Skip to main content

Evolution, Origins and Diversification of Parasitic Cnidarians

  • Chapter
  • First Online:
The Evolution and Fossil Record of Parasitism

Part of the book series: Topics in Geobiology ((TGBI,volume 49))

Abstract

Parasitism has evolved in cnidarians on multiple occasions but only one clade—the Myxozoa—has undergone substantial radiation. We briefly review minor parasitic clades that exploit pelagic hosts and then focus on the comparative biology and evolution of the highly speciose Myxozoa and its monotypic sister taxon, Polypodium hydriforme, which collectively form the Endocnidozoa. Cnidarian features that may have facilitated the evolution of endoparasitism are highlighted before considering endocnidozoan origins, life cycle evolution and potential early hosts. We review the fossil evidence and evaluate existing inferences based on molecular clock and cophylogenetic analyses. Finally, we consider patterns of adaptation and diversification and stress how poor sampling might preclude adequate understanding of endocnidozoan diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-Elfattah A, Fontes I, Kumar G, Soliman H, Hartikainen H, Okamura B, El-Matbouli M (2014) Vertical transmission of Tetracapsuloides bryosalmonae (Myxozoa), the causative agent of salmonid proliferative kidney disease. Parasitology 141:482–490

    Article  Google Scholar 

  • Adriano EA, Okamura B (2017) Motility, morphology and phylogeny of the plasmodial worm, Ceratomyxa vermiformis n. sp. (Cnidaria: Myxozoa: Myxosporea). Parasitology 144:158–168

    Article  CAS  Google Scholar 

  • Alexander JD, Kerans BL, El-Matbouli M, Hallett SL, Stevens L (2015) Annelid-Myxosporean interactions. In: Okamura B, Gruhl A, Bartholomew JL (eds) Myxozoan evolution, ecology and development. Springer International Publishing, Cham, pp 217–234

    Chapter  Google Scholar 

  • Andreev P, Coates MI, Karatajūtė-Talimaa V, Shelton RM, Cooper PR, Wang N-Z, Sansom IJ (2016) The systematics of the Mongolepidida (Chondrichthyes) and the Ordovician origins of the clade. PeerJ 4:e1850

    Article  Google Scholar 

  • Appeltans W et al (2012) The magnitude of global marine species biodiversity. Curr Biol 22:2189–2202

    Article  CAS  Google Scholar 

  • Atkinson SD, Bartošová-Sojková P, Whipps CM, Bartholomew JL (2015) Approaches for characterising myxozoan species. In: Okamura B, Gruhl A, Bartholomew J (eds) Myxozoan evolution, ecology and development. Springer International Publishing, Cham, pp 111–123

    Chapter  Google Scholar 

  • Balasubramanian PG, Beckmann A, Warnken U, Schnölzer M, Schüler A, Bornberg-Bauer E, Holstein TW, Özbek S (2012) Proteome of the Hydra nematocyst. J Biol Chem 287:9672–9681

    Google Scholar 

  • Banks JC, Paterson AM (2005) Multi-host parasite species in cophylogenetic studies. Int J Parasitol 35:741–746

    Article  Google Scholar 

  • Bartholomew J, Whipple M, Stevens D, Fryer JL (1997) The life cycle of Ceratomyxa shasta, a myxosporean parasite of salmonids, requires a freshwater polychaete as an alternate host. J Parasitol 83:859–868

    Article  CAS  Google Scholar 

  • Bartošová-Sojková P, Hrabcová M, Pecková H, Patra S, Kodádková A, Jurajda P, Tyml T, Holzer AS (2014) Hidden diversity and evolutionary trends in malacosporean parasites (Cnidaria: Myxozoa) using molecular phylogenetics. Int J Parasitol 44:565–577

    Article  Google Scholar 

  • Bentlage B, Osborn KJ, Lindsay DJ, Hopcroft RR, Raskoff KA, Collins AG (2018) Loss of metagenesis and evolution of a parasitic life style in a group of open-ocean jellyfish. Mol Phylogenet Evol 124:50–59

    Article  Google Scholar 

  • Benton MJ, Donoghue PCJ, Asher R (2009) Calibrating and constraining molecular clocks. In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 35–86

    Google Scholar 

  • Bigelow HB (1909) Reports on the scientific results of the expedition to the eastern tropical Pacific, in charge of Alexander Agassiz, by the U.S. Fish Commission Steamer ‘Albatross’, from October, 1904, to March, 1905, Lieut. Commander L.M. Garrett, U.S.N., commanding. XVI. The Medusae. Memoirs of the Museum of Comparative Zoology at Harvard University 37:1–243

    Google Scholar 

  • Blaxter ML, Koutsovoulos G (2014) The evolution of parasitism in Nematoda. Parasitology 142(Suppl 1):S26–S39

    Google Scholar 

  • Boardman RS (1998) Reflections on the morphology, anatomy, evolution, and classification of the class Stenolaemata (Bryozoa). Smithson Contrib Paleobiol 86:1–60

    Article  Google Scholar 

  • Boast AP, Weyrich LS, Wood JR, Metcalf JL, Knight R, Cooper A (2018) Coprolites reveal ecological interactions lost with the extinction of New Zealand birds. Proc Natl Acad Sci U S A 115:1546–1551

    Article  CAS  Google Scholar 

  • Boero F, Bouillon J (2005) Cnidaria and Ctenophora (cnidarians and comb jellies). In: Rohde K (ed) Marine parasitology. CABI Publishing, Wallingford, UK, pp 177–182

    Google Scholar 

  • Boero F, Bouillon J, Gravili C (1991) The life cycle of Hydrichthys mirus (Cnidaria: Hydrozoa: Anthomedusae: Pandeidae). Zool J Linnean Soc 101:189–199

    Article  Google Scholar 

  • Boero F, Bouillon J, Piraino S (1992) On the origins and evolution of hydromedusan life cycles (Cnidaria, Hydrozoa). In: Dallai R (ed) Sex origin and evolution, Symposia and monographs U.Z.I, vol 6, pp 59–68

    Google Scholar 

  • Bomfleur B, Kerp H, Taylor TN, Moestrup Ø, Taylor EL (2012) Triassic leech cocoon from Antarctica contains fossil bell animal. Proc Natl Acad Sci USA 109:20971–20974. https://doi.org/10.1073/pnas.1218879109

  • Bomfleur B, Mörs T, Ferraguti M, Reguero MA, McLoughlin S (2015) Fossilized spermatozoa preserved in a 50-Myr-old annelid cocoon from Antarctica. Biol Lett 11:20150431

    Article  CAS  Google Scholar 

  • Bosch TCG (2016) Emergence of immune system components in cnidarians. In: Ratcliffe MJH (Editor in Chief) Encyclopedia of immunobiology, vol 1. Academic, Oxford, pp 397–406

    Google Scholar 

  • Brachaniec T, Niedźwiedzki R, Surmik D, Krzykawski T, Szopa K, Gorzelak P, Salamon MA (2015) Coprolites of marine vertebrate predators from the Lower Triassic of southern Poland. Palaeogeogr Palaeoclimatol Palaeoecol 435:118–126

    Article  Google Scholar 

  • Brazeau MD, Friedman M (2015) The origin and early phylogenetic history of jawed vertebrates. Nature 520:490–497

    Article  Google Scholar 

  • Briggs DEG, Bartels C (2010) Annelids from the Lower Devonian Hunsrück Slate (Lower Emsian, Rhenish Massif, Germany). Palaeontology 53:215–232

    Article  Google Scholar 

  • Bromham L (2009) Why do species vary in their rate of molecular evolution? Biol Lett 5:401–404

    Article  Google Scholar 

  • Bromham L, Cowman PF, Lanfear R (2013) Parasitic plants have increased rates of molecular evolution across all three genomes. BMC Evol Biol 13:1

    Article  Google Scholar 

  • Broughton RE, Betancur-R R, Li C, Arratia G, Ortí G (2013) Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution. PLOS Curr Tree Life. https://doi.org/10.1371/currents.tol.2ca8041495ffafd0c92756e75247483e

  • Brown SP, Renaud F, Guégan JF, Thomas F (2001) Evolution of trophic transmission in parasites: the need to reach a mating place? J Evol Biol 14:815–820

    Article  Google Scholar 

  • Canning EU, Okamura B (2004) Biodiversity and evolution of the Myxozoa. Adv Parasitol 56:43–131

    Article  Google Scholar 

  • Canning EU, Curry A, Feist SW, Longshaw M, Okamura B (2000) A new class and order of myxozoans to accommodate parasites of bryozoans with ultrastructural observations on Tetracapsula bryosalmonae (PKX organism). J Euk Microbiol 47:456–468

    Article  CAS  Google Scholar 

  • Carrete Vega G, Wiens JJ (2012) Why are there so few fish in the sea? Proc R Soc B Biol Sci 279:2323–2329

    Article  Google Scholar 

  • Cartwright P, Nawrocki AM (2010) Character evolution in Hydrozoa (phylum Cnidaria). Integr Comp Biol 50:456–472

    Article  CAS  Google Scholar 

  • Chang ES, Neuhof M, Rubinstein ND, Diamant A, Philippe H, Huchon D, Cartwright P (2015) Genomic insights into the evolutionary origin of Myxozoa within Cnidaria. Proc Natl Acad Sci U S A 112:14912–14917

    Article  CAS  Google Scholar 

  • Chin K (2021) Gastrointestinal parasites of ancient non-human vertebrates: evidence from coprolites and other materials. In: De Baets K, Huntley JW (eds) The evolution and fossil record of parasitism: Coevolution and paleoparasitological techniques. Topics in Geobiology 50

    Google Scholar 

  • Choisy M, Brown SP, Lafferty KD, Thomas F (2003) Evolution of trophic transmission in parasites: why add intermediate hosts? Am Nat 162:172–181

    Article  Google Scholar 

  • Colleary C, Dolocan A, Gardner J, Singh S, Wuttke M, Rabenstein R, Habersetzer J, Schaal S, Feseha M, Clemens M, Jacobs BF, Currano ED, Jacobs LL, Sylvestersen RL, Gabbott SE, Vinther J (2015) Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils. Proc Natl Acad Sci U S A 112:12592–12597

    Article  CAS  Google Scholar 

  • Collins AG (2009) Recent insights into cnidarian phylogeny. In: Lang MA et al (eds) Proceedings of the Smithsonian marine science symposium, Smithsonian contributions to the marine sciences, vol 38. Smithsonian Institution, Washington, DC, pp 139–149

    Google Scholar 

  • Collins AG, Bentlage B, Lindner A, Lindsay D, Haddock SHD, Jarms G, Norenburg JL, Jankowski T, Cartwright P (2008) Phylogenetics of Trachylina (Cnidaria: Hydrozoa) with new insights on the evolution of some problematical taxa. J Mar Biol Assoc UK 88:1673–1685

    Article  Google Scholar 

  • Colwell RK, Dunn RR, Harris NC (2012) Coextinction and persistence of dependent species in a changing world. Annu Rev Ecol Evol Syst 43:183–203

    Article  Google Scholar 

  • Conway Morris S (1979) Middle Cambrian Polychaetes from the Burgess Shale of British Columbia. Philos Trans R Soc London B Biol Sci 285:227–274

    Article  Google Scholar 

  • Conway Morris S, Peel JS (2008) The earliest annelids: lower Cambrian polychaetes from the Sirius Passet Lagerstätte, Peary Land, North Greenland. Acta Palaeontol Pol 53:137–148

    Article  Google Scholar 

  • Cribb TH, Bray RA, Olson PD, Littlewood DT (2003) Life cycle evolution in the Digenea: a new perspective from phylogeny. Adv Parasitol 54:197–254

    Article  Google Scholar 

  • Cruickshank RH, Paterson AM (2006) The great escape: do parasites break Dollo’s law? Trends Parasitol 22:509–515

    Article  Google Scholar 

  • Cunningham JA, Liu AG, Bengtson S, Donoghue PCJ (2017) The origin of animals: can molecular clocks and the fossil record be reconciled? BioEssays 39:1–12

    Article  Google Scholar 

  • De Baets K, Littlewood DTJ (2015) The importance of fossils in understanding the evolution of parasites and their vectors. Adv Parasitol 90:1–51

    Article  Google Scholar 

  • De Baets K, Dentzien-Dias P, Upeniece I, Verneau O, Donoghue PCJ (2015) Constraining the deep origin of parasitic flatworms and host-interactions with fossil evidence. Adv Parasitol 90:93–135

    Google Scholar 

  • De Baets K, Antonelli A, Donoghue PCJ (2016) Tectonic blocks and molecular clocks. Philos Trans R Soc B 371:20160098

    Article  Google Scholar 

  • De Baets K, Huntley JW, Klompmaker AA, Schiffbauer JD, Muscente AD (2021a) The fossil record of parasitism: Its extent and taphonomic constraints. In: De Baets K, Huntley JW (eds) The evolution and fossil record of parasitism: Coevolution and paleoparasitological techniques. Topics in Geobiology 50

    Google Scholar 

  • De Baets K, Dentzien-Dias P, Harrison, GWM, Littlewood, DTJ, Parry LA (2021b) Fossil constraints on the timescale of parasitic helminth evolution. In: De Baets K, Huntley JW (eds) The evolution and fossil record of parasitism: Identification and Macroevolution of Parasites. Topics in Geobiology 49

    Google Scholar 

  • de Kinkelin P, Gay M, Forman S (2002) The persistenceof infectivity of Tetracapsula bryosalmonae-infected water for rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 25:477–482

    Article  Google Scholar 

  • de Vienne DM, Refrégier G, López-Villavicencio M, Tellier A, Hood ME, Giraud T (2013) Cospeciation vs host-shift speciation: methods for testing, evidence from natural associations and relation to coevolution. New Phytol 198:347–385

    Article  Google Scholar 

  • Delsuc F, Philippe H, Tsagkogeorga G, Simion P, Tilak M-K, Turon X, López-Legentil S, Piette J, Lemaire P, Douzery EJP (2018) A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biol 16:39

    Article  CAS  Google Scholar 

  • Dentzien-Dias PC, Poinar G Jr, de Figueiredo AEQ, Pacheco ACL, Horn BLD, Schultz CL (2013) Tapeworm eggs in a 270 million-year-old shark coprolite. PLoS One 8:e55007

    Article  CAS  Google Scholar 

  • Dentzien-Dias P, Carrillo-Briceño JD, Francischini H, Sánchez R (2018) Paleoecological and taphonomical aspects of the Late Miocene vertebrate coprolites (Urumaco formation) of Venezuela. Palaeogeogr Palaeoclimatol Palaeoecol 490:590–603

    Article  Google Scholar 

  • Dohrmann M, Wörheide G (2013) Novel scenarios of early animal evolution—is it time to rewrite textbooks? Integr Comp Biol 53:503–511

    Article  Google Scholar 

  • Dohrmann M, Wörheide G (2017) Dating early animal evolution using phylogenomic data. Sci Rep 7:3599

    Article  CAS  Google Scholar 

  • Dong X-P, Cunningham JA, Bengtson S, Thomas C-W, Liu J-B, Stampanoni M, Donoghue PCJ (2013) Embryos, polyps and medusae of the early Cambrian scyphozoan Olivooides. Proc R Soc B 280:20130071

    Article  Google Scholar 

  • Donoghue PCJ, Keating JN (2014) Early vertebrate evolution. Palaeontology 57:879–893

    Article  Google Scholar 

  • dos Reis M, Thawornwattana Y, Angelis K, Telford MJ, Donoghue PCJ, Yang Z (2015) Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Curr Biol 25:2939–2950

    Article  CAS  Google Scholar 

  • Dufour B, Le Bailly M (2013) Testing new parasite egg extraction methods in paleoparasitology and an attempt at quantification. Int J Paleopathol 3:199–203

    Article  Google Scholar 

  • Dunlap WC, Starcevic A, Baranasic D, Diminic J, Zucko J, Gacesa R, van Oppen MJH, Hranueli D, Cullum J, Long PF (2013) KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase - an open access and searchable database of a coral genome. BMC Genomics 14:509

    Article  CAS  Google Scholar 

  • Dunn RR, Harris NC, Colwell RK, Koh LP, Sodhi NS (2009) The sixth mass coextinction: are most endangered species parasites and mutualists? Proc R Soc B 276:3037–3045

    Article  Google Scholar 

  • Dunn CW, Giribet G, Edgecombe GD, Hejnol A (2014) Animal phylogeny and its evolutionary implications. Annu Rev Ecol Evol Syst 45:371–395

    Article  Google Scholar 

  • El-Matbouli M, Hoffmann RW (1991) Effects of freezing, aging, and passage through the alimentary canal of predatory animals on the viability of Myxobolus cerebralis spores. J Aquat Anim Health 3:260–262

    Article  Google Scholar 

  • El-Matbouli M, Hoffmann RW (1998) Light and electron microscopic studies on the chronological development of Myxobolus cerebralis to the actinosporean stage in Tubifex tubifex. Int J Parasitol 28:195–217

    Article  CAS  Google Scholar 

  • Elwell LC, Kerans BL, Zickovich J (2009) Host–parasite interactions and competition between tubificid species in a benthic community. Freshw Biol 54:1616–1628

    Article  Google Scholar 

  • Ernst A, Schäfer P (2006) Palaeozoic vs. post-Palaezoic Stenolaemata: phylogenetic relationship or morphological convergence? Courier Forsch Inst Senckenberg 257:49–63

    Google Scholar 

  • Erséus C (2005) Phylogeny of oligochaetous Clitellata. Hydrobiologia 535/536:357–372

    Article  CAS  Google Scholar 

  • Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ (2011) The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:1091–1097

    Article  CAS  Google Scholar 

  • Eszterbauer E (2004) Genetic relationship among gill-infecting Myxobolus species (Myxosporea) of cyprinids: molecular evidence of importance of tissue-specificity. Dis Aquat Org 58:35–40

    Article  Google Scholar 

  • Eszterbauer E, Atkinson S, Diamant A, Morris D, El-Matbouli M, Hartikainen H (2015) Myxozoan life cycles: practical approaches and insights. In: Okamura B, Gruhl A, Bartholomew J (eds) Myxozoan evolution, ecology and development. Springer International Publishing, Cham, pp 175–198

    Chapter  Google Scholar 

  • Fauchald K, Rouse G (1997) Polychaete systematics: past and present. Zool Scripta 26:71–138

    Article  Google Scholar 

  • Fautin DG (2002) Reproduction of Cnidaria. Can J Zool 80:1735–1754

    Article  Google Scholar 

  • Feist SW, Longshaw M (2006) Phylum Myxozoa. In: Fish diseases and disorders, Protozoan and metazoan infections, vol 1, 2nd edn. CABI Publishing, Wallingford, UK, pp 230–296

    Google Scholar 

  • Feist SW, Morris DJ, Alama-Bermejo G, Holzer AS (2015) Cellular processes in myxozoans. In: Okamura B, Gruhl A, Bartholomew JL (eds) Myxozoan evolution, ecology and development. Springer International Publishing, Cham, pp 139–154

    Chapter  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Fiala I (2006) The phylogeny of Myxosporea (Myxozoa) based on small subunit ribosomal RNA gene analysis. Int J Parasitol 36:1521–1534

    Article  CAS  Google Scholar 

  • Fiala I, Bartošová-Sojková P, Okamura B, Hartikainen H (2015a) Adaptive radiation and evolution within the Myxozoa. In: Okamura B, Gruhl A, Bartholomew J (eds) Myxozoan evolution, ecology and development. Springer International Publishing, Cham, pp 69–84

    Chapter  Google Scholar 

  • Fiala I, Bartošová-Sojková P, Whipps CM (2015b) Classification and phylogenetics of Myxozoa. In: Okamura B, Gruhl A, Bartholomew J (eds) Myxozoan evolution, ecology and development. Springer International Publishing, Cham, pp 85–110

    Chapter  Google Scholar 

  • Foox J, Siddall ME (2015) The road to Cnidaria: history of phylogeny of the Myxozoa. J Parasitol 101:269–274

    Article  Google Scholar 

  • Freeman MA, Shinn AP (2011) Myxosporean hyperparasites of gill monogeneans are basal to the Multivalvulida. Parasit Vectors 4:220

    Article  CAS  Google Scholar 

  • Friedman M (2015) The early evolution of ray-finned fishes. Palaeontology 58:213–228

    Article  Google Scholar 

  • Friedman M, Sallan LC (2012) Five hundred million years of extinction and recovery: a phanerozoic survey of large-scale diversity patterns in fishes. Palaeontology 55:707–742

    Article  Google Scholar 

  • Goudemand N, Orchard MJ, Urdy S, Bucher H, Tafforeau P (2011) Synchrotron-aided reconstruction of the conodont feeding apparatus and implications for the mouth of the first vertebrates. Proc Natl Acad Sci U S A 108:8720–8724

    Article  CAS  Google Scholar 

  • Grabner DS, El-Matbouli M (2010) Experimental transmission of malacosporean parasites from bryozoans to common carp (Cyprinus carpio) and minnow (Phoxinus phoxinus). Parasitology 137:629–639

    Article  CAS  Google Scholar 

  • Grazhdankin D (2004) Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology 30:03–221

    Article  Google Scholar 

  • Grover R, Marguer JF, Allemand D, Ferrier-Pagès C (2008) Uptake of dissolved free amino acids by the scleractinian coral Stylophora pistillata. J Exp Biol 211:860–865

    Article  CAS  Google Scholar 

  • Gruhl A (2015) Myxozoa. In: Wanninger A (ed) Evolutionary developmental biology of invertebrates 1: introduction, non-Bilateria, Acoelomorpha, Xenoturbellida, Chaetognatha. Springer, Wien, pp 165–177

    Chapter  Google Scholar 

  • Gruhl A, Okamura B (2012) Development and myogenesis of the vermiform Buddenbrockia (Myxozoa) and implications for cnidarian body. EvoDevo 3:10

    Article  Google Scholar 

  • Gruhl A, Okamura B (2015) Tissue characteristics and development of Myxozoa. In: Okamura B, Gruhl A, Bartholomew JL (eds) Myxozoan evolution, ecology and development. Springer International Publishing, Cham, pp 155–174

    Chapter  Google Scholar 

  • Gunter NL, Burger MAA, Adlard RD (2010) Morphometric and molecular characterisation of four new Ceratomyxa species (Myxosporea: Bivalvulida: Ceratomyxidae) from fishes off Lizard Island, Australia. Folia Parasitol 57:1–10

    Article  Google Scholar 

  • Halanych KM (2015) The ctenophore lineage is older than sponges? That cannot be right! Or can it? J Exp Biol 218:592–597

    Article  Google Scholar 

  • Hallett SL, Atkinson SD, Bartholomew JL, Székely C (2015) Myxozoans exploiting homeotherms. In: Okamura B, Gruhl A, Bartholomew J (eds) Myxozoan evolution, ecology and development. Springer International Publishing, Cham, pp 125–135

    Chapter  Google Scholar 

  • Han J, Hu S, Cartwright P, Zhao F, Ou Q, Kubota S, Wang X, Yang X (2016) The earliest pelagic jellyfish with rhopalia from Cambrian Chengjiang Lagerstätte. Palaeogeogr Palaeoclimatol Palaeoecol 449:166–173

    Article  Google Scholar 

  • Hartigan A, Wilkinson M, Gower DJ, Streicher JW, Holzer AS, Okamura B (2016) Myxozoan infections of caecilians demonstrate broad host specificity and indicate a link with human activity. Int J Parasitol 46:375–381

    Article  Google Scholar 

  • Hartikainen H, Fontes I, Okamura B (2013a) Parasitism and phenotypic change in colonial hosts. Parasitology 140:1403–1412

    Article  Google Scholar 

  • Hartikainen H, Waeschenbach A, Wöss E, Wood T, Okamura B (2013b) Divergence and species discrimination in freshwater bryozoans (Bryozoa: Phylactolaemata). Zool J Linnean Soc 68:61–80

    Article  Google Scholar 

  • Hartikainen H, Gruhl AG, Okamura B (2014) Diversification and repeated morphological transitions in endoparasitic cnidarians (Myxozoa: Malacosporea). Mol Phylogenet Evol 76:261–269

    Article  Google Scholar 

  • Hartikainen H, Bass D, Briscoe AG, Knipe H, Green AJ, Okamura B (2016) Assessing myxozoan presence and diversity using environmental DNA. Int J Parasitol 46(12): 781–792

    Google Scholar 

  • He J, Zheng L, Zhang W, Lin Y (2015) Life cycle reversal in Aurelia sp.1 (Cnidaria, Scyphozoa). PLoS One 10:e0145314

    Article  CAS  Google Scholar 

  • Hedrick RP, McDowell TS, Mukkatira K, MacConnell E, Petri B (2008) Effects of freezing, drying, ultraviolet irradiation, chlorine, and quaternary ammonium treatments on the infectivity of myxospores of Myxobolus cerebralis for Tubifex tubifex. J Aquat Anim Health 20:116–125

    Article  Google Scholar 

  • Heiniger H, Adlard RD (2013) Molecular identification of cryptic species of Ceratomyxa Thélohan, 1892 (Myxosporea: Bivalvulida) including the description of eight novel species from apogonid fishes (Perciformes: Apogonidae) from Australian waters. Acta Parasitol 58:342–360

    Article  Google Scholar 

  • Heiniger H, Cribb TH, Adlard RD (2013) Intra-specific variation of Kudoa spp. (Myxosporea: Multivalvulida) from apogonid fishes (Perciformes), including the description of two new species, K. cheilodipteri n. sp. and K. cookii n. sp., from Australian waters. Syst Parasitol 84:193–215

    Article  Google Scholar 

  • Ho SYW, Tong KJ, Foster CSP, Ritchie AM, Lo N, Crisp MD (2015) Biogeographic calibrations for the molecular clock. Biol Lett 11:20150194

    Article  Google Scholar 

  • Holzer AS, Sommerville C, Wootten R (2004) Molecular relationships and phylogeny in a community of myxosporeans and actinosporeans based on their 18S rDNA sequences. Int J Parasitol 34:1099–1111

    Article  CAS  Google Scholar 

  • Holzer AS, Bartošová-Sojková P, Born-Torrijos A, Lövy A, Hartigan A, Fiala I (2018) The joint evolution of the Myxozoa and their alternate hosts: a cnidarian recipe for success and vast biodiversity. Mol Ecol 27:1651–1666

    Article  Google Scholar 

  • Huang D-Y, Chen J, Vannier J, Saiz Salinas JI (2004) Early Cambrian sipunculan worms from Southwest China. Proc R Soc B Biol Sci 271:1671–1676

    Article  Google Scholar 

  • Hugot J-P, Gardner SL, Borba V, Araujo P, Leles D, Stock Da-Rosa ÁA, Dutra J, Ferreira LF, Araújo A (2014) Discovery of a 240 million year old nematode parasite egg in a cynodont coprolite sheds light on the early origin of pinworms in vertebrates. Parasit Vectors 7:486

    Google Scholar 

  • Hunt AP, Milàn J, Lucas SG, Spielmann JA (2012) Vertebrate coprolites. N M Mus Nat Hist Sci Bull 57:5–24

    Google Scholar 

  • Ibragimov A, Raikova E (2004) Nematocysts of Polypodium hydriforme, a cnidarian parasite of acipenseriform fishes. Hydrobiologia 530:165–171

    Google Scholar 

  • Inoue J, Donoghue PCJ, Yang Z (2010) The impact of the representation of fossil calibrations on Bayesian estimation of species divergence times. Syst Biol 59:74–89

    Article  Google Scholar 

  • Irisarri I, Baurain D, Brinkmann H, Delsuc F, Sire J-Y, Kupfer A, Petersen J, Jarek M, Meyer A, Vences M, Philippe H (2017) Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nat Ecol Evol 1:1370–1378

    Article  Google Scholar 

  • Jankowski T, Collins AG, Campbell R (2008) Global diversity of inland water cnidarians. Hydrobiologia 595:35–40

    Article  Google Scholar 

  • Janvier P (2001) Ostracoderms and the shaping of the gnathostome characters. In: Ahlberg PE (ed) Major events in early vertebrate evolution. Taylor and Francis, London, pp 172–186

    Google Scholar 

  • Jones SRM, Bartholomew JL, Zhang JY (2015) Mitigating myxozoan disease impacts on wild fish populatins. In: Okamura B, Gruhl A, Bartholomew JL (eds) Myxozoan evolution, ecology and development. Springer International Publishing, Cham, pp 139–154

    Google Scholar 

  • Kallert DM, Grabner DS, Yokoyama H, El-Matbouli M, Eszterbauer E (2015) Transmission of myxozoans to vertebrate hosts. In: Okamura B, Gruhl A, Bartholomew JL (eds) Myxozoan evolution, ecology and development. Springer International Publishing, Cham, pp 235–250

    Chapter  Google Scholar 

  • Kamiya T, O’Dwyer K, Nakagawa S, Poulin R (2014) Host diversity drives parasite diversity: meta-analytical insights into patterns and causal mechanisms. Ecography 37:689–697

    Article  Google Scholar 

  • Kayal E, Bentlage B, Pankey MS, Ohdera AH, Medina M, Plachetzki DC, Collins AG, Ryan JF (2018) Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits. BMC Evol Biol 18(1)

    Google Scholar 

  • Kodádková A, Bartošová-Sojková P, Holzer AS, Fiala I (2015) Bipteria vetusta n. sp. – an old parasite in an old host: tracing the origin of myxosporean parasitism in vertebrates. Int J Parasitol 45:269–276

    Article  Google Scholar 

  • Koel TM, Kerans BL, Barras SC, Hanson KC, Wood JS (2010) Avian piscivores as vectors for Myxobolus cerebralis in the Greater Yellowstone ecosystem. Trans Am Fish Soc 139:976–988

    Article  Google Scholar 

  • Lai AG, Aboobaker AA (2017) EvoRegen in animals: time to uncover deep conservation or convergence of adult stem cell evolution and regenerative processes. Dev Biol 433:118–131

    Article  CAS  Google Scholar 

  • Leung TLF (2017) Fossils of parasites: what can the fossil record tell us about the evolution of parasitism? Biol Rev 92:410–430

    Article  Google Scholar 

  • Leung TLF (2021) Parasites of fossil vertebrates: what we know and what can we expect from the fossil record? In: De Baets K, Huntley JW (eds) The evolution and fossil Record of Parasitism: Identification and macroevolution of parasites. Topics in Geobiology 49

    Google Scholar 

  • Liu J, Ou Q, Han J, Li J, Wu Y, Jiao G, He T (2015) Lower Cambrian polychaete from China sheds light on early annelid evolution. Sci Nat 102:34

    Article  CAS  Google Scholar 

  • Lom J (1990) Phylum Myxozoa. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 36–52

    Google Scholar 

  • Lom J, Dyková I (1997) Ultrastructural features of the actinosporean phase of Myxosporea (Phylum Myxozoa): a comparative study. Acta Protozool 36:83–103

    Google Scholar 

  • Lom J, Dyková I (2006) Myxozoan genera: definition and notes on taxonomy, life-cycle terminology and pathogenic species. Folia Parasitol 53:1–36

    Article  Google Scholar 

  • Manum S, Bose M, Sawyer R (1991) Clitellate cocoons in fresh-water deposits since the Triassic. Zool Scripta 20:347–366

    Article  Google Scholar 

  • Martínez-Aquino A (2016) Phylogenetic framework for coevolutionary studies: a compass for exploring jungles of tangled trees. Curr Zool 62:393–403

    Article  Google Scholar 

  • Massard JA, Geimer G (2008) Global diversity of bryozoans (Bryozoa or Ectoprocta) in freshwater: an update. Bull Soc Nat Luxemb 109:139–148

    Google Scholar 

  • McDermott JJ, Zubkoff PL, Lin AL (1982) The occurrence of the anemone Peachia parasitica as a symbionts in the scyphozoan Cyanea capillata in the lower Chesapeake Bay. Estuaries 5:319–321

    Article  Google Scholar 

  • McGurk C, Morris DJ, Auchinachie NA, Adams A (2006) Development of Tetracapsuloides bryosalmonae (Myxozoa: Malacosporea) in bryozoan hosts (as examined by light microscopy) and quantitation of infective dose to rainbow trout (Oncorhynchus mykiss). Vet Parasitol 135:249–257

    Article  Google Scholar 

  • Molnár K, Eszterbauer E (2015) Specificity of infection sites in vertebrate hosts. In: Okamura B, Gruhl A, Bartholomew JL (eds) Myxozoan evolution, ecology and development. Springer International Publishing, Cham, pp 295–313

    Chapter  Google Scholar 

  • Morris DJ (2012) A new model for myxosporean (Myxozoa) development explains the endogenous budding phenomenon, the nature of cell within cell life stages and evolution of parasitism from a cnidarian ancestor. Int J Parasitol 42:829–840

    Article  CAS  Google Scholar 

  • Moser M, Taylor S (1978) Effects of the copepod Cardiodectes medusaeus on the laternfish Stenobrachius leucopsarus with notes on hypercastration by the hydroid Hydrichthys sp. Can J Zool 56:2372–2376

    Article  Google Scholar 

  • Munoz P, Palenzuela O, Alvarez-Pellitero P, Sitjà-Bobadilla A (1999) Comparative studies on carbohydrates of several myxosporean parasites of fish using lectin histochemical methods. Folia Parasitol 46:241–247

    CAS  Google Scholar 

  • Murdock DJE, Dong X-P, Repetski JE, Marone F, Stampanoni M, Donoghue PCJ (2013) The origin of conodonts and of vertebrate mineralized skeletons. Nature 502:546–549

    Article  CAS  Google Scholar 

  • Naldoni J, Adriano E, Hartigan A, Sayer C, Okamura B (2019) Malacosporean myxozoans exploit a diversity of fish hosts. Parasitology 146:1–11. https://doi.org/10.1017/S0031182019000246

    Article  CAS  Google Scholar 

  • Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA, Davis MP, Wainwright PC, Friedman M, Smith WL (2012) Resolution of ray-finned fish phylogeny and timing of diversification. Proc Natl Acad Sci U S A 109:13698–13703

    Article  CAS  Google Scholar 

  • Okamura B (1996) Occurrence, prevalence, and effects of the myxozoan Tetracapsula bryozoides Canning, Okamura and Curry, 1996, parasitic in the freshwater bryozoan Cristatella mucedo Cuvier (Bryozoa, Phylactolaemata). Folia Parasitol 43:262–266

    Google Scholar 

  • Okamura B, Gruhl A (2015) Myxozoan affinities and route to endoparasitism. In: Okamura B, Gruhl A, Bartholomew JL (eds) Myxozoan evolution, ecology and development. Springer International Publishing, Cham, pp 23–44

    Chapter  Google Scholar 

  • Okamura B, Gruhl A, Bartholomew JL (2015a) An introduction to myxozoan evolution, ecology and development. In: Okamura B, Gruhl A, Bartholomew JL (eds) Myxozoan evolution, ecology and development. Springer International Publishing, Cham, pp 1–20

    Chapter  Google Scholar 

  • Okamura B, Gruhl A, Reft AI (2015b) Cnidarians origins of the Myxozoa. In: Okamura B, Gruhl A, Bartholomew JL (eds) Myxozoan evolution, ecology and development. Springer International Publishing, Cham, pp 45–68

    Chapter  Google Scholar 

  • Okamura B, Hartigan H, Naldoni N (2018) Extensive uncharted biodiversity: the parasite dimension. Integr Comp Biol 58:1132–1145

    Google Scholar 

  • Parham JF, Donoghue PCJ, Bell CJ, Calway TD, Head JJ, Holroyd PA, Inoue JG, Irmis RB, Joyce WG, Ksepka DT, Patané JSL, Smith ND, Tarver JE, vanTuinen M, Yang Z, Angielczyk KD, Greenwood JM, Hipsley CA, Jacobs L, Makovicky PJ, Müller J, Smith KT, Theodor JM, Warnock RCM, Benton MJ (2012) Best practices for justifying fossil calibrations. Syst Biol 61:346–359. https://doi.org/10.1093/sysbio/syr107

  • Park E, Hwang D-S, Lee J-S, Song J-I, Seo T-K, Won Y-J (2012) Estimation of divergence times in cnidarian evolution based on mitochondrial protein-coding genes and the fossil record. Mol Phylogenet Evol 62:329–345

    Article  Google Scholar 

  • Parker GA, Chubb JC, Roberts GN, Michaud M, Milinski M (2003) Evolution of complex life cycles in helminth parasites. Nature 425:480–484

    Article  CAS  Google Scholar 

  • Parker GA, Ball MA, Chubb JC (2015) Evolution of complex life cycles in trophically transmitted helminths. I. Host incorporation and trophic ascent. J Evol Biol 28:267–291

    Article  CAS  Google Scholar 

  • Parry L, Tanner A, Vinther J (2014) The origin of annelids. Palaeontology 57:1091–1103

    Article  Google Scholar 

  • Parry L, Vinther J, Edgecombe GD (2015) Cambrian stem-group annelids and a metameric origin of the annelid head. Biol Lett 11:20150763

    Article  Google Scholar 

  • Paterson S, Vogwill T, Buckling A, Benmayor R, Spiers AJ, Thomson NR, Quail M, Smith F, Walker D, Libberton B, Fenton A, Hall N, Brockhurst MA (2010) Antagonistic coevolution accelerates molecular evolution. Nature 464:275–278

    Article  CAS  Google Scholar 

  • Petit G (2010) Skin nodules in fossil fishes from Monte Bolca (Eocene, Northern Italy). Geodiversitas 32:157–163

    Article  Google Scholar 

  • Petit G, Khalloufi B (2012) Paleopathology of a fossil fish from the Solnhofen Lagerstätte (Upper Jurassic, southern Germany). Int J Paleopathol 2:42–44

    Article  Google Scholar 

  • Piraino S, De Vito D, Schmich J, Bouillon J, Boero F (2004) Reverse development in Cnidaria. Can J Zool 82:1748–1754

    Article  Google Scholar 

  • Poinar G, Boucot AJ (2006) Evidence of intestinal parasites of dinosaurs. Parasitology 133:245–249. https://doi.org/10.1017/S0031182006000138

  • Poulin R (2007) Evolutionary ecology of parasites, 2nd edn. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  • Poulin R, Randhawa HS (2015) Evolution of parasitism along convergent lines: from ecology to genomics. Parasitology, 142(S1):S6–S15

    Google Scholar 

  • Queensland Museum Network (2010). http://www.qm.qld.gov.au/Research/Projects/Projects/Biodiversity/Parasitology/Internal+parasites+of+coral+reef+fishes#.WgG49lu0Pcs. Accessed 7 Nov 2017

  • Qvarnström M, Niedźwiedzki G, Žigaitė Ž (2016) Vertebrate coprolites (fossil faeces): an underexplored Konservat-Lagerstätte. Earth-Sci Rev 162:44–57

    Article  Google Scholar 

  • Raikova E (1965) A cytophotometric study of the DNA content in the cell nuclei of Polypodium hydriforme Ussov (Coelenterata) at various stages of its life cycle. Zhurnal Obchei Biologii 26:546–552. [in Russian, English summary]

    Google Scholar 

  • Raikova EV (1990) Fine structure of the nematocytes of Polypodium hydriforme Ussov (Cnidaria). Zool Scripta 19:1–11

    Article  Google Scholar 

  • Raikova E (1994) Life cycle, cytology, and morphology of Polypodium hydriforme, a coelenterate parasite of the eggs of Acipenseriform fishes. J Parasitol 80:1–22

    Article  CAS  Google Scholar 

  • Raikova EV (2002) Polypodium hydriforme infection in the eggs of acipenseriform fishes. J Appl Ichthyo 18:405–415

    Article  Google Scholar 

  • Raikova EV (2008) Cytological peculiarities of Polypodium hydriforme (Cnidaria). J Mar Biol Assoc UK 88:1695–1702

    Article  Google Scholar 

  • Raikova EV, Raikova OI (2016) Nervous system immunohistochemistry of the parasitic cnidarian Polypodium hydriforme at its free-living stage. Zoology 119:143–152

    Article  Google Scholar 

  • Raikova EV, Ibragimov AY, Raikova OI (2007) Muscular system of a peculiar parasitic cnidarian Polypodium hydriforme: a phalloidin fluorescence study. Tiss Cell 39:79–87

    Article  CAS  Google Scholar 

  • Rauch G, Kalbe M, Reusch TBH (2005) How a complex life cycle can improve a parasite’s sex life. J Evol Biol 18:1069–1075

    Article  CAS  Google Scholar 

  • Reitzel AM, Sullivan JC, Finnerty JR (2006) Qualitative shift to indirect development in the parasitic sea anemone Edwardsiella lineata. Integr Comp Biol 46:827–837

    Article  CAS  Google Scholar 

  • Richter G, Baszio S (2001) Traces of a limnic food web in the Eocene Lake Messel—a preliminary report based on fish coprolite analyses. Palaeogeogr Palaeoclimatol Palaeoecol 166:345–368

    Article  Google Scholar 

  • Richter G, Wedmann S (2005) Ecology of the Eocene Lake Messel revealed by analysis of small fish coprolites and sediments from a drilling core. Palaeogeogr Palaeoclimtol Palaeoecol 223:147–161

    Article  Google Scholar 

  • Rodríguez E, Barbeitos MS, Brugler MR, Crowley LM, Grajales A et al (2014) Hidden among sea anemones: the first comprehensive phylogenetic reconstruction of the order Actiniaria (Cnidaria, Anthozoa, Hexacorallia) reveals a novel group of hexacorals. PLoS One 9(5):e96998

    Article  CAS  Google Scholar 

  • Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate zoology. A functional evolutionary approach, 7th edn. Thomson Brooks/Cole, Belmont

    Google Scholar 

  • Ryan JF et al (2013) The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science 342:1242592

    Article  CAS  Google Scholar 

  • Sarker S, Kallert DM, Hedrick RP, El-Matbouli M (2015) Whirling disease revisited: pathogenesis, parasite biology and disease intervention. Dis Aquat Org 114:155–175

    Article  Google Scholar 

  • Schierwater B, Eitel M, Jakob W, Osigus HJ, Hadrys H, Dellaporta SL, Kolokotronis SO, DeSalle R (2009) Concatenated analysis sheds light on early metazoan evolution and fuels a modern “urmetazoon” hypothesis. PLoS Biol 7:36–44

    Article  CAS  Google Scholar 

  • Schmid-Hempel P (2011) Evolutionary parasitology. The integrated study of infections, immunology, ecology, and genetics. Oxford University Press, Oxford

    Google Scholar 

  • Siddall ME, Martin DS, Bridge D, Desser SS, Cone DK (1995) The demise of a phylum of protists: phylogeny of Myxozoa and other parasitic Cnidaria. J Parasitol 81:961–967

    Article  CAS  Google Scholar 

  • Simion P, Philippe H, Baurain D, Jager M, Richter DJ, Di Franco A, Roure B, Satoh N, Quéinnec É, Ereskovsky A, Lapébie P, Corre E, Delsuc F, King N, Wörheide G, Manuel M (2017) A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr Biol 27:958–967

    Article  CAS  Google Scholar 

  • Sitjà-Bobadilla A, Schmidt-Posthaus H, Wahli T, Holland JW, Secombes CJ (2015) Fish immune responses to Myxozoa. In: Okamura B, Gruhl A, Bartholomew JL (eds) Myxozoan evolution, ecology and development. Springer International Publishing, Cham, pp 253–280

    Chapter  Google Scholar 

  • Spaulding JG (1972) The life cycle of Peachia quinquecapitata, an anemone parasitic on medusae during its larval development. Biol Bull 143:440–453

    Article  Google Scholar 

  • Steinel NC, Bolnick DI (2017) Melanomacrophage centers as a histological indicator of immune function in fish and other poikilotherms. Front Immunol 8:827

    Article  CAS  Google Scholar 

  • Strona G (2015) Past, present and future of host–parasite coextinctions. Int J Parasitol Parasites Wildl 4:431–441

    Article  Google Scholar 

  • Struck TH, Paul C, Hill N, Hartmann S, Hösel C, Kube M, Lieb B, Meyer A, Tiedemann R, Purschke G, Bleidorn C (2011) Phylogenomic analyses unravel annelid evolution. Nature 471:95–98

    Article  CAS  Google Scholar 

  • Struck TH, Golombek A, Weigert A, Franke FA, Westheide W, Purschke G, Bleidorn C, Halanych KM (2015) The evolution of annelids reveals two adaptive routes to the interstitial realm. Curr Biol 25:1993–1999

    Article  CAS  Google Scholar 

  • Taylor PD, Waeschenbach A (2015) Phylogeny and diversification of bryozoans. Palaeontology 58:585–599

    Article  Google Scholar 

  • Timm T, Vinn O, Buscalioni ÁD (2016) Soft-bodied annelids (Oligochaeta) from the Lower Cretaceous (La Huérguina formation) of the Las Hoyas Konservat-Lagerstätte, Spain. N Jb Geol Paläont (Abh) 280:315–324

    Article  Google Scholar 

  • Tsai IJ, Zarowiecki M, Holroyd N, Garciarrubio A, Sanchez-Flores A, Brooks KL, Tracey A, Bobes RJ, Fragoso G, Sciutto E, Aslett M, Beasley H, Bennett HM, Cai J, Camicia F, Clark R, Cucher M, De Silva N, Day TA, Deplazes P, Estrada K, Fernández C, Holland PWH, Hou J, Hu S, Huckvale T, Hung SS, Kamenetzky L, Keane JA, Kiss F, Koziol U, Lambert O, Liu K, Luo X, Luo Y, Macchiaroli N, Nichol S, Paps J, Parkinson J, Pouchkina-Stantcheva N, Riddiford N, Rosenzvit M, Salinas G, Wasmuth JD, Zamanian M, Zheng Y, Cai X, Soberón X, Olson PD, Laclette JP, Brehm K, Berriman M (2013) The genomes of four tapeworm species reveal adaptations to parasitism. Nature 496:57–63

    Article  CAS  Google Scholar 

  • Turner S, Burrow CJ, Schultze HP, Blieck A, Reif WE, Rexroad CB, Bultynck P, Nowlan GS (2010) False teeth: conodont–vertebrate phylogenetic relationships revisited. Geodiversitas 32:545–594

    Article  Google Scholar 

  • van Dijk J, De Baets K (2021) Biodiversity and host-parasite (co)extinction. In: De Baets K, Huntley JW (eds) The evolution and fossil record of parasitism: Coevolution and paleoparasitological techniques. Topics in Geobiology 50

    Google Scholar 

  • Van Iten H, Marques AC, de Moraes Leme J, Pacheco MLAF, Simões MG (2014) Origin and early diversification of the phylum Cnidaria Verrill: major developments in the analysis of the taxon’s Proterozoic-Cambrian history. Palaeontology 57:677–690

    Article  Google Scholar 

  • Vinogradow AV (1996) New fossil freshwater bryozoans from the Asiatic part of Russia and Kazakhstan. Paleontol J 30:284–292

    Google Scholar 

  • Vinther J, Eibye-Jacobsen D, Harper DAT (2011) An early Cambrian stem polychaete with pygidial cirri. Biol Lett 7:929–932

    Article  Google Scholar 

  • Waeschenbach A, Taylor PD, Littlewood DTJ (2012) A molecular phylogeny of bryozoans. Mol Phylogenet Evol 62:718–735

    Article  Google Scholar 

  • Wan B, Yuan X, Chen Z, Guan C, Pang K, Tang Q, Xiao S (2016) Systematic description of putative animal fossils from the early Ediacaran Lantian formation of South China. Palaeontology 59:515–532

    Article  Google Scholar 

  • Warnock RCM, Engelstädter J (2021) The molecular clock as tool for understanding host-parasite evolution. In: De Baets K, Huntley JW (eds) The evolution and fossil record of parasitism: Coevolution and paleoparasitological techniques. Topics in Geobiology 50

    Google Scholar 

  • Warren LV, Pacheco MLAF, Fairchild TR, Simoes MG et al (2012) The dawn of animal skeletogenesis: ultrastructural analysis of the Ediacaran metazoan Corumbella werneri. Geology 40:691–694

    Article  CAS  Google Scholar 

  • Weigert A, Bleidorn C (2016) Current status of annelid phylogeny. Org Divers Evol 16:345–362

    Article  Google Scholar 

  • Weigert A, Helm C, Meyer M, Nickel B, Arendt D, Hausdorf B, Santos SR, Halanych KM, Purschke G, Bleidorn C, Struck TH (2014) Illuminating the base of the annelid tree using transcriptomics. Mol Biol Evol 31:1391–1401

    Article  CAS  Google Scholar 

  • Weinstein SB, Kuris AM (2016) Independent origins of parasitism in Animalia. Biol Lett 12:20160324

    Article  Google Scholar 

  • Werner B (1963) Effect of some environmental factors on differentiation and determination in marine Hydrozoa, with a note on their evolutionary significance. Ann N Y Acad Sc 105:461–488

    Google Scholar 

  • Whelan NV, Kocot KM, Moroz TP, Mukherjee K, Williams P, Paulay G, Moroz LL, Halanych KM (2017) Ctenophore relationships and their placement as the sister group to all other animals. Nat Ecol Evol 1:1737–1746

    Article  Google Scholar 

  • Wood TS, Okamura B (2017) New species, genera, families, and range extensions of freshwater bryozoans in Brazil: the tip of the iceberg? Zootaxa 4306:383–400

    Article  Google Scholar 

  • WoRMS Editorial Board (2018) World Register of Marine Species. http://www.marinespecies.org. Accessed 7 Apr 2018

  • Xia F-S, Zhang S-G, Wang Z-Z (2007) The oldest bryozoans: new evidence from the Late Tremadocian (Early Ordovician) of East Yangtze Gorges in China. J Paleontol 81:1308–1326

    Article  Google Scholar 

  • Xu F, Jerlström-Hultqvist J, Kolisko M, Simpson AG, Roger AJ, Svärd SG, Andersson JO (2016) On the reversibility of parasitism: adaptation to a free-living lifestyle via gene acquisitions in the diplomonad Trepomonas sp. PC1. BMC Biol 14:62

    Article  CAS  Google Scholar 

  • Yokoyama H, Masuda K (2001) Kudoa sp. (Myxozoa) causing a post-mortemmyoliquefaction of North-Pacific giant octopus Paroctopus dofleini (Cephalopoda: Octopodidae). Bull Eur Assoc Fish Pathol 21:266–268

    Google Scholar 

  • Young GA, Hagadorn JW (2010) The fossil record of cnidarian medusae. Palaeoworld 19:212–221

    Article  Google Scholar 

  • Zrzavý J, Hypša V (2003) Myxozoa, Polypodium, and the origin of the Bilateria: the phylogenetic position of “Endocnidozoa” in the light of the rediscovery of Buddenbrockia. Cladistics 19:164–169

    Article  Google Scholar 

Download references

Acknowledgements

We thank Joe Ryan and David Plachetszki for illuminating discussion and insights about patterns of myxozoan evolution over time. We thank Kenneth De Baets for inviting us to develop our chapter. Comments from Steve Feist and Kenneth De Baets helped us to improve our chapter. Insights relevant to the development of this chapter have benefitted by support for research involving myxozoans from the Natural Environment Research Council grants (GR9/04271; GR3/11068; GR3/09956; NER/A/S/1999/00075; NER/B/S/2000/00336; NER/S/A/2004/12399; NE/019227/1), The Leverhulme Trust (a Research Fellowship awarded to B. Okamura), the Biotechnology and Biological Sciences Research Council (BB/F003242/1); a DAAD postdoctoral fellowship to AG, and a Marie-Curie Fellowship (272772, Myxozoa Evo Devo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth Okamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okamura, B., Gruhl, A. (2021). Evolution, Origins and Diversification of Parasitic Cnidarians. In: De Baets, K., Huntley, J.W. (eds) The Evolution and Fossil Record of Parasitism. Topics in Geobiology, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-030-42484-8_4

Download citation

Publish with us

Policies and ethics