Skip to main content

Feynman Integrals and Mirror Symmetry

  • Chapter
  • First Online:
Partition Functions and Automorphic Forms

Part of the book series: Moscow Lectures ((ML,volume 5))

  • 1006 Accesses

Abstract

In this text we describe various approaches to the computation of Feynman integrals. One approach uses toric geometry to derive differential equations satisfied by the imaginary part of the Feynman integrals. We then discuss how this can be used to obtain the full differential equation acting on the integral. In a second part of this text we explain how Calabi–Yau geometry is naturally associated to Feynman integrals and that mirror symmetry plays some role in evaluating some particular Feynman integrals.

IPHT-t18/095

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An ideal I of a ring R, is the subset , such that 1) 0 ∈ I, 2) for all a, b ∈ I then a + b ∈ I, 3) for a ∈ I and b ∈ R, a ⋅ b ∈ R. For P(x 1, …, x n) an homogeneous polynomial in \(R=\mathbb C[x_1,\dots ,x_n]\) the Jacobian ideal of P is the ideal generated by the first partial derivative \(\{\partial _{x_i} P(x_1,\dots ,x_n)\}\) [41]. Given a multivariate polynomial P(x 1, …, x n) its Jacobian ideal is easily evaluated using Singular command jacob( P) . The hypersurface P(x 1, ⋯ , x n) = 0 for an homogeneous polynomial, like the Symanzik polynomials, is of codimension 1 in the projective space \(\mathbb P^{n-1}\). The singularities of the hypersurface are determined by the irreducible factors of the polynomial. This determines the cohomology of the complement of the graph hypersurface and the number of independent master integrals as shown in [42].

  2. 2.

    Consider an homogeneous polynomial of degree d

    this is called a toric polynomial if it is invariant under the following actions

    for \((t_1,\dots ,t_n)\in \mathbb C^n\) and α ij and β ij integers. The second Symanzik polynomial has a natural torus action acting on the mass parameters and the kinematic variables as we will see on some examples below. We refer to the book [41] for more details.

  3. 3.

    The convergence of these series is discussed in [52, §3-2] and [50, §5.2].

  4. 4.

    This quantity is the usual Yukawa coupling of particle physics and string theory compactification. The Yukawa coupling is determined geometrically by the integral of the wedge product of differential forms over particular cycles [58]. The Yukawa couplings which depend non-trivially on the internal geometry appear naturally in the differential equations satisfied by the periods of the underlying geometry as explained for instance in these reviews [48, 59].

  5. 5.

    The Jacobi theta functions are defined by , and .

  6. 6.

    A del Pezzo surface is a two-dimensional Fano variety. A Fano variety is a complete variety whose anti-canonical bundle is ample. The anti-canonical bundle of a non-singular algebraic variety of dimension n is the line bundle defined as the nth exterior power of the inverse of the cotangent bundle. An ample line bundle is a bundle with enough global sections to set up an embedding of its base variety or manifold into projective space.

  7. 7.

    The graph polynomial (3.10) for higher loop sunset graphs defines Fano variety, which is as well a Calabi–Yau manifold.

  8. 8.

    The fan of a toric variety is defined in the standard reference [75] and the review oriented to a physicists audience in [49].

  9. 9.

    Feynman integrals are period integrals of mixed Hodge structures [28, 77]. At a singular point some cycles of integration vanish, the so-called vanishing cycles, and the limiting behaviour of the period integral is captured by the asymptotic behaviour of the cohomological Hodge theory. The asymptotic Hodge theory inherits some filtration and weight structure of the original Hodge theory.

  10. 10.

    It has been already noticed in [80] the special role played by the Mahler measure and mirror symmetry.

  11. 11.

    We would like to thank Albrecht Klemm for discussions and communication that helped clarifying the link between the work in [20] and the analysis in [21].

References

  1. J.R. Andersen et al., Les Houches 2017: physics at TeV colliders standard model working group report (2018). arXiv:1803.07977 [hep-ph]

    Google Scholar 

  2. D. Neill, I.Z. Rothstein, Classical space-times from the S matrix. Nucl. Phys. B 877, 177 (2013). https://doi.org/10.1016/j.nuclphysb.2013.09.007 [arXiv:1304.7263 [hep-th]]

  3. N.E.J. Bjerrum-Bohr, J.F. Donoghue, P. Vanhove, On-shell techniques and universal results in quantum gravity. J. High Energy Phys. 1402, 111 (2014). https://doi.org/10.1007/JHEP02(2014)111 [arXiv:1309.0804 [hep-th]]

  4. F. Cachazo, A. Guevara, Leading singularities and classical gravitational scattering (2017). arXiv:1705.10262 [hep-th]

    Google Scholar 

  5. A. Guevara, Holomorphic classical limit for spin effects in gravitational and electromagnetic scattering (2017). arXiv:1706.02314 [hep-th]

    Google Scholar 

  6. N.E.J. Bjerrum-Bohr, P.H. Damgaard, G. Festuccia, L. Planté, P. Vanhove, General relativity from scattering amplitudes (2018). arXiv:1806.04920 [hep-th]

    Google Scholar 

  7. O.V. Tarasov, Hypergeometric representation of the two-loop equal mass sunrise diagram. Phys. Lett. B 638, 195 (2006). https://doi.org/10.1016/j.physletb.2006.05.033 [hep-ph/0603227]

  8. S. Bauberger, F.A. Berends, M. Bohm, M. Buza, Analytical and numerical methods for massive two loop selfenergy diagrams. Nucl. Phys. B 434, 383 (1995). https://doi.org/10.1016/0550-3213(94)00475-T [hep-ph/9409388]

  9. D.H. Bailey, J.M. Borwein, D. Broadhurst, M.L. Glasser, Elliptic integral evaluations of bessel moments. J. Phys. A 41, 205203 (2008). https://doi.org/10.1088/1751-8113/41/20/205203 [arXiv:0801.0891 [hep-th]]

  10. D. Broadhurst, Elliptic integral evaluation of a bessel moment by contour integration of a lattice green function (2008). arXiv:0801.4813 [hep-th]

    Google Scholar 

  11. D. Broadhurst, Feynman integrals, L-series and kloosterman moments. Commun. Num. Theor. Phys. 10, 527 (2016). https://doi.org/10.4310/CNTP.2016.v10.n3.a3 [arXiv:1604.03057 [physics.gen-ph]]

  12. M. Caffo, H. Czyz, E. Remiddi, The pseudothreshold expansion of the two loop sunrise selfmass master amplitudes. Nucl. Phys. B 581, 274 (2000). https://doi.org/10.1016/S0550-3213(00)00274-1 [hep-ph/9912501]

  13. S. Laporta, E. Remiddi, Analytic treatment of the two loop equal mass sunrise graph. Nucl. Phys. B 704, 349 (2005). [hep-ph/0406160]

    Google Scholar 

  14. L. Adams, C. Bogner, S. Weinzierl, The two-loop sunrise graph with arbitrary masses in terms of elliptic dilogarithms (2014). arXiv:1405.5640 [hep-ph]

    Google Scholar 

  15. L. Adams, C. Bogner, S. Weinzierl, The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case. J. Math. Phys. 56(7), 072303 (2015). https://doi.org/10.1063/1.4926985 [arXiv:1504.03255 [hep-ph]].

  16. L. Adams, C. Bogner, S. Weinzierl, The iterated structure of the all-order result for the two-loop sunrise integral. J. Math. Phys. 57(3), 032304 (2016). https://doi.org/10.1063/1.4944722 [arXiv:1512.05630 [hep-ph]]

  17. L. Adams, C. Bogner, S. Weinzierl, A walk on sunset boulevard. PoS RADCOR 2015, 096 (2016). https://doi.org/10.22323/1.235.0096 [arXiv:1601.03646 [hep-ph]]

  18. L. Adams, S. Weinzierl, On a class of feynman integrals evaluating to iterated integrals of modular forms (2018). arXiv:1807.01007 [hep-ph]

    Google Scholar 

  19. L. Adams, E. Chaubey, S. Weinzierl, From elliptic curves to Feynman integrals. arXiv:1807.03599 [hep-ph]

    Google Scholar 

  20. S. Bloch, M. Kerr, P. Vanhove, Local mirror symmetry and the sunset Feynman integral. Adv. Theor. Math. Phys. 21, 1373 (2017). https://doi.org/10.4310/ATMP.2017.v21.n6.a1 [arXiv:1601.08181 [hep-th]]

  21. M.X. Huang, A. Klemm, M. Poretschkin, Refined stable pair invariants for E-, M- and [p, Q]-strings. J. High Energy Phys. 1311, 112 (2013). https://doi.org/10.1007/JHEP11(2013)112 [arXiv:1308.0619 [hep-th]]

  22. C. Doran, A. Novoseltsev, P. Vanhove, Mirroring towers: the Calabi-Yau geometry of the multiloop sunset Feynman integrals (to appear)

    Google Scholar 

  23. P. Vanhove, Mirroring towers of Feynman integrals: fibration and degeneration in Feynman integral Calabi-Yau geometries. (String Math 2019). https://www.stringmath2019.se/wp-content/uploads/sites/39/2019/07/Vanhove_StringMath2019.pdf

  24. V.V. Batyrev, Dual polyhedra and mirror symmetry for CalabiYau hypersurfaces in toric varieties. J. Algebr. Geom. 3, 493–535 (1994)

    MATH  Google Scholar 

  25. S. Hosono, A. Klemm, S. Theisen, S.T. Yau, Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces. Commun. Math. Phys. 167, 301 (1995). https://doi.org/10.1007/BF02100589 [hep-th/9308122]

    Article  MathSciNet  Google Scholar 

  26. T.-M. Chiang, A. Klemm, S.-T. Yau, E. Zaslow, Local mirror symmetry: calculations and interpretations. Adv. Theor. Math. Phys. 3, 495 (1999). https://doi.org/10.4310/ATMP.1999.v3.n3.a3 [hep-th/9903053]

    Article  MathSciNet  Google Scholar 

  27. C.F. Doran, M. Kerr, Algebraic K-theory of toric hypersurfaces. Commun. Number Theory Phys. 5(2), 397–600 (2011)

    Article  MathSciNet  Google Scholar 

  28. P. Vanhove, The physics and the mixed hodge structure of Feynman integrals. Proc. Symp. Pure Math. 88, 161 (2014). https://doi.org/10.1090/pspum/088/01455 [arXiv:1401.6438 [hep-th]]

  29. C. Bogner, S. Weinzierl, Feynman graph polynomials. Int. J. Mod. Phys. A 25, 2585 (2010). [arXiv:1002.3458 [hep-ph]]

    Google Scholar 

  30. P. Tourkine, Tropical amplitudes (2013). arXiv:1309.3551 [hep-th]

    Google Scholar 

  31. O. Amini, S. Bloch, J.I.B. Gil, J. Fresan, Feynman amplitudes and limits of heights. Izv. Math. 80, 813 (2016). https://doi.org/10.1070/IM8492 [arXiv:1512.04862 [math.AG]]

  32. E.R. Speer, Generalized Feynman Amplitudes. Annals of Mathematics Studies, vol. 62 (Princeton University Press, New Jersey, 1969)

    Google Scholar 

  33. A. Primo, L. Tancredi, On the maximal cut of Feynman integrals and the solution of their differential equations. Nucl. Phys. B 916, 94 (2017). https://doi.org/10.1016/j.nuclphysb.2016.12.021 [arXiv:1610.08397 [hep-ph]]

  34. A. Primo, L. Tancredi, Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph. Nucl. Phys. B 921, 316 (2017). https://doi.org/10.1016/j.nuclphysb.2017.05.018 [arXiv:1704.05465 [hep-ph]]

  35. J. Bosma, M. Sogaard, Y. Zhang, Maximal cuts in arbitrary dimension. J. High Energy Phys. 1708, 051 (2017). https://doi.org/10.1007/JHEP08(2017)051 [arXiv:1704.04255 [hep-th]]

  36. H. Frellesvig, C.G. Papadopoulos, Cuts of Feynman integrals in Baikov representation. J. High Energy Phys. 1704, 083 (2017). https://doi.org/10.1007/JHEP04(2017)083 [arXiv:1701.07356 [hep-ph]]

  37. K.G. Chetyrkin, F.V. Tkachov, Integration by parts: the algorithm to calculate beta functions in 4 loops. Nucl. Phys. B 192, 159 (1981). https://doi.org/10.1016/0550-3213(81)90199-1

    Article  Google Scholar 

  38. O.V. Tarasov, Generalized recurrence relations for two loop propagator integrals with arbitrary masses. Nucl. Phys. B 502, 455 (1997). https://doi.org/10.1016/S0550-3213(97)00376-3 [hep-ph/9703319]

  39. O.V. Tarasov, Methods for deriving functional equations for Feynman integrals. J. Phys. Conf. Ser. 920(1), 012004 (2017). https://doi.org/10.1088/1742-6596/920/1/012004 [arXiv:1709.07058 [hep-ph]]

  40. P. Griffiths, On the periods of certain rational integrals: I. Ann. Math. 90, 460 (1969)

    Article  MathSciNet  Google Scholar 

  41. D. Cox, S. Katz, Mirror symmetry and algebraic geometry. Mathematical Surveys and Monographs, vol. 68. (American Mathematical Society, Providence, 1999). https://doi.org/10.1090/surv/068

  42. T. Bitoun, C. Bogner, R.P. Klausen, E. Panzer, Feynman integral relations from parametric annihilators (2017). arXiv:1712.09215 [hep-th]

    Google Scholar 

  43. W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, Singular 4-1-1 — a computer algebra system for polynomial computations (2018). http://www.singular.uni-kl.de

  44. I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky, Generalized Euler integrals and a-hypergeometric functions. Adv. Math. 84, 255–271 (1990)

    Article  MathSciNet  Google Scholar 

  45. I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants (Birkhäuser, Boston, 1994)

    Book  Google Scholar 

  46. V.V. Batyrev, Variations of the mixed hodge structure of affine hypersurfaces in algebraic tori. Duke Math. J. 69(2), 349–409 (1993)

    Article  MathSciNet  Google Scholar 

  47. V.V. Batyrev, D.A. Cox, On the hodge structure of projective hypersurfaces in toric varieties. Duke Math. J. 75(2), 293–338 (1994)

    Article  MathSciNet  Google Scholar 

  48. S. Hosono, A. Klemm, S. Theisen, Lectures on mirror symmetry. Lect. Notes Phys. 436, 235 (1994). https://doi.org/10.1007/3-540-58453-6_13 [hep-th/9403096]

    Article  MathSciNet  Google Scholar 

  49. C. Closset, Toric geometry and local Calabi-Yau varieties: an introduction to toric geometry (for physicists) (2009). arXiv:0901.3695 [hep-th]

    Google Scholar 

  50. J.S. Jan, GKZ hypergeometric structures (2005). arXiv:math/0511351

    Google Scholar 

  51. V.V. Batyrev, D. van Straten, Generalized hypergeometric functions and rational curves on Calabi-Yau complete intersections in toric varieties. Commun. Math. Phys. 168, 493 (1995). https://doi.org/10.1007/BF02101841 [alg-geom/9307010]

    Article  MathSciNet  Google Scholar 

  52. S. Hosono, GKZ Systems, Gröbner Fans, and Moduli Spaces of Calabi-Yau Hypersurfaces (Birkhäuser, Boston, 1998)

    Book  Google Scholar 

  53. S. Hosono, A. Klemm, S. Theisen, S.T. Yau, Mirror symmetry, mirror map and applications to complete intersection Calabi-Yau spaces. Nucl. Phys. B 433, 501 (1995). [AMS/IP Stud. Adv. Math. 1 (1996) 545] https://doi.org/10.1016/0550-3213(94)00440-P [hep-th/9406055]

  54. E. Cattani, Three lectures on hypergeometric functions (2006). https://people.math.umass.edu/~cattani/hypergeom_lectures.pdf

  55. F. Beukers, Monodromy of A-hypergeometric functions. J. Reine Angew. Math. 718, 183–206 (2016)

    MathSciNet  MATH  Google Scholar 

  56. J. Stienstra, Resonant hypergeometric systems and mirror symmetry, in Proceedings of the Taniguchi Symposium 1997 “Integrable Systems and Algebraic Geometry” (1998) [alg-geom/9711002]

    Google Scholar 

  57. L. Adams, C. Bogner, S. Weinzierl, The two-loop sunrise graph with arbitrary masses (2013). arXiv:1302.7004 [hep-ph]

    Google Scholar 

  58. P. Candelas, X.C. de la Ossa, P.S. Green, L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory. Nucl. Phys. B 359, 21 (1991). [AMS/IP Stud. Adv. Math. 9 (1998) 31]. https://doi.org/10.1016/0550-3213(91)90292-6

  59. D.R. Morrison, Picard-Fuchs equations and mirror maps for hypersurfaces. AMS/IP Stud. Adv. Math. 9, 185 (1998). [hep-th/9111025]

    Article  Google Scholar 

  60. H.A. Verrill, Sums of squares of binomial coefficients, with applications to Picard-Fuchs equations (2004). arXiv:math/0407327

    Google Scholar 

  61. S. Bloch, P. Vanhove, The elliptic dilogarithm for the sunset graph. J. Number Theory 148, 328 (2015). https://doi.org/10.1016/j.jnt.2014.09.032 [arXiv:1309.5865 [hep-th]]

  62. S. Bloch, M. Kerr, P. Vanhove, A Feynman integral via higher normal functions. Compos. Math. 151(12), 2329 (2015). https://doi.org/10.1112/S0010437X15007472 [arXiv:1406.2664 [hep-th]]

  63. D. Zeilberger, The method of creative telescoping. J. Symb. Comput. 11(3), 195–204 (1991)

    Article  MathSciNet  Google Scholar 

  64. F. Chyzak, An extension of Zeilberger’s fast algorithm to general holonomic functions. Discret. Math. 217(1–3), 115–134 (2000)

    Article  MathSciNet  Google Scholar 

  65. F. Chyzak, The ABC of creative telescoping — algorithms, bounds, complexity. Symbolic Computation [cs.SC]. Ecole Polytechnique X (2014)

    Google Scholar 

  66. C. Koutschan, Advanced applications of the holonomic systems approach. ACM Commun. Comput. Algebra 43, 119 (2010)

    Article  Google Scholar 

  67. A.V. Smirnov, A.V. Petukhov, The number of master integrals is finite. Lett. Math. Phys. 97, 37 (2011). https://doi.org/10.1007/s11005-010-0450-0 [arXiv:1004.4199 [hep-th]].

  68. F.C.S. Brown, A. Levin, Multiple elliptic polylogarithms (2011). arXiv:1110.6917

    Google Scholar 

  69. J. Broedel, C. Duhr, F. Dulat, L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism. J. High Energy Phys. 1805, 093 (2018). https://doi.org/10.1007/JHEP05(2018)093 [arXiv:1712.07089 [hep-th]]

  70. J. Broedel, C. Duhr, F. Dulat, L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves II: an application to the sunrise integral. Phys. Rev. D 97(11), 116009 (2018). https://doi.org/10.1103/PhysRevD.97.116009 [arXiv:1712.07095 [hep-ph]]

  71. J. Broedel, C. Duhr, F. Dulat, B. Penante, L. Tancredi, Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series (2018). arXiv:1803.10256 [hep-th]

    Google Scholar 

  72. J. Broedel, C. Duhr, F. Dulat, B. Penante, L. Tancredi, From modular forms to differential equations for Feynman integrals (2018). arXiv:1807.00842 [hep-th]

    Google Scholar 

  73. J. Broedel, C. Duhr, F. Dulat, B. Penante, L. Tancredi, Elliptic polylogarithms and two-loop Feynman integrals (2018). arXiv:1807.06238 [hep-ph]

    Google Scholar 

  74. E. Remiddi, L. Tancredi, An elliptic generalization of multiple polylogarithms. Nucl. Phys. B 925, 212 (2017). https://doi.org/10.1016/j.nuclphysb.2017.10.007 [arXiv:1709.03622 [hep-ph]]

  75. W. Fulton, Introduction to Toric Varieties. Annals of Mathematics Studies (Princeton University Press, Princeton, 1993)

    Book  Google Scholar 

  76. D.A. Cox, J.B. Little, H.K. Schenck, Toric Varieties. Graduate Studies in Mathematics (Book 124) (American Mathematical Society, Providence, 2011)

    Google Scholar 

  77. S. Bloch, H. Esnault, D. Kreimer, On motives associated to graph polynomials. Commun. Math. Phys. 267, 181 (2006). https://doi.org/10.1007/s00220-006-0040-2 [math/0510011 [math-ag]]

  78. S. Hosono, Central charges, symplectic forms, and hypergeometric series in local mirror symmetry, in Mirror Symmetry V, ed. by N. Yui, S.-T. Yau, J. Lewis (American Mathematical Society, Providence, 2006), pp. 405–439

    MATH  Google Scholar 

  79. S.H. Katz, A. Klemm, C. Vafa, Geometric engineering of quantum field theories. Nucl. Phys. B 497, 173 (1997). https://doi.org/10.1016/S0550-3213(97)00282-4 [hep-th/9609239]

    Article  MathSciNet  Google Scholar 

  80. J. Stienstra, Mahler measure variations, Eisenstein series and instanton expansions, in Mirror Symmetry V, ed. by N. Yui, S.-T. Yau, J.D. Lewis. AMS/IP Studies in Advanced Mathematics, vol. 38 (International Press & American Mathematical Society, Providence, 2006), pp. 139–150. [arXiv:math/0502193]

    Google Scholar 

  81. L. Adams, C. Bogner, A. Schweitzer, S. Weinzierl, The kite integral to all orders in terms of elliptic polylogarithms. J. Math. Phys. 57(12), 122302 (2016). https://doi.org/10.1063/1.4969060 [arXiv:1607.01571 [hep-ph]]

  82. C. Bogner, A. Schweitzer, S. Weinzierl, Analytic continuation and numerical evaluation of the kite integral and the equal mass sunrise integral. Nucl. Phys. B 922, 528 (2017). https://doi.org/10.1016/j.nuclphysb.2017.07.008 [arXiv:1705.08952 [hep-ph]]

  83. C. Bogner, A. Schweitzer, S. Weinzierl, Analytic continuation of the kite family (2018). arXiv:1807.02542 [hep-th]

    Google Scholar 

  84. J.L. Bourjaily, Y.H. He, A.J. Mcleod, M. Von Hippel, M. Wilhelm, Traintracks through Calabi-Yau manifolds: scattering amplitudes beyond elliptic polylogarithms. Phys. Rev. Lett. 121(7), 071603 (2018). https://doi.org/10.1103/PhysRevLett.121.071603 [arXiv:1805.09326 [hep-th]]

  85. J.L. Bourjaily, A.J. McLeod, M. von Hippel, M. Wilhelm, A (Bounded) bestiary of Feynman integral Calabi-Yau geometries (2018). arXiv:1810.07689 [hep-th]

    Google Scholar 

  86. F.C.S. Brown, On the periods of some Feynman integrals (2009). arXiv:0910.0114 [math.AG]

    Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank Charles Doran and Albrecht Klemm for discussions. The research of P. Vanhove has received funding the ANR grant “Amplitudes” ANR-17- CE31-0001-01, and is partially supported by Laboratory of Mirror Symmetry NRU HSE, RF Government grant, ag. N 14.641.31.0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Vanhove .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vanhove, P. (2020). Feynman Integrals and Mirror Symmetry. In: Gritsenko, V.A., Spiridonov, V.P. (eds) Partition Functions and Automorphic Forms. Moscow Lectures, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-42400-8_7

Download citation

Publish with us

Policies and ethics