Skip to main content

Cell Fate Specification in the Drosophila Retina

  • Chapter
Vertebrate Eye Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 31))

Abstract

The compound eye of the fruit fly, Drosophila melanogaster, is a useful model system for investigating the issues that underlie cell fate specification. More than a decade ago, Tomlinson and Ready proposed that the cells within the fly eye make use of a combinatorial code of signals in adopting specific cellular identities. This concept has driven our effort to understand how the individual facets of the fly eye are assembled (Ready et al. 1976; Tomlinson 1985). The attraction of the fly eye as an experimental system also rests within its simple adult structure along with its precise and stereotyped development. This is, of course, coupled to the extraordinary power of Drosophila genetic techniques to discover genes (the genes mentioned in this chapter are summarized in Table 1). We will attempt to summarize what is known about the molecular development of the first (R8) and last (R7) photoreceptors to join the developing unit eye or ommatidia. We are focusing on these two cells, in part, because the molecules and mechanisms that underlie their development are the best understood. The mechanisms used by these two cells, a proneural one for R8 and an inductive one for R7, are repeatedly used during development. Lessons learned from the development of these two cells have considerable implications for other experimental systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allard JD, Chang HC, Herbst R, McNeill H, Simon MA (1996) The SH2-containing tyrosine phosphatase Corkscrew is required during signaling by Sevenless, Ras 1 and Raf. Development 122: 1137–1146

    PubMed  CAS  Google Scholar 

  • Artavanis-Tsakonas S, Matsuno K, Fortini ME (1995) Notch signalling. Science 268: 225–232

    PubMed  CAS  Google Scholar 

  • Bailey AM, Posakony JW (1995) Suppressor of Hairless directly activates transcription of Enhancer of split complex genes in response to Notch receptor activity. Genes Dev 9:2609–2622

    PubMed  CAS  Google Scholar 

  • Baker NE, Mlodzik M, Rubin GM (1990) Spacing differentiation in the developing Drosophila eye: a fibrinogen-related lateral inhibitor encoded by scabrous. Science 250: 1370–1377

    PubMed  CAS  Google Scholar 

  • Baker NE, Rubin GM (1989) Effect on eye development of dominant mutations in Drosophila homologue of the EGF receptor. Nature 340: 150–153

    PubMed  CAS  Google Scholar 

  • Baker NE, Rubin GM (1992) Ellipse mutations in the Drosophila homologue of the EGF receptor affect pattern formation, cell division, and cell death in eye imaginal disc. Dev Biol 150: 381–396

    PubMed  CAS  Google Scholar 

  • Baker NE, Yu SY (1997) Proneural function of neurogenic genes in the developing Drosophila eye. Curr Biol 7: 122–132

    PubMed  CAS  Google Scholar 

  • Baker NE, Yu SY (1998) The R8-photoreceptor equivalence group in Drosophila: fate choice precedes regulated Delta transcription and is independent of Notch gene dose. Mech Dev 74:3–14

    PubMed  CAS  Google Scholar 

  • Baker NE, Yu S, Han D (1996) Evolution of proneural Atonal expression during distinct regulatory phases in the developing Drosophila eye. Curr Biol 6: 1290–1301

    PubMed  CAS  Google Scholar 

  • Baker NE, Zitron AE (1995) Drosophila eye development: Notch and Delta amplify a neurogenic pattern conferred on the morphogenetic furrow by Scabrous. Mech Dev 49: 173–189

    PubMed  CAS  Google Scholar 

  • Banerjee U, Renfranz PJ, Hinton DR, Rabin BA, Benzer S (1987) The sevenless + protein is expressed apically in cell membranes of developing Drosophila retina; it is not restricted to R7. Cell 51: 151–158

    PubMed  CAS  Google Scholar 

  • Banerjee U, Renfranz PJ, Pollock JA, Benzer S (1987) Molecular characterization and expression of sevenless, a gene involved in neuronal pattern formation in the Drosophila eye. Cell 49:281–291

    PubMed  CAS  Google Scholar 

  • Banerjee U, Zipursky SL (1990) The role of cell-cell interaction in the development of the Drosophila visual system. Neuron 4: 177–187

    PubMed  CAS  Google Scholar 

  • Basler K, Christen B, Hafen E (1991) Ligand-independent activation of the Sevenless receptor tyrosine kinase changes the fate of cells in the developing Drosophila eye. Cell 64: 1069–1081

    PubMed  CAS  Google Scholar 

  • Basler K, Hafen E (1988) Control of photoreceptor cell fate by the sevenless protein requires a functional tyrosine kinase domain. Cell 54: 299–311

    PubMed  CAS  Google Scholar 

  • Basler K, Hafen E (1989) Dynamics of Drosophila eye development and temporal requirements of Sevenless expression. Development 107: 723–731

    PubMed  CAS  Google Scholar 

  • Basler K, Hafen E (1989) Ubiquitous expression of sevenless: position-dependent specification of cell fate. Science 243:931–937

    PubMed  CAS  Google Scholar 

  • Basler K, Siegrist P, Hafen E (1989) The spatial and temporal expression pattern of sevenless is exclusively controlled by gene-internal elements. EMBO J 8: 2381–2386

    PubMed  CAS  Google Scholar 

  • Basler K, Yen D, Tomlinson A, Hafen E (1990) Reprogramming cell fate in the developing Drosophila retina: transformation of R7 cells by ectopic expression of rough. Genes Dev 4: 728–739

    PubMed  CAS  Google Scholar 

  • Begemann G, Michon AM, v.d. Voorn L, Wepf R, Mlodzik M (1995) The Drosophila orphan nuclear receptor Seven-up requires the Ras pathway for its function in photoreceptor determination. Development 121: 225–235

    PubMed  CAS  Google Scholar 

  • Benzer S (1973) Genetic dissection of behavior. Sci Am 229: 24–37

    PubMed  CAS  Google Scholar 

  • Biggs WHr, Zavitz KH, Dickson B, van der Straten A, Brunner D, Hafen E, Zipursky SL (1994) The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal trandsuction pathway. EMBO J 13: 1628–1635

    PubMed  CAS  Google Scholar 

  • Bohmann D, Ellis MC, Staszewski LM, Mlodzik M (1994) Drosophila Jun mediates Rasdependent photoreceptor determination. Cell 78: 973–986

    PubMed  CAS  Google Scholar 

  • Bowtell DDL, Simon MA, Rubin GM (1988) Nucleotide sequence and structure of the sevenless gene of Drosophila melanogaster. Genes Dev 2: 620–634

    PubMed  CAS  Google Scholar 

  • Bowtell DDL, Simon MA, Rubin GM (1989) Ommatidia in the developing Drosophila eye require and can respond to sevenless for only a restricted period. Cell 56:931–936

    PubMed  CAS  Google Scholar 

  • Brown NL, Kanekar S, Vetter ML, Tucker PK, Gemza DL, Glaser T (1998) Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis. Development 125: 4821–4833

    PubMed  CAS  Google Scholar 

  • Brunner D, Oellers N, Szabad J, Biggs WHr, Zipursky SL, Hafen E (1994) A gain-of-function mutation in Drosophila MAP kinase activates multiple receptor tyrosine kinase signaling pathways. Cell 76: 875–888

    PubMed  CAS  Google Scholar 

  • Cagan RL (1993) Cell fate specification in the developing Drosophila retina. Development Suppl: 19–28

    Google Scholar 

  • Cagan RL, Krämer H, Hart AC, Zipursky SL (1992) The Bride of Sevenless and Sevenless interaction: internalization of a transmembrane ligand. Cell 69: 393–399

    PubMed  CAS  Google Scholar 

  • Cagan RL, Ready DF (1989) Notch is required for successive cell decisions in the developing Drosophila retina. Genes Dev 3: 1099–1112

    PubMed  CAS  Google Scholar 

  • Cagan RL, Zipursky SL (1992) Cell choice and patterning in the Drosophila retina. In: Shankland M, Macaguo ER (eds) Academic Press, San Diego, pp 189–224

    Google Scholar 

  • Campos-Ortega JA, Knust E (1990) Defective ommatidial cell assembly leads to defective morphogenesis: a phenotypic analysis of the E(spl)D mutation of Drosophila melanogaster. Wilhelm Roux’s Arch Dev Biol 198: 286–294

    Google Scholar 

  • Cano E, Mahadevan LC (1995) Parallel signal processing among mammalian MAPKs. Trends Biochem Sci 20: 117–122

    PubMed  CAS  Google Scholar 

  • Carthew RW, Rubin GM (1990) Seven in absentia, a gene required for specification of R7 cell fate in the Drosophila eye. Cell 63:561–577

    PubMed  CAS  Google Scholar 

  • Cepko C, Austin C, Yang X, Alexiades M, Ezzeddine D (1996) Cell fate determination in the vertebrate retina. Proc Natl Acad Sci USA 93: 589–895

    PubMed  CAS  Google Scholar 

  • Chang HC, Solomon NM, Wassarman DA, Karim FD, Therrien M, Rubin GM, Wolff T (1995) Phyllopod functions in the fate determination of a subset of photoreceptors in Drosopihila. Cell 80: 463–472

    PubMed  CAS  Google Scholar 

  • de Celis JF, de Celis J, Ligoxygakis P, Preiss A, Delidakis C, Bray S (1996) Functional relationships between Notch, Su(H) and the bHLH genes of the E(spl) complex: the E(spl) genes mediate only a subset of Notch activities during imaginal development. Development 122: 2719–2728

    PubMed  Google Scholar 

  • Delidakis C, Artavanis-Tsakonas S (1992) The Enhancer of split [E(spl)] locus of Drosophila encodes seven independent helix-loop-helix proteins. Proc Natl Acad Sci USA 89: 8731–8735

    PubMed  CAS  Google Scholar 

  • Delidakis C, Preiss A, Hartley DA, Artavanis-Tsakonas S (1991) Two genetically and molecularly distinct functions involved in early neurogenesis reside within the Enhancer of split locus of Drosophila melanogaster. Genetics 129: 803–823

    PubMed  CAS  Google Scholar 

  • Diaz-Benjumea FJ, Hafen E (1994) The Sevenless signalling cassette mediates Drosophila EGF receptor function during epidermal development. Development 120: 569–578

    PubMed  CAS  Google Scholar 

  • Dickson B (1995) Nuclear factors in Sevenless signalling. Trends Genet 11: 106–111

    PubMed  CAS  Google Scholar 

  • Dickson B, Sprenger F, Morrison D, Hafen E (1992) Raf functions downstream of Ras 1 in the Sevenless signal transduction pathway. Nature 360: 600–603

    PubMed  CAS  Google Scholar 

  • Dickson BJ (1998) Photoreceptor development: breaking down the barriers. Curr Biol 8: 90–92

    Google Scholar 

  • Dickson BJ, Dominguez M, van der Straten A, Hafen E (1995) Control of Drosophila photoreceptor cell fates by Phyllopod, a novel nuclear protein acting downstream of the raf kinase. Cell 80: 453–462

    PubMed  CAS  Google Scholar 

  • Dickson BJ, van der Straten A, Dominguez M, Hafen E (1996) Mutations modulating Raf signaling in Drosophila eye development. Genetics 142: 163–171

    PubMed  CAS  Google Scholar 

  • Dietrich U, Campos-Ortega JA (1984) The expression of neurogenic loci in imaginal epidermal cells of Drosophila melanogaster. J Neurogenet 1: 315–332

    PubMed  CAS  Google Scholar 

  • Dokucu ME, Zipursky SL, Cagan RL (1996) Atonal, Rough and the resolution of proneural clusters in the developing Drosophila retina. Development 122: 4139–4147

    PubMed  CAS  Google Scholar 

  • Dominguez M, Wasserman JD, Freeman M (1998) Multiple functions of the EGF receptor in Drosophila eye development. Curr Biol 8: 1039–1048

    PubMed  CAS  Google Scholar 

  • Ellis MC, Weber U, Wiersdorff V, Mlodzik M (1994) Confrontation of scabrous expressing and non-expressing cells is essential for normal ommatidial spacing in the Drosophila eye. Development 120: 1959–1969

    PubMed  CAS  Google Scholar 

  • Fehon RG, Kooh PJ, Rebay I, Regan CL, Xu T, Muskavitch MAT, Artavanis-Tsakonas S (1990) Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell 61: 523–534

    PubMed  CAS  Google Scholar 

  • Fischer-Vize JA, Vize PD, Rubin GM (1992) A unique mutation in the Enhancer of split gene complex affects the fates of the mystery cells in the developing Drosophila eye. Development 115:89–101

    PubMed  CAS  Google Scholar 

  • Freeman M (1996) Reiterative use of the EGF Receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87:651–660

    PubMed  CAS  Google Scholar 

  • Freeman M (1997) Cell determination strategies in the Drosophila eye. Development 124: 261–270

    PubMed  CAS  Google Scholar 

  • Fryxell KJ, Meyerowitz EM (1987) An opsin gene that is expressed only in the R7 photoreceptor cell in Drosophila. EMBO J 6:443–451

    PubMed  CAS  Google Scholar 

  • Gaul U, Mardon G, Rubin GM (1992) A putative Ras GTPase activating protein acts as a negative regulator of signaling by the Sevenless receptor tyrosine kinase. Cell 68: 1007–1019

    PubMed  CAS  Google Scholar 

  • Ghysen A, Dambly-Chaudiere C (1989) Genesis of the Drosophila peripheral nervous system. Trends Genet 5: 251–255

    PubMed  CAS  Google Scholar 

  • Goodman CS, Doe CQ (1993) Embryonic development of the Drosophila central nervous system. In: Bate M, Martinez Arias A (eds) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 1131–1206

    Google Scholar 

  • Hafen E, Basler K, Edstroem JE, Rubin GM (1987) Sevenless, a cell specific homeotic gene of Drosophila, encodes a putative transmembrane receptor with a tyrosine kinase domain. Science 236: 55–63

    PubMed  CAS  Google Scholar 

  • Harris WA, Stark WS, Walker JA (1976) Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J Physiol 256: 415–439

    PubMed  CAS  Google Scholar 

  • Hart AC, Krämer H, van Vactor DLJ, Paidhungat M, Zipursky SL (1990) Induction of cell fate in the Drosophila retina: the Bride of Sevenless protein is predicted to contain a large extracellular domain and seven transmembrane segments. Genes Dev 4: 1835–1847

    PubMed  CAS  Google Scholar 

  • Hart AC, Krämer H, Zipursky SL (1993) Extracellular domain of the Boss transmembrane ligand acts as an antagonist of the Sev receptor. Nature 361: 732–736

    PubMed  CAS  Google Scholar 

  • Heberlein U, Mlodzik M, Rubin GM (1991) Cell-fate determination in the developing Drosophila eye: role of the rough gene. Development 112: 703–712

    PubMed  CAS  Google Scholar 

  • Heitzler P, Simpson P (1991) The choice of cell fate in the epidermis of Drosophila. Cell 64:1083–1092

    PubMed  CAS  Google Scholar 

  • Herbst R, Carroll PM, Allard JD, Schilling J, Raabe T, Simon MA (1996) Daughter of Sevenless is a substrate of the phosphotyrosine phosphatase Corkscrew and functions during Sevenless signaling. Cell 85: 899–909

    PubMed  CAS  Google Scholar 

  • Hiromi Y, Mlodzik M, West SR, Rubin GM, Goodman CS (1993) Ectopic expression of Seven-up causes cell fate changes during ommatidial assembly. Development 118: 1123–1135

    PubMed  CAS  Google Scholar 

  • Howe LR, Leevers SJ, Gomez N, Nakielny S, Cohen P, Marshall CJ (1992) Activation of the MAP Kinase pathway by the protein kinase Raf. Cell 71: 335–342

    PubMed  CAS  Google Scholar 

  • Jan YN, Jan LY (1993) The peripheral nervous system. In: Bate M, Martinez Arias A (eds) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New york, pp 1207–1244

    Google Scholar 

  • Jarman AP, Grau Y, Jan LY, Jan YN (1993) Atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell 73: 1307–1321

    PubMed  CAS  Google Scholar 

  • Jarman AP, Grell EH, Ackerman L, Jan LY, Jan YN (1994) Atonal is the proneural gene for Drosophila photoreceptors. Nature 369: 398–400

    PubMed  CAS  Google Scholar 

  • Jarman AP, Sun Y, Jan LY, Jan YN (1995) Role of the proneural gene, atonal, in formation of Drosophila chordotonal organs and photoreceptors. Development 121: 2019–2030

    PubMed  CAS  Google Scholar 

  • Jennings B, Preiss A, Delidakis C, Bray S (1994) The Notch signaling pathway is required for Enhancer of split bHLH protein expression during neurogenesis in the Drosophila embryo. Development 120: 3537–3548

    PubMed  CAS  Google Scholar 

  • Kanekar S, Perron M, Dorsky R, Harris WA, Jan LY, Jan YN, Vetter ML (1997) Xath5 participates in a network of bHLH genes in the developing Xenopus retina. Neuron 19: 981–994

    PubMed  CAS  Google Scholar 

  • Karim FD, Chang HC, Therrien M, Wassarman DA, Laverty T, Rubin GM (1996) A screen for genes that function downstream of Ras1 during Drosophila eye development. Genetics 143: 315–329

    PubMed  CAS  Google Scholar 

  • Kidd S, Kelley MR, Young MW (1986) Sequence of the Notch locus of Drosophila melanogaster: relationship of the encoded protein to mammalian clotting and growth factors. Mol Cell Biol 6:3094–3108

    PubMed  CAS  Google Scholar 

  • Kimmel BE, Heberlein U, Rubin GM (1991) The homeo domain protein Rough is expressed in a subset of cells in the developing Drosophila eye where it can specify photoreceptor cell subtype. Genes Dev 4: 712–727

    Google Scholar 

  • Knust E, Schrons H, Grawe F, Campos-Ortega JA (1992) Seven genes of the Enhancer of split complex of Drosophila melanogaster encode helix-loop-helix proteins. Genetics 132: 505–518

    PubMed  CAS  Google Scholar 

  • Kopczynski CC, Alton AK, Fechtel K, Kooh PJ, Muskavitch MAT (1988) Delta, a Drosophila neurogenic gene, is transcriptionally complex and encodes a protein related to blood coagulation factors and epidermal growth factor of vertebrates. Genes Dev 2: 1723–1735

    PubMed  CAS  Google Scholar 

  • Krämer H (1993) Patrilocal cell-cell interactions: Sevenless captures its bride. Trends Cell Biol 3:103–105

    PubMed  Google Scholar 

  • Krämer H, Cagan RL (1994) Determination of photoreceptor cell fate in the Drosophila retina. Curr Opin Neurobiol 4: 14–20

    PubMed  Google Scholar 

  • Krämer H, Cagan RL, Zipursky SL (1991) Interaction of bride of sevenless membrane-bound ligand and the sevenless tyrosine kinase receptor. Nature 352:207–213

    PubMed  Google Scholar 

  • Krämer H, Phistry M (1996) Mutations in the Drosophila hook gene inhibits endocytosis of the Boss transmembrane ligand into multivesicular bodies. J Cell Biol 133: 1205–1215

    PubMed  Google Scholar 

  • Kramer S, West SR, Hiromi Y (1995) Cell fate control in the Drosophila retina by the orphan receptor Seven-up: its role in the decisions mediated by the Ras signalling pathway. Development 121: 1361–1372

    PubMed  CAS  Google Scholar 

  • Kumar JP, Moses K (1997) Transcription factors in eye development: a gorgeous mosaic? Genes Dev 11: 2023–2028

    PubMed  CAS  Google Scholar 

  • Kumar JP, Tio M, Hsiung F, Akopyan S, Gabay L, Seger R, Shilo BZ, Moses K (1998) Dissecting the roles of the Drosophila EGF receptor in eye development and MAP kinase activation. Development 125: 3875–3885

    PubMed  CAS  Google Scholar 

  • Lai ZC, Fetchko M, Li Y (1997) Repression of Drosophila photoreceptor cell fate through cooperative action of two transcriptional repressors Yan and Tramtrack. Genetics 147: 1131–1137

    PubMed  CAS  Google Scholar 

  • Lai ZC, Harrison SD, Karim F, Li Y, Rubin GM (1996) Loss of tramtrack gene activity results in ectopic R7 cell formation, even in a sina mutant background. Proc Natl Acad Sci USA 93:5025–5030

    PubMed  CAS  Google Scholar 

  • Lai ZC, Rubin GM (1992) Negative control of photoreceptor development in Drosophila by the product of the yan gene, an ETS domain protein. Cell 70: 609–620

    PubMed  CAS  Google Scholar 

  • Lawrence PA, Green SM (1979) Cell lineage in the developing retina of Drosophila. Dev Biol 71: 142–152

    PubMed  CAS  Google Scholar 

  • Lawrence PA, Struhl G, Morata G (1979) Bristle patterns and compartment boundaries in the tarsi of Drosophila. J Embryol Exp Morphol 51: 195–208

    PubMed  CAS  Google Scholar 

  • Lawrence PA, Tomlinson A (1991) A marriage is consummated. Nature 352: 193

    PubMed  CAS  Google Scholar 

  • Le N, Simon MA (1998) Disabled is a putative adaptor protein that functions during signaling by the Sevenless receptor tyrosine kinase. Mol Cell Biol 18: 4844–4854

    PubMed  CAS  Google Scholar 

  • Lecourtois M, Schweisguth F (1998) Indirect evidence for Delta-dependent intracellular processing of Notch in Drosophila embryos. Curr Biol 8: 771–774

    PubMed  CAS  Google Scholar 

  • Lee EC, Hu X, Yu SY, Baker NE (1996) The scabrous gene encodes a secreted glycoprotein dimer and regulates proneural development in Drosophila eyes. Mol Cell Biol 16: 1179–1188

    PubMed  CAS  Google Scholar 

  • Lee E-C, Yu S-Y, Hu X, Mlodzik M, Baker NE (1998) Functional analysis of the fibrinogenrelated scabrous gene from Drosophila melanogaster identifies potential effector and stimulatory protein domains. Genetics 150: 663–673

    PubMed  CAS  Google Scholar 

  • Lehmann R, Jimenez F, Dietrich U, Campos-Ortega JA (1983) On the phenotype and development of mutants of early neurogenesis in Drosophila melanogaster. Wilhelm Roux’s Arch Dev Biol 192: 62–74

    Google Scholar 

  • Lesokhin AM, Yu SY, Katz J, Baker NE (1999) Several levels of EGF receptor signaling during photoreceptor specification in wild-type, Ellipse, and null mutant Drosophila. Dev Biol 205: 129–144

    PubMed  CAS  Google Scholar 

  • Li S, Li Y, Carthew RW, Lai Z-C (1997) Photoreceptor cell differentiation requires regulated proteolysis of the transcriptional repressor Tramtrack. Cell 90: 469–478

    PubMed  CAS  Google Scholar 

  • Ligoxygakis P, Yu SY, Delidakis C, Baker NE (1998) A subset of Notch functions during Drosophila eye develoopment require Su(H) and the E(spl) gene complex. Development 125: 2893–2900

    PubMed  CAS  Google Scholar 

  • MacDougall LK, Waterfield MD (1996) Receptor signaling: To Sevenless, a daughter. Curr Biol 6: 1250–1253

    PubMed  CAS  Google Scholar 

  • Marshall CJ (1994) MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev 4: 82–89

    PubMed  CAS  Google Scholar 

  • Matsuno K, Go MJ, Sun X, Eastman DS, Artavanis-Tsakonas S (1997) Suppressor of Hairlessindependent events in Notch signaling imply novel pathway elements. Development 124: 4265–4273

    PubMed  CAS  Google Scholar 

  • Mlodzik M, Baker NE, Rubin GM (1990) Isolation and expression of scabrous, a gene regulating neurogenesis in Drosophila. Genes Dev 4: 1848–1861

    PubMed  CAS  Google Scholar 

  • Mlodzik M, Hiromi Y, Weber U, Goodman CS, Rubin GM (1990) The Drosophila seven-up gene, a member of the steroid receptor gene superfamily controls photoreceptor cell fates. Cell 60:211–224

    PubMed  CAS  Google Scholar 

  • Morgan TH, Bridges CB, Schultz J, Schultz J (1938) Constitution of the germinal material in relation to heredity. Yearb Carnegie Inst Wash 37:304–310

    Google Scholar 

  • Muda M, Boschert U, Smith A, Antonsson B, Gillieron C, Chabert C, Camps M, Martinou I, Ashworth A, Arkinstall S (1997) Molecular cloning and functional characterization of a novel mitogen-activated protein kinase phosphatase, MKP-4. J Biol Chem 272: 5141–5151

    PubMed  CAS  Google Scholar 

  • Mullins MC, Rubin GM (1991) Isolation of temperature-sensitive mutations of the tyrosine kinase receptor Sevenless (Sev) in Drosophila and their use in determining its time of action. Proc Natl Acad Sci USA 88:9387–9391

    PubMed  CAS  Google Scholar 

  • Muskavitch MAT (1994) Delta-Notch signaling and Drosophila cell fate choice. Dev Biol 166:415–430

    PubMed  CAS  Google Scholar 

  • Nebreda AR (1994) Inactivation of MAP kinases. Trends Biochem Sci 19: 1–2

    PubMed  CAS  Google Scholar 

  • Oliver JP, Raabe T, Henkemeyer M, Dickson B, Mbamalu G, Margolis B, Schlessinger J, Hafen E, Pawson T (1993) A Drosophila SH2-SH3 adaptor protein implicated in coupling the Sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos. Cell 73:179–191

    Google Scholar 

  • O’Neill EM, Rebay I, Tijan R, Rubin GM (1994) The activities of two ETS-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell 78: 137–147

    PubMed  Google Scholar 

  • Parks AL, Turner FR, Muskavitch MAT (1995) Relationships between complex Delta expression and the specification of retinal cell fates during Drosophila eye development. Mech Dev 50:201–216

    PubMed  CAS  Google Scholar 

  • Parody TR, Muskavitch MAT (1993) The pleiotropic function of Delta during postembyonic development of Drosophila melanogaster. Genetics 135: 527–539

    PubMed  CAS  Google Scholar 

  • Poulson D (1937) Chromosomal deficiencies and embryonic development of Drosophila melanogaster. Proc Natl Acad Sci USA 23: 133–137

    PubMed  CAS  Google Scholar 

  • Raabe T, Riesgo-Escovar J, Liu X, Bausenwein BS, Deak P, Maröy P, Hafen E (1996) DOS, a novel pleckstrin homology domain-containing protein required for signal transduction between Sevenless and Ras1 in Drosophila. Cell 85: 911–920

    PubMed  CAS  Google Scholar 

  • Ready DF (1989) A multifaceted approach to neural development. Trends Neurosci 12: 102–110

    PubMed  CAS  Google Scholar 

  • Ready DF, Hanson TE, Benzer S (1976) Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol 53: 217–240

    PubMed  CAS  Google Scholar 

  • Rebay I, Fleming RJ, Fehon RG, Cherbas L, Cherbas P, Artavanis-Tsakonas S (1991) Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for Notch as a multifunctional receptor. Cell 67: 687–699

    PubMed  CAS  Google Scholar 

  • Rebay I, Rubin GM (1995) Yan functions as a general inhibitor of differentiation and is negatively regulated by activation of Ras1/MAPK pathway. Cell 81: 857–866

    PubMed  CAS  Google Scholar 

  • Reinke R, Zipursky SL (1988) Cell-cell interaction in the Drosophila retina: the bride of sevenless gene is required in photoreceptor R8 for R7 cell development. Cell 55:321–330

    PubMed  CAS  Google Scholar 

  • Rogge R, Cagan R, Majumdar A, Dulaney T, Banerjee U (1992) Neuronal development in the Drosophila retina: the sextra gene defines an inhibitory component in the developmental pathway of R7 photoreceptor cells. Proc Natl Acad Sci USA 89: 5271–5275

    PubMed  CAS  Google Scholar 

  • Rogge RD, Karlovich CA, Banerjee U (1991) Genetic dissection of a neurodevelopmental pathway: Son of Sevenless functions downstream of the Sevenless and EGF receptor tyrosine kinases. Cell 64: 39–48

    PubMed  CAS  Google Scholar 

  • Romani S, Camuzano S, Macagno ER, Modolell J (1989) Expression of achaete and scute genes in Drosophila imaginal discs and their function in sensory organ development. Genes Dev 3:997–1007

    PubMed  CAS  Google Scholar 

  • Rubin GM (1989) Development of the Drosophila retina: inductive events studied at single cell resolution. Cell 57: 519–520

    PubMed  CAS  Google Scholar 

  • Schrons H, Knust E, Campos-Ortega JA (1992) The Enhancer of split complex and adjacent genes in the 96F region of Drosophila melanogaster are required for segregation of neural and epidermal progenitor cells. Genetics 132: 481–503

    PubMed  CAS  Google Scholar 

  • Schweitzer R, Shilo B-Z (1997) A thousand and one roles for the Drosophila EGF receptor. Trends Genet 13: 191–196

    PubMed  CAS  Google Scholar 

  • Simon MA, Bowtell DDL, Dodson GS, Laverty TR, Rubin GM (1991) Ras 1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the Sevenless protein tyrosine kinase. Cell 67: 701–716

    PubMed  CAS  Google Scholar 

  • Simon MA, Dodson GS, Rubin GM (1993) An SH3-SH2-SH3 protein is required for p21 Ras 1 activation and binds to Sevenless and Sos proteins in vitro. Cell 73: 169–177

    PubMed  CAS  Google Scholar 

  • Sun X, Artavanis-Tsakonas S (1996) The intracellular deletions of Delta and Serrate define dominant negative forms of the Drosophila Notch ligands. Development 122: 2465–2474

    PubMed  CAS  Google Scholar 

  • Tamura K, Taniguchi Y, Minoguchi S, Sakai T, Tun T, Furukawa T, Honjo T (1995) Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-J k/Su(H). Curr Biol 5: 1416–1423

    PubMed  CAS  Google Scholar 

  • Tang AH, Neufeld TP, Kwan E, Rubin GM (1997) PHYL acts to down-regulate TTK88, a transcriptional repressor of neuronal cell fates, by a SINA dependent mechanism. Cell 90: 459–467

    PubMed  CAS  Google Scholar 

  • Tomlinson A (1985) The cellular dynamics of pattern formation in the eye of Drosophila. J Embryol Exp Morphol 89:313–331

    PubMed  CAS  Google Scholar 

  • Tomlinson A (1988) Cellular interactions in the developing Drosophila eye. Development 104:183–193

    PubMed  CAS  Google Scholar 

  • Tomlinson A (1991) Developmental mechanisms. Sevenless and its bride: a marriage of molecules? Curr Biol 1: 132–134

    PubMed  CAS  Google Scholar 

  • Tomlinson A, Bowtell DDL, Hafen E, Rubin GM (1987) Localization of the sevenless protein, a putative receptor for positional information in the eye imaginal disc of Drosophila. Cell 51:143–150

    PubMed  CAS  Google Scholar 

  • Tomlinson A, Kimmel BE, Rubin GM (1988) Rough, a Drosophila homeobox gene required in photoreceptors R2 and R5 for inductive interaction in the developing eye. Cell 55: 771–784

    PubMed  CAS  Google Scholar 

  • Tomlinson A, Ready DF (1986) Sevenless: a cell specific homeotic mutation of the Drosophila eye. Science 231: 400–402

    PubMed  CAS  Google Scholar 

  • Tomlinson A, Ready DF (1987) Neuronal differentiation in the Drosophila ommatidium. Dev Biol 120: 366–376

    PubMed  CAS  Google Scholar 

  • Treier M, Bohmann D, Mlodzik M (1995) JUN cooperates with the ETS domain protein Pointed to induce photoreceptor R7 fate in the Drosophila eye. Cell 83: 753–760

    PubMed  CAS  Google Scholar 

  • Treisman JE, Luk A, Rubin GM, Heberlein U (1997) Eyelid antagonizes wingless signaling during Drosophila development and has homology to the Bright family of DNA-binding proteins. Genes Dev 11: 1949–1962

    PubMed  CAS  Google Scholar 

  • Tsuda H, Takebayashi K, Nakanishi S, Kageyama R (1998) Structure and promoter analysis of Math3 gene, a mouse homolog of Drosophila proneural gene atonal. Neural-specific expression by dual promoter elements. J Biol Chem 273: 6327–6333

    PubMed  CAS  Google Scholar 

  • Tsuda L, Inoue YH, Yoo M-A, Mizuno M, Hata M, Lim Y-M, Adachi-Yamada T, Ryo H, Masamune Y, Nishida Y (1993) A protein kinase similar to MAP kinase activator acts downstream of the Raf kinase in Drosophila. Cell 72: 407–414

    PubMed  CAS  Google Scholar 

  • van Vactor DL, Cagan RL, Krämer H, Zipursky SL (1991) Induction in the developing compound eye of Drosophila: multiple mechanisms restrict R7 induction to a single retinal precursor. Cell 67: 1145–1155

    PubMed  Google Scholar 

  • Vässin H, Campos-Ortega JA (1987) Genetic analysis of Delta: a neurogenic gene of Drosophila melanogaster. Genetics 116: 433–445

    PubMed  Google Scholar 

  • Wassarman DA, Therrien M, Rubin GM (1995) The Ras signaling pathway in Drosophila. Curr Opin Genet Dev 5: 44–50

    PubMed  CAS  Google Scholar 

  • Wharton KA, Johansen KM, Xu T, Artavanis-Tsakonas S (1985) Nucleotide sequence from the neurogenic locus Notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43: 567–581

    PubMed  CAS  Google Scholar 

  • Wolff T, Ready DF (1991) The beginning of pattern formation in the Drosophila compound eye: the morphogenetic furrow and the second mitotic wave. Development 113: 841–850

    PubMed  CAS  Google Scholar 

  • Wolff T, Ready DF (1993) Chapter 22: Pattern formation in the Drosophila retina. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 1277–1325

    Google Scholar 

  • Xiong WC, Montell C (1993) tramtrack is a transcriptional repressor required for cell fate determination in the Drosophila eye. Genes Dev 7: 1085–1096

    PubMed  CAS  Google Scholar 

  • Xu T, Rubin GM (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117: 1223–1237

    PubMed  CAS  Google Scholar 

  • Yamamoto D, Nihonmatsu I, Matsuo T, Miyamoto H, Kondo S, Hirata K, Ikegami Y (1996) Genetic interactions of pokkuri with seven in absentia, tramtrack and downstream corponents of the sevenless pathway in R7 photoreceptor induction in Drosophila melanogaster. Wilhelm Roux’s Arch Dey Biol 205:215–224

    Google Scholar 

  • Zipursky SL (1989) Molecular and genetic analysis of Drosophila eye development: sevenless, bride of sevenless and rough. Trends Neurosci 12: 183–189

    PubMed  CAS  Google Scholar 

  • Zuker CS, Montell C, Jones K, Laverty T, Rubin GM (1987) A rhodopsin gene expressed in photoreceptor cell R7 of the Drosophila eye: homologies with other signal-transducing molecules. J Neurosci 7: 1550–1557

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kumar, J.P., Moses, K. (2000). Cell Fate Specification in the Drosophila Retina. In: Fini, M.E. (eds) Vertebrate Eye Development. Results and Problems in Cell Differentiation, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46826-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46826-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53678-6

  • Online ISBN: 978-3-540-46826-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics