Skip to main content

Wound Healing

  • Chapter
  • First Online:
Pediatric Surgery

Abstract

Wound healing is at the core of the surgeon’s craft. Intense investigation over the last decades has confirmed the physiologic fundamentals of tissue repair and provided insight into the molecular mechanisms of wound healing. This has led to novel strategies that have improved the care of patients. Pain management should be an integral portion of wound care, and a regimen should be selected to achieve successful healing while treating the pain associated with injury and wound care measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lazarus GS, et al. Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair Regen. 1994;2(3):165–70.

    Article  CAS  PubMed  Google Scholar 

  2. Gross RJ. Regeneration versus repair. In: Cohen IK, Diegelmann RF, Lindblad WJ, editors. Wound healing: biochemical and clinical aspects. Philadelphia, PA: WB Saunders; 1992. p. 20–39.

    Google Scholar 

  3. Keswani SG, Crobleholme TM. Wound healing: cellular and molecular mechanisms. In: Oldham KT, Colombani PM, Foglia RP, Skinner MA, editors. Principles and practice of pediatric surgery. Philadelphia, PA: Lippincott Williams and Wilkins; 2005. p. 223–38.

    Google Scholar 

  4. Furie B, Furie BC. The molecular basis of blood coagulation. Cell. 1998;53:505–18.

    Article  Google Scholar 

  5. Moncada S, Gryglewski R, Bunting S, et al. An enzyme isolated from arteries transforms prostaglandins endoperoxides to an unstable substance that inhibits platelet aggregation. Nature. 1976;263:663–5.

    Article  CAS  PubMed  Google Scholar 

  6. Stern DM, Nawroth PP, Marcu J, et al. Interaction of antithrombin III with bovine aortic segments. J Clin Invest. 1985;75:272–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Loedam JA, Meijers JCM, Sixma JJ, et al. Inactivation of human factor VIII by activated protein C: cofactor activity of protein S and protective effects of von Willebrand factor. J Clin Invest. 1988;82:1236–43.

    Article  Google Scholar 

  8. Salonen EM, Vaheri A, Pollanen J, et al. Interaction of plasminogen activator inhibitor with vitronectin. J Biol Chem. 1989;264:6339–43.

    Article  CAS  PubMed  Google Scholar 

  9. Ciano PS, Colvin RB, Dvorak AM, et al. Macrophage migration in fibrin gel matrices. Lab Investig. 1986;654:62–70.

    Google Scholar 

  10. Ginsberg MH, Loftus JC, Plow EF. Cytoadhesins, integrins, and platelets. Thromb Haemost. 1988;59:1–6.

    Article  CAS  PubMed  Google Scholar 

  11. Ruggeri ZM. von Willebrand factor and fibrinogen. Curr Opin Cell Biol. 1993;5:898–906.

    Article  CAS  PubMed  Google Scholar 

  12. Ginsberg MH, Du X, Plow EF. Inside out integrin signaling. Curr Opin Cell Biol. 1992;4:766–71.

    Article  CAS  PubMed  Google Scholar 

  13. Stimler NP, Bach MK, Bloor CM, et al. Release of leukotrienes from Guinea pig lung stimulated by C5a des arg anaphylatoxin. J Immunol. 1982;128:2247–57.

    CAS  PubMed  Google Scholar 

  14. Muller-Esterl N. Kininogens, kinins, and kinships. Thromb Haemost. 1989;62:2–6.

    Google Scholar 

  15. Laudanna C, Kim JY, Constantin G, et al. Rapid leukocyte integrin activation by chemokines. Immunol Rev. 2002;186:37–46.

    Article  CAS  PubMed  Google Scholar 

  16. Williams GT. Programmed cell death: apoptosis and oncogenesis. Cell. 1988;65:1097–8.

    Article  Google Scholar 

  17. Folkman J, Klagsbrun M. Angiogenic growth factors. Science. 1987;235:442–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ausprunk DH, Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res. 1977;14:53–65.

    Article  CAS  PubMed  Google Scholar 

  19. Brown LF, Yeo TK, Senger DR, et al. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med. 1992;176:1375–9.

    Article  CAS  PubMed  Google Scholar 

  20. Stetler-Stevenson WG, Krutzsch HC, Wacher MP, et al. The activation of human Type IV collagenase proenzyme. Sequence identification of the major conversion product following organomercurial activation. J Biol Chem. 1989;264:1353–6.

    Article  CAS  PubMed  Google Scholar 

  21. Xu J, Clark RA. Extracellular matrix alters PDGF regulation of fibroblast integrins. J Cell Biol. 1996;132:239–49.

    Article  CAS  PubMed  Google Scholar 

  22. Alberts B, Bray D, Lewis J, et al. The extracellular matrix of animals. In: Alberts B, Bray D, Lewis J, et al., editors. Molecular biology of the cell. New York: Garland Publishing; 1994. p. 971–95.

    Google Scholar 

  23. Flinsenmayer TF. Collagen. In: Hay ED, editor. Cell biology of extracellular matrix. 2nd ed. New York: Plenum; 1991. p. 7.

    Chapter  Google Scholar 

  24. Fleischmayer R, Olsen BR, Kulin K, editors. Biology, chemistry, and pathology of collagen. New York: New York Academy of Sciences; 1985.

    Google Scholar 

  25. Winter GD. Formation of the scab and the rate of epithelialization of superficial wounds in young domestic pigs. Nature. 1962;193:293–4.

    Article  CAS  PubMed  Google Scholar 

  26. Barrandon Y, Green H. Cell migration is essential for sustained growth of keratinocytes colonies: the role of transforming growth factor-α and epidermal growth factor. Cell. 1987;50:1131–7.

    Article  CAS  PubMed  Google Scholar 

  27. Levenson SM, Greever EF, Crowley LV, et al. The healing of rat skin wounds. Ann Surg. 1965;161:293–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Clark RA. Regulation of fibroplasia in cutaneous wound repair. Am J Med Sci. 1993;306:42–8.

    Article  CAS  PubMed  Google Scholar 

  29. Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev. 1999;79:1283–316.

    Article  CAS  PubMed  Google Scholar 

  30. Embil JM, Nagai MK. Becaplermin: recombinant platelet-derived growth factor, a new treatment for healing diabetic foot ulcers. Exp Opin Biol Ther. 2002;2:211–8.

    Article  Google Scholar 

  31. Mandracchia VJ, Sanders SM, Frerichs JA. The use of becaplermin (rhPDGF-BB) gel for chronic nonhealing ulcers. A retrospective analysis. Clin Pediatr Med Surg. 2001;18:189–209.

    CAS  Google Scholar 

  32. Frank S, Hübner G, Breier G, et al. Regulation of vascular endothelial growth factor expression in cultured keratinocytes: implications for normal and impaired wound healing. J Biol Chem. 1995;270:12607–13.

    Article  CAS  PubMed  Google Scholar 

  33. Breitbart AS, Grande DA, Laser J, et al. Treatment of ischemic wounds using cultured dermal fibroblasts transduced retrovirally with PDGF-B and VEGF121 genes. Ann Plast Surg. 2001;46:555–61.

    Article  CAS  PubMed  Google Scholar 

  34. Corral CJ, Siddiqui A, Wu L, et al. Vascular endothelial growth factor is more important than basic fibroblast growth factor during ischemic wound healing. Arch Surg. 1999;134:200–5.

    Article  CAS  PubMed  Google Scholar 

  35. Assosian RK, Komoryia A, Meyers CA, et al. Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem. 1983;258:7155–60.

    Article  Google Scholar 

  36. Roberts AB, Sporn MB, Assoian RK, et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci. 1986;83:4167–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Krummel TM, Nelson JM, Diegelmann RF, et al. Fetal response to injury and its modulation with transforming growth factor beta. Surg Forum. 1987;38:622.

    Google Scholar 

  38. Shah M, Foreman DM, Ferguson MW. Control of scarring in adult wounds by neutralizing antibody to transforming growth factorβ. Lancet. 1992;339:213–4.

    Article  CAS  PubMed  Google Scholar 

  39. Steed DL. Modifying the wound healing response with exogenous growth factors. Clin Plast Surg. 1998;25:397–405.

    Article  CAS  PubMed  Google Scholar 

  40. Fortunato SJ, Menon R, Lombardi SJ. The effect of transforming growth factors and interleukin 10 on interleukin 8 release by human amniochorion may regulate histologic chorioamnionitis. Am J Obstet Gynecol. 1998;179:794.

    Article  CAS  PubMed  Google Scholar 

  41. Moore KW, de Waal Malefyt R, Coffman RL, et al. Interleukin-10 and the interleukin 10 receptor. Annu Rev Immunol. 2001;19:683.

    Article  CAS  PubMed  Google Scholar 

  42. Tinsley JH, South S, Chiasson VL, et al. Interleukin 10 reduces inflammation, endothelial dysfunction and blood pressure in hypertensive pregnant rats. Am J Physiol Regul Integr Comp Physiol. 2010;298:R713.

    Article  CAS  PubMed  Google Scholar 

  43. Kieran I, Knock A, Bush J, et al. Interleukin 10 reduces scar formation in both animal and human cutaneous wounds: results of two preclinical phase II randomized control studies. Wound Repair Regn. 2013;21:428.

    Article  Google Scholar 

  44. Rowlatt U. Intrauterine healing in a 20-week human fetus. Virchows Arch. 1979;381:353–61.

    Article  CAS  Google Scholar 

  45. Adzick NS, Longaker MT. Characteristics of fetal tissue repair. In: Adzick NS, Longaker MT, editors. Fetal wound healing. New York: Elsevier; 1992. p. 53–70.

    Google Scholar 

  46. Armstrong JR, Ferguson MW. Ontogeny of the skin and transition from scar free to scarring phenotype during wound healing in the pouch young of Monodelphis domestica. Dev Biol. 1995;169:242–60.

    Article  CAS  PubMed  Google Scholar 

  47. Lorenz HP, Longaker MT, Perkocha LA, et al. Scarless wound repair: a human fetal skin model. Development. 1992;114:253–9.

    Article  CAS  PubMed  Google Scholar 

  48. Adzick NS, Harrison MR, Glick PL, et al. Comparison of fetal, newborn, and adult wound healing by histologic, enzyme-histochemical and hydroxyproline determinations. J Pediatr Surg. 1985;2:315–9.

    Article  Google Scholar 

  49. Mast BA, Krummel TM. Acute inflammation in fetal wound healing. In: Adzick NS, Longaker MT, editors. Fetal wound healing. New York: Elsevier; 1992. p. 227–40.

    Google Scholar 

  50. Mast BA, Albanese CT, Kapadia S. Tissue repair in the fetal intestinal tract occurs with adhesions, fibrosis, and neovascularization. Ann Plast Surg. 1998;41:140–4.

    Article  CAS  PubMed  Google Scholar 

  51. Merkel JR, DiPaolo BR, Hallock GG, et al. Type I and type III collagen content of healing wounds in fetal and adult rats. Soc Exp Biol Med. 1988;187:493–7.

    Article  CAS  Google Scholar 

  52. Burd DAR, Longaker MT, Adzick NS, et al. Fetal wound healing in a large animal model: the deposition of collagen is confirmed. Br J Plast Surg. 1990;43:571–7.

    Article  CAS  PubMed  Google Scholar 

  53. Whitby DJ, Ferguson MW. Immunohistochemical studies in fetal and adult wound healing. In: Adzick NS, Longaker MT, editors. Fetal wound healing. New York: Elsevier; 1992. p. 161–76.

    Google Scholar 

  54. Cass DL, Sylvester KG, Yang EY, et al. Myofibroblast association with scar formation and their absence in scarless fetal wound repair. J Pediatr Surg. 1997;32:1017–21.

    Article  CAS  PubMed  Google Scholar 

  55. Mackool RJ, Soo C, Gittes G, et al. Endogenous expression of transforming growth factor (TGF)-β, TGF-β receptors, and TGF-β activity modulators as a function of gestational age in fetal rat skin. Surg Forum. 1997;48:516–9.

    CAS  Google Scholar 

  56. Liechty KW, Crombleholme TM, Adzick NS. Diminished interleukin 8 (IL-8) production in the fetal wound healing response. J Surg Res. 1998;77:80–4.

    Article  CAS  PubMed  Google Scholar 

  57. Liechty KW, Adzick NS, Crombleholme TM. Diminished interleukin 6 (IL-6) production during scarless human fetal wound repair. Cytokine. 2000;12:671–6.

    Article  CAS  PubMed  Google Scholar 

  58. King A, Balaji S, Le LD, Crombleholme TM, Keswani S. Regenerative wound healing: the role of interleukin-10. Adv Wound Care. 2013;3:315–23.

    Article  Google Scholar 

  59. Robles DT, Berg D. Abnormal wound healing: keloid. Clin Dermatol. 2007;25(1):26–32.

    Article  PubMed  Google Scholar 

  60. Jovic G, Corlew DS, Bowman KG. Plastic and reconstructive surgery in Zambia: epidemiology of 16 years of practice. World J Surg. 2012;36(2):241–6.

    Article  PubMed  Google Scholar 

  61. Marneros AG, et al. Clinical genetics of familial keloids. Arch Dermatol. 2001;137(11):1429–34.

    Article  CAS  PubMed  Google Scholar 

  62. Gold M, McGuire M, Mustoe T, et al. Updated international clinical recommendations on scar management: part 2—algorithms for scar prevention and treatment. Dermatol Surg. 2014;40(8):825–31.

    CAS  PubMed  Google Scholar 

  63. Galiano R, Mustoe T. Wound healing: Greenfield’s surgery: scientific principles and practice. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2010.

    Google Scholar 

  64. Doughty D, Sparks-Defriese B. Wound-healing physiology. In: Acute and chronic wounds: current management concepts. St. Louis, MO: Mosby; 2007. p. 56–81.

    Google Scholar 

  65. Ferreira MC, et al. Complex wounds. Clinics. 2006;61(6):571–8.

    Article  PubMed  Google Scholar 

  66. Jones KR, Fennie K, Lenihan A. Evidence-based management of chronic wounds. Adv Skin Wound Care. 2007;20(11):591–600.

    Article  PubMed  Google Scholar 

  67. Schindler CA, Mikhailov TA, Fischer K, Lukasiewicz G, Kuhn EM, Duncan L. Skin integrity in critically ill and injured children. Am J Crit Care. 2007;16(6):568–74.

    Article  PubMed  Google Scholar 

  68. National Pressure Ulcer Advisory Panel. Updated Staging System: National Pressure Ulcer Advisory Panel. 2007. Available at: http://www.npuap.org/. Accessed 15 May 2009.

  69. Sayar S, Turgut S, Do_gan H, et al. Incidence of pressure ulcers in intensive care unit patients at risk according to the Waterlow scale and factors influencing the development of pressure ulcers. J Clin Nurs. 2009;18(5):765–74.

    PubMed  Google Scholar 

  70. McLane KM, Bookout K, McCord S, McCain J, Jefferson LS. The 2003 National pediatric pressure ulcer and skin breakdown prevalence survey: a multisite study. J Wound Ostomy Continence Nurs. 2004;31(4):168–78.

    Article  PubMed  Google Scholar 

  71. Dinsdale SM. Decubitus ulcers: role of pressure and friction in causation. Arch Phys Med Rehabil. 1974;55(4):147–52.

    CAS  PubMed  Google Scholar 

  72. Black JM, Cuddigan JE, Walko MA, Didier LA, Lander MJ, Kelpe MR. Medical device related pressure ulcers in hospitalized patients. Int Wound J. 2010;7(5):358–65.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Visscher M, King A, Keswani S, et al. A qualities improvement collaboration project to reduce pressure ulcers in PICUs. Pediatrics. 2013;131(6):e 1950–60.

    Article  Google Scholar 

  74. Baharestani MM, Ratliff CR, National Pressure Ulcer Advisory Panel. Pressure ulcers in neonates and children: an NPUAP white paper. Adv Skin Wound Care. 2007;20:210–20.

    Article  Google Scholar 

  75. Varghese MC, Balin AK, Carter M, et al. Local environment of chronic wounds under synthetic dressings. Arch Dermatol. 1986;122:52–7.

    Article  CAS  PubMed  Google Scholar 

  76. Alvarez OM, Mertz PM, Eaglstein WH. The effect of occlusive dressings on collagen synthesis and reepithelialization in superficial wounds. J Surg Res. 1983;35:142–8.

    Article  CAS  PubMed  Google Scholar 

  77. Lionelli GT, Lawrence WT. Wound Dressings. Surg Clin North Am. 2003;83:617–38.

    Article  PubMed  Google Scholar 

  78. Mooney JF, Argenta LC, Marks MW. Treatment of soft tissue defects in pediatric patients using the V.A.C. system. Clin Orthop. 2000;376:26–31.

    Article  Google Scholar 

  79. Frantz R, Broussard C, Mendez-Eastman S, Cordrey R. Devices and technology in wound care. In: Bryan RA, Nix DP, editors. Acute and chronic wounds: current management concepts. St. Louis, MO: Mosby; 2007. p. 427–60.

    Google Scholar 

  80. Jones SM, Banwell PE, Shakespeare PG. Advances in wound healing: topical negative pressure therapy. Ostgrad Med J. 2005;81(956):353–7.

    Article  CAS  Google Scholar 

  81. Baharestani MM. Use of negative pressure wound therapy in the treatment of neonatal and pediatric wounds: a retrospective examination of clinical outcomes. Ostomy Wound Manage. 2007;53(6):75–85.

    PubMed  Google Scholar 

  82. Gurtner GC, Dauskardt RH, Wong VW, et al. Improving cutaneous scar formation by controlling the mechanical environment: large animal and phase I studies. Ann Surg. 2011;254:217–25.

    Article  PubMed  Google Scholar 

  83. Wang R, Ghahary A, Shen Q, et al. Hypertrophic scar tissues and fibroblasts produce more transforming growth factor-beta1 mRNA and protein than normal skin and cells. Wound Repair Regen. 2000;8:128–37.

    Article  CAS  PubMed  Google Scholar 

  84. Gordon A, Kozin ED, Keswani SG, et al. Permissive environment in postnatal wounds induced by adenoviral-mediated overexpression of the anti-inflammatory cytokine interleukin-10 prevents scar formation. Wound Repair Regen. 2008;16:70.

    Article  PubMed  Google Scholar 

  85. Liechty KW, Kim HB, Adzick NS, et al. Fetal wound repair results in scar formation in interleukin-10-deficient mice in a syngeneic murine model of scarless fetal wound repair. J Surg Res. 2000;35:866.

    CAS  Google Scholar 

  86. Alaish SM, Yager DR, Diegelmann RF, et al. Biology of fetal wound healing: hyaluronate receptor expression in fetal fibroblasts. J Pediatr Surg. 1994;29:1040–3.

    Article  CAS  PubMed  Google Scholar 

  87. Estes JM, Adzick NS, Harrison MR, et al. Hyaluronate metabolism undergoes an ontogenic transition during fetal development: implications for scar-free wound healing. J Pediatr Surg. 1993;28:1227–31.

    Article  CAS  PubMed  Google Scholar 

  88. Balaji S, et al. The role of interleukin-10 and hyaluronan in murine fetal fibroblast function in vitro: implications for recapitulating fetal regenerative wound healing. PLoS One. 2015;10(5):e0124302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Ho S, Marcal H, Foster LJ. Towards Scarless wound healing: a comparison of protein expression between human, adult and foetal fibroblasts. Biomed Res Int. 2014;2014:676493.

    PubMed  PubMed Central  Google Scholar 

  90. Sisco M, Kryger ZB, Mustoe TA, et al. Antisense inhibition of connective tissue growth factor (CTGF/CCN2) mRNA limits hypertrophic scarring without affecting wound healing in vivo. Wound Repair Regn. 2008;16(5):661–73.

    Article  Google Scholar 

  91. Igarashi A, Nashiro K, Kikuchi K, Takerhara K. Connective tissue growth factor gene expression in tissue sections from localized scleroderma, keloid and other fibrotic skin disorders. J Invest Dermatol. 1996;106:729–33.

    Article  CAS  PubMed  Google Scholar 

  92. Naylor MC, Lazar DA, Zamora IJ, Olutoye OO, et al. Increased in vitro differentiation of fibrocytes from keloid patients is inhibited by serum amyloid P. Wound Repair Regen. 2012;20(3):277–83.

    Article  PubMed  Google Scholar 

  93. Wulff BC, Wilgus TA. Examining the role of mast cells in fetal wound healing using cultured cells in vitro. Methods Mol Biol. 2013;1037:495–506.

    Article  CAS  PubMed  Google Scholar 

  94. Morris MW Jr, et al. Modulation of the inflammatory response by increasing fetal wound size or interleukin-10 overexpression determines wound phenotype and scar formation. Wound Repair Regen. 2014;22(3):406–14.

    Article  PubMed  Google Scholar 

  95. Gordon A, et al. Permissive environment in postnatal wounds induced by adenoviral-mediated overexpression of the anti-inflammatory cytokine interleukin-10 prevents scar formation. Wound Repair Regen. 2008;16(1):70–9.

    Article  PubMed  Google Scholar 

  96. Kieran I, et al. Interleukin-10 reduces scar formation in both animal and human cutaneous wounds: results of two preclinical and phase II randomized control studies. Wound Repair Regen. 2013;21(3):428–36.

    Article  PubMed  Google Scholar 

  97. Cohen IK, Diegelmann RF, Crossland MC. Wound care and wound healing. In: Schwartz SI, et al., editors. Principles of surgery. 6th ed. New York: McGraw-Hill Inc; 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluyinka O. Olutoye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lau, P., Cruz, S., Keswani, S., Olutoye, O.O. (2020). Wound Healing. In: Ameh, E.A., Bickler, S.W., Lakhoo, K., Nwomeh, B.C., Poenaru, D. (eds) Pediatric Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-41724-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41724-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41723-9

  • Online ISBN: 978-3-030-41724-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics