247–255

    PubMed  Google Scholar 

  58. Schulz S, Rocken C, Mawrin C et al (2004) Immunocytochemical identification of VPAC1, VPAC2 and PAC1 receptors in normal and neoplastic human tissues with subtype specific antibodies. Clin Cancer Res 10:8234–8242

    Google Scholar 

  59. Sekine T, Delso G, Zeimpekis KG et al (2018) Reduction of (18)F-FDG dose in clinical PET/MR imaging by using silicon photomultiplier detectors. Radiology 286:249–259

    PubMed  Google Scholar 

  60. Shah C, Miller TW, Wyatt SK, McKinley ET, Olivares MG, Sanchez V, Nolting DD, Buck JR, Zhao P, Ansari MS, Baldwin RM, Gore JC, Schiff R, Arteaga CL, Manning HC (2009) Imaging biomarkers predict response to anti-HER2 (ErbB2) therapy in preclinical models of breast cancer. Clin Cancer Res 15:4712–4721

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sikkandhar M, Krishna KG, Sachin M et al (2017) PET/MRI: a frontier in era of complementary hybrid imaging. Eur J Hybrid Imaging 2018; 2(1):12

    Google Scholar 

  62. Slomka PJ, Pan T, Germano G (2016) Recent advances and future progress in PET instrumentation. Semin Nucl Med 46(1):5–19

    PubMed  Google Scholar 

  63. Smith CP, Laucis A, Harmon S et al (2019) Novel imaging in detection of metastatic prostate cancer. Curr Oncol Rep 21(4):31

    PubMed  Google Scholar 

  64. Specht L, Berthelsen AK (2018) PET/CT in radiation therapy planning. Semin Nucl Med 48(1):67–75

    PubMed  Google Scholar 

  65. Stieb S, Eleftheriou A, Warnock G et al (2018) Longitudinal PET imaging for tumor hypoxia during the courseof radiotherapy. Eur J Nucl Med Mol Imaging 45(12):2201–2217

    PubMed  Google Scholar 

  66. Tan PH, Bay BH, Yip G et al (2005) Immunohistochemical detection of Ki67 in breast cancer correlates with transcriptional regulation of genes related to apoptosis and cell death. Mod Pathol 18:374–381

    CAS  PubMed  Google Scholar 

  67. Tang C, Nie D, Tang G et al (2017) Radiosyntesis and biological evaluation of N-(2-[18F]fluoropropionyl)-3,4-dihydroxy-l-phenylalanine as a PET tracer for oncologic imaging. Nucl Med Biol 50:39–46

    CAS  PubMed  Google Scholar 

  68. Tian X, Aruva MR, Qin W et al (2004) External imaging of CCND1 cancer gene activity in experimental human breast cancer xenografts with 99mTc-peptide–peptide nucleic acid- peptide chimeras. J Nucl Med 45:2070–2082

    CAS  PubMed  Google Scholar 

  69. Tian X, Aruva MR, Wolfe HR et al (2005) Tumor-targeting peptide-PNA peptide chimeras for imaging overexpressed oncogene mRNAs. Nucleosides Nucleotides Nucleic Acids 24:1085–1091

    CAS  PubMed  Google Scholar 

  70. Tian X, Aruva MR, Zhang K et al (2007) PET imaging of CCND1 mRNA in human MCF7 estrogen receptor positive breast cancer xenografts with oncogene-specific [64Cu] chelator- peptide nucleic acid-IGF1 analog radiohybridization probes. J Nucl Med 48:1699–1707

    CAS  PubMed  Google Scholar 

  71. Townsend DW (2008) Multimodality imaging of structure and function. Phys Med Biol 53:R1–R39

    CAS  PubMed  Google Scholar 

  72. Velikyan I (2014) Prospective of 68 Ga-radiopharmaceutical development. Theranostics 4(1):47–80

    CAS  Google Scholar 

  73. Voigt W (2017) Advanced PET imaging in oncology: status and developments with current and future relevance to lung cancer care. Curr Opin Oncol 30(2):77–83

    Google Scholar 

  74. Woody C, Schlyer D, Vaska P et al (2007) Preliminary studies of a simultaneous PET/MRI scanner based on the RatCAP small animal tomograph. Nucl Instrum Methods A 571:102–105

    CAS  Google Scholar 

  75. Wright C, Binzel K, Zhang J et al (2017) Advanced functional tumor imaging and precision nuclear medicine enabled by digital PET technologies. Contrast Media Mol I. https://doi.org/10.1155/2017/5260305

  76. Zaidi H (2007) Is MR-guided attenuation correction a viable option for dual modality PET/MR imaging? Radiology 244:639–642

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignasi Carrio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

López-Mora, D.A., Lagos, L.A., Estorch, M., Carrio, I. (2020). Future Challenges of Multimodality Imaging. In: Schober, O., Kiessling, F., Debus, J. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 216. Springer, Cham. https://doi.org/10.1007/978-3-030-42618-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42618-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42617-0

  • Online ISBN: 978-3-030-42618-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics