Skip to main content

Abstract

Collagenous proteins are a major constituent of all extracellular matrices. Traditionally, the role attributed to collagen has been a structural one. During the past 10 years, however, it has become obvious that collagen comprises a large heterogeneous class of molecules, some with the structural properties classically attributed to “collagen,” but numerous others with additional properties. Vertebrates contain at least 15 different types of collagen. These are found in unique tissue-specific patterns, arise during development in defined temporal and spatial patterns, and exhibit different functional properties. Also, collagens have been shown to be involved, either directly or indirectly, in cell attachment and differentiation, as chemotactic agents, as antigens in immunopathological processes, and as the defective component in certain pathological conditions. Thus, in addition to their structural roles, collagens potentially have numerous developmental and physiological functions, many of which remain to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi, E., and Hayashi, T., 1985, In vitro formation of fine fibrils with a D-periodic banding pattern from type V collagen, Collagen Relat. Res. 5:225–232.

    Article  CAS  Google Scholar 

  • Benya, P. D., and Padilla, S. R., 1986, Isolation and characterization of type VIII collagen synthesized by cultured rabbit corneal endothelial cells. A conventional structure replaces the interrupted-helix model, J. Biol. Chem. 261:4160–4169.

    PubMed  CAS  Google Scholar 

  • Bernard, M., Yoshioka, H., Rodriguez, E., Van der Rest, M., Kimura, T., Ninomiya, Y., Olsen, B. R., and Ramirez, F., 1988, Cloning and sequencing of pro-alpha 1 (XI) collagen cDNA demonstrates that type XI belongs to the fibrillar class of collagens and reveals that the expression of the gene is not restricted to cartilagenous tissue, J. Biol. Chem. 263:17159–17166.

    PubMed  CAS  Google Scholar 

  • Birk, D. E., Fitch, J. M., Babiarz, J. P., and Linsenmayer, T. F., 1988, Collagen type I and type V are present in the same fibril in the avian corneal stroma, J. Cell Biol. 106:999–1008.

    Article  PubMed  CAS  Google Scholar 

  • Birk, D. E., Fitch, J. M., Babiarz, J. P., Doane, K. J., and Linsenmayer, T. F., 1990, Collagen fibrillogenesis in vitro: Interaction of types I and V collagen regulates fibril diameter, J. Cell Sci. 95: 649–657.

    PubMed  CAS  Google Scholar 

  • Bornstein, P., and Sage, H., 1980, Structurally distinct collagen types, Annu. Rev. Biochem. 49:957–1003.

    Article  PubMed  CAS  Google Scholar 

  • Bruns, R. R., 1984, Beaded filaments and long-spacing fibrils: Relation to type VI collagen, J. Ultrastruct. Res. 89:136–145.

    Article  PubMed  CAS  Google Scholar 

  • Burgeson, R. E., 1987, Type VII collagen, in: Structure and Function of Collagen Types (R. Mayne and R. E. Burgeson, eds.), pp. 145–172, Academic Press, New York.

    Google Scholar 

  • Burgeson, R. E., Lunstrum, G. P., Rokosova, B., Rimberg, C. S., Rosenbaum, L. M., and Keene, D. R., 1990, The structure and function of type VII collagen, Ann. N.Y. Acad. Sci. 580:32–43.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q., Gibney, E., Fitch, J. M., Linsenmayer, C., Schmid, T. M., and Linsenmayer, T. F., 1990, Long-range movement and fibril association of type X collagen within embryonic cartilage matrix,Proc. Natl. Acad. Sci. USA 87:8046–8050.

    Article  PubMed  CAS  Google Scholar 

  • Eyre, D., and Muir, H., 1976, Types 1 and 2 collagens in intervertebral disc. Interchanging radial distributions in annuls fibrosus,Biochem. J. 157:267–270.

    PubMed  CAS  Google Scholar 

  • Eyre, D., and Wu, J., 1987, Type XI collagen, in: Structure and Function of Collagen Types (R. Mayne and R. E. Burgeson, eds., pp. 261–282, Academic Press, New York.

    Google Scholar 

  • Fessier, J. H., and Fessler, L. I., 1978, Biosynthesis of procollagen, Annu. Rev. Biochem. 47:129–162.

    Article  Google Scholar 

  • Fessier, J. H., and Fessier, L. I., 1987, Type V collagen, in: Structure and Function of Collagen Types (R. Mayne and R. E. Burgeson, eds.), pp. 81–97, Academic Press, New York.

    Google Scholar 

  • Fitch, J. M., Gross, J., Mayne, R., Johnson Wint, B., and Linsenmayer, T. F., 1984, Organization of collagen types I and V in the embryonic chicken cornea: Monoclonal antibody studies, Proc. Natl. Acad. Sci. USA 81:2791–2795.

    Article  PubMed  CAS  Google Scholar 

  • Fitch, J. M., Birk, D. E., Mentzer, A., Hasty, K. A., Mainardi, C., and Linsenmayer, T. F., 1988a, Corneal collagen fibrils: Dissection with specific collagenases and monoclonal antibodies, Invest. Ophthalmol. Vis. Sci. 29:1125–1136.

    CAS  Google Scholar 

  • Fitch, J. M., Mentzer, A., Mayne, R., and Linsenmayer, T. F., 1988b, Acquisition of type IX collagen by the developing avian primary corneal stroma and vitreous,Dev. Biol. 128:396–405.

    Article  CAS  Google Scholar 

  • Fitch, J. M., Mentzer, A., Mayne, R., and Linsenmayer, T. F., 1989, Independent deposition of collagen types II and IX at epithelial—mesenchymal interfaces, Development 105:85–95.

    PubMed  CAS  Google Scholar 

  • Fleischmajer, R., Perlish, J. S., Burgeson, R. E., Shaikh-Bahai, F, and Timpl, R., 1990, Type I and type III collagen interactions during fibrillogenesis,Ann. N.Y. Acad. Sci. 580:161–175.

    Article  PubMed  CAS  Google Scholar 

  • Gay, S., and Miller, E. J., 1979, Collagen in the Physiology and Pathology of Connective Tissue, Gustav Fischer Verlag, New York.

    Google Scholar 

  • Gordon, M. K., Gerecke, D. R., and Olsen, B. R., 1987, Type XII collagen: Distinct extracellular matrix component discovered by cDNA cloning, Proc. Natl. Acad. Sci. USA 84:6040–6044.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, M. K., Gerecke, D. R., Dublet, B., Van der Rest, M., Sugrue, S. P., and Olsen, B. R., 1990, The structure of type XII collagen,Ann. N.Y. Acad. Sci. 580:8–16.

    Article  PubMed  CAS  Google Scholar 

  • Grant, M. E., and Prockop, D. J., 1972, The biosynthesis of collagen, N. Engl. J. Med. 286:194–300.

    Article  PubMed  Google Scholar 

  • Gross, J., 1974, Collagen biology: Structure, degradation, and disease, Harvey Lect. 6B:351–432.

    Google Scholar 

  • Gunwar, S., Saus, J., Noelken, M. E., and Hudson, B. G., 1990, Glomerular basement membrane. Identification of a fourth chain, a4, of type IV collagen,J. Biol. Chem. 265:5466–5469.

    PubMed  CAS  Google Scholar 

  • Hendrix, M. J., Hay, E. D., Von der Mark, K., and Linsenmayer, T. F.,1982,Immunohistochemical localization of collagen types I and II in the developing chick cornea and tibia by electron microscopy, Invest. Ophthalmol. Vis. Sci. 22:359–375.

    PubMed  CAS  Google Scholar 

  • Hessle, H., and Engvall, E., 1984, Type VI collagen. Studies on its localization, structure, and biosynthetic form with monoclonal antibodies, J. Biol. Chem. 259:3955–3961.

    PubMed  CAS  Google Scholar 

  • Hodge, A. J., and Petruska, J. A., 1963, Recent studies with the electron microscope on ordered aggregates of the tropocollagen molecule, in: Aspects of Protein Structure (G. N. Ramachandran, ed.), pp. 289–301, Academic Press, New York.

    Google Scholar 

  • Hostikka, S. L., Eddy, R. L., Byers, M. G., Höyhtyä, M., Shows, T. B., and Tryggvason, K., 1990, Identification of a distinct type IV collagen a chain with restricted kidney distribution and assignment of its gene to the locus of X chromosome-linked Alport syndrome, Proc. Natl. Acad. Sci. USA 87:1606–1610.

    Article  PubMed  CAS  Google Scholar 

  • Keene, D. R., Sakai, L. Y., Bachinger, H. P., and Burgeson, R. E., 1987, Type III collagen can be present on banded collagen fibrils regardless of fibril diameter, J. Cell Biol. 105:2393–2402.

    Article  PubMed  CAS  Google Scholar 

  • Kefalides, N. A., 1973, Structure and biosynthesis of basement membranes, Int. Rev. Connect. Tissue Res. 6:63–104.

    PubMed  CAS  Google Scholar 

  • Koller, E., Winterhalter, K. H., and Trueb, B., 1989, The globular domains of type VI collagen are related to the collagen-binding domains of cartilage matrix protein and von Willebrand factor, EMBO J. 8:1073–1077.

    PubMed  CAS  Google Scholar 

  • Kosher, R. A., and Solursh, M., 1989, Widespread distribution of type II collagen during embryonic chick development, Dev. Biol. 131:558–566.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, K., 1987, The classical collagens: Types I, II, and III, in: Structure and Function of Collagen Types (R. Mayne and R. E. Burgeson, eds.), pp. 1–42, Academic Press, New York.

    Google Scholar 

  • Linsenmayer, T. F., 1981, Collagen, in: Cell Biology of Extracellular Matrix (E. D. Hay, ed.), pp. 5–37, Plenum Press, New York.

    Chapter  Google Scholar 

  • Linsenmayer, T. F., and Hendrix, M. J. C., 1982, Production of monoclonal antibodies to collagens and their immunofluorescence localization in embryonic cornea and cartilage, in: Immunochemistry of the Extracellular Matrix, Volume I (H. Furthmayr, ed.), pp. 179–198, CRC Press, Boca Raton, Fla.

    Google Scholar 

  • Linsenmayer, T. F., Fitch, J. M., and Mayne, R., 1984, Basement membrane structure and assembly: Inferences from immunological studies with monoclonal antibodies in: The Role of Extra-cellular Matrix in Development (R. L. Trelstad, ed.), pp. 146–172, Liss, New York.

    Google Scholar 

  • Linsenmayer, T. F., Fitch, J. M., Gross, J., and Mayne, R., 1985, Are collagen fibrils in the developing avian cornea composed of two different collagen types? Evidence from monoclonal antibody studies, in: Biochemistry, Chemistry and Pathology of Collagen (R. Fleischmajer, B. R. Olsen, and K. Kuhn, eds.), pp. 232–245, New York Academy of Sciences, New York.

    Google Scholar 

  • Linsenmayer, T. F., Gibney, E., and Schmid, T. M., 1986a, Segmental appearance of type X collagen in the developing avian notochord,Dev. Biol. 113:467–473.

    Article  CAS  Google Scholar 

  • Linsenmayer, T. F., Mentzer, A., Irwin, M. H., Waldrep, N. K., and Mayne, R., 1986b, Avian type VI collagen. Monoclonal antibody production and immunohistochemical identification as a major connective tissue component of cornea and skeletal muscle, Exp. Cell Res. 165:518–529.

    Article  CAS  Google Scholar 

  • Linsenmayer, T. F., Fitch, J. M., and Schmid, T. M., 1988, Multiple-reaction cycling: A method for enhancement of the immunochemical signal of monoclonal antibodies, J. Histochem. Cytochem. 36:1075–1078.

    Article  PubMed  CAS  Google Scholar 

  • Linsenmayer T. F., Fitch, J. M., Schmid, T. M., Birk, D. E., Bruns, R. R., and Mayne, R., 1989, Applications of anti-collagen monoclonal antibodies to studies of connective tissue structure and development, in: Collagen: Biochemistry, Biotechnology and Molecular Biology, Volume 4 (B. R. Olsen and M. E. Nimni, eds.), pp. 141–170, CRC Press, Boca Raton, Fla.

    Google Scholar 

  • Linsenmayer, T. F., Fitch, J. M., and Birk, D. E., 1990, Heterotypic collagen fibrils and stabilizing collagens: Controlling elements in corneal morphogenesis, Ann. N.Y. Acad. Sci. 580: 143–160.

    Article  PubMed  CAS  Google Scholar 

  • Marchant, J. K., Linsenmayer, T. F., and Gordon, M. K., 1990, cDNA analysis predicts a novel cornea-specific collagen, Proc. Natl. Acad. Sci. USA 88:1560–1564.

    Article  Google Scholar 

  • Mayne, R., and Burgeson, R. E. (eds.), 1987, Structure and Function of Collagen Types, Academic Press, New York.

    Google Scholar 

  • Mayne, R., Wiedemann, H., Irwin, M. H., Sanderson, R. D., Fitch, J. M., Linsenmayer, T. F. and Kuhn, K., 1984, Monoclonal antibodies against chicken type IV and V collagens: Electron microscopic mapping of the epitopes after rotary shadowing, J. Cell Biol. 98:1637–1644.

    Article  PubMed  CAS  Google Scholar 

  • Mendler, M., Eich-Bender, S. G., Vaughan, L., Winterhalter, K. H., and Bruckner, P., 1989, Cartilage contains mixed fibrils of collagen types II, IX, and XI, J. Cell Biol. 108:191–198.

    Article  PubMed  CAS  Google Scholar 

  • Miller, E. J., 1972, Structural studies on cartilage collagen employing limited cleavage and solubilization with pepsin, Biochemistry 11:4903–4909.

    Article  PubMed  CAS  Google Scholar 

  • Morris, N. P., and Bachinger, H. P., 1987, Type XI collagen is a heterotrimer with the composition (1 alpha, 2 alpha, 3 alpha) retaining non-triple-helical domains, J. Biol. Chem. 262:11345–11350.

    PubMed  CAS  Google Scholar 

  • Nishimura, I., Muragaki, Y., and Olsen, B. R., 1989, Tissue-specific forms of type IX collagenproteoglycan arise from the use of two widely separated promoters, J. Biol. Chem. 264:20033–20041.

    PubMed  CAS  Google Scholar 

  • Okada, Y., Konomi, H., Yada, T., Kimata, K., and Nagase, H., 1989, Degradation of type IX collagen by matrix metalloproteinase 3 (stromelysin) from human rheumatoid synovial cells, FEBS Lett. 244:473–476.

    Article  PubMed  CAS  Google Scholar 

  • Pihlajaniemi, T., and Tamminen, M., 1990, The al chain of type XIII collagen consists of three collagenous and four noncollagenous domains, and its primary transcript undergoes complex alternative splicing, J. Biol. Chem. 265:16922–16928.

    PubMed  CAS  Google Scholar 

  • Pihlajaniemi, T., Tamminen, M., Sandberg, M., Hirvonen, H., and Vuorio, E., 1990, The al chain of type XIII collagen: Polypeptide structure, alternative splicing, and tissue distribution, Ann. N.Y. Acad. Sci. 580:440–443.

    Article  Google Scholar 

  • Poole, A. R., and Pidoux, I., 1989, Immunoelectron microscopic studies of type X collagen in endochondral ossification,J. Cell Biol. 109:2547–2554.

    Article  CAS  Google Scholar 

  • Prockop, D. J., Kivirikko, K. I., Tuderman, L., and Guzman, N. A., 1979, The biosynthesis of collagen and its disorders, N. Engl. J. Med. 301:13–23.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran, G. N., and Ramakrishnan, C. F., 1976, Molecular structure, in: Biochemistry of Collagen (G. N. Ramachandran and A. H. Reddi, eds., pp. 45–84, Plenum Press, New York.

    Google Scholar 

  • Reese, C. A., and Mayne, R., 1981, Minor collagens of chicken hyaline cartilage, Biochemistry 20:5443–5448.

    Article  PubMed  CAS  Google Scholar 

  • Sage, H., and Bornstein, P., 1987, Type VIII collagen, in: Structure and Function of Collagen Types (R. Mayne and R. E. Burgeson, eds.), pp. 173–193, Academic Press, New York.

    Google Scholar 

  • Sage, H., and Iruela-Arispe, M. -L., 1990, Type VIII collagen in murine development: Association with capillary formation in vitro,Ann. N.Y. Acad. Sci. 580:17–31.

    Article  PubMed  CAS  Google Scholar 

  • Schmid, T. M., and Linsenmayer, T. F., 1985, Developmental acquisition of type X collagen in the embryonic chick tibiotarsus, Dev. Biol. 107:373–381.

    Article  PubMed  CAS  Google Scholar 

  • Schmid, T. M., and Linsenmayer, T. F., 1987, Type X collagen, in: Structure and Function of Collagen Types (R. Mayne and R. E. Burgeson, eds.), pp. 223–259, Academic Press, New York

    Google Scholar 

  • Schmid, T.M., and Linsenmayer, T. F., 1990, Immunoelectron microscopy of type X collagen: Supramolecular forms within embryonic chick cartilage, Dev. Biol. 138:53–62.

    Article  PubMed  CAS  Google Scholar 

  • Schmid, T. M., Mayne, R., Bruns, R. R., and Linsenmayer, T. F., 1984, Molecular structure of short-chain (SC) cartilage collagen by electron microscopy, J. Ultrastruct. Res. 86:186–191.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, R. C., 1979, Lysyl oxidase, Int. Rev. Connect. Tissue Res. 8:73–118.

    PubMed  CAS  Google Scholar 

  • Smith, G. N., Jr., Linsenmayer, T. F., and Newsome, D. A., 1976, Synthesis of type II collagen in vitro by embryonic chick neural retina tissue, Proc. Natl. Acad. Sci. USA 73:4420–4423.

    Article  PubMed  CAS  Google Scholar 

  • Sugrue, S. P., Gordon, M. K., Seyer, J., Dublet, B., Van der Rest, M., and Olsen, B. R., 1989, Immunoidentification of type XII collagen in embryonic tissues, J. Cell Biol. 109:939–945.

    Article  PubMed  CAS  Google Scholar 

  • Summers, T. A., Irwin, M. H., Mayne, R., and Balian, G., 1988, Monoclonal antibodies to type X collagen. Biosynthetic studies using an antibody to the amino-terminal domain, J. Biol. Chem. 263:581–587.

    PubMed  CAS  Google Scholar 

  • Svoboda, K. K., Nishimura, I., Sugrue, S. P., Ninomiya, Y., and Olsen, B. R., 1988, Embryonic chicken cornea and cartilage synthesize type IX collagen molecules with different amino-terminal domains,Proc. Natl. Acad. Sci. USA 85:7496–7500.

    Article  PubMed  CAS  Google Scholar 

  • Tanzer, M. L., 1973, Cross-linking of collagen, Science 180:561–566.

    Article  PubMed  CAS  Google Scholar 

  • Tanzer, M. L., 1976, Cross-linking, in: Biochemistry of Collagen (G. N. Ramachandran and A. H. Reddi, eds.), pp. 137–157, Plenum Press, New York.

    Google Scholar 

  • Tikka, L., Pihlajaniemi, T., Henttu, P., Prockop, D. J., and Tryggvason, K., 1988, Gene structure for the alpha 1 chain of a human short-chain collagen (type XIII) with alternatively spliced transcripts and translation termination codon at the 5’ end of the last exon, Proc. Natl. Acad. Sci. USA 85:7491–7495.

    Article  PubMed  CAS  Google Scholar 

  • Timpl, R., 1976, Immunological studies on collagen, in: Biochemistry of Collagen (G. N. Ramachandran and A. H. Reddi, eds.), pp. 319–375, Plenum Press, New York.

    Google Scholar 

  • Timpl, R., and Engel, E., 1987, Type VI collagen, in: Structure and Function of Collagen Types (R. Mayne and R. E. Burgeson, eds.), pp. 105–140, Academic Press, New York.

    Google Scholar 

  • Timpl, R., Weidemann, H., VanDelden, V., Furthmayr, H., and Kuhn, K., 1981, A network model for the organization of type IV collagen molecules in basement membranes, Eur. J. Biochem. 120:203–211.

    Article  PubMed  CAS  Google Scholar 

  • Traub, W., and Piez, K. A., 1971, The chemistry and structure of collagen, Adv. Protein Chem. 25:243–352.

    Article  PubMed  CAS  Google Scholar 

  • Trelstad, R. L., Kang, A. H., Igarashi, S., and Gross, J., 1970, Isolation of two distinct collagens from chick cartilage, Biochemistry 9:4993–4998.

    Article  PubMed  CAS  Google Scholar 

  • Van der Rest, M., and Mayne, R., 1987, Type IX collagen, in: Structure and Function of Collagen Types (R. Mayne and R. E. Burgeson, eds.), pp. 195–219, Academic Press, New York.

    Google Scholar 

  • Van der Rest, M. and Mayne, R., 1988, Type IX collagen proteoglycan from cartilage is covalently cross-linked to type II collagen, J. Biol. Chem. 263:1615–1618.

    PubMed  Google Scholar 

  • Van der Rest, M., Mayne, R., Ninomiya, Y., Seidah, N. G., Chretien, M., and Olsen, B. R., 1985, The structure of type IX collagen, J. Biol. Chem. 260:220–225.

    PubMed  Google Scholar 

  • Vaughan, L., Mendier, M., Huber, S., Bruckner, P., Winterhalter, K. H., Irwin, M. I., and Mayne, R., 1988, D-periodic distribution of collagen type IX along cartilage fibrils, J. Cell Biol. 106:991–997.

    Article  CAS  Google Scholar 

  • Wright, D. W., and Mayne, R., 1988, Vitreous humor of chicken contains two fibrillar systems: An analysis of their structureJ. Ultrastruct. Mol. Struct. Res. 100:224–234.

    Article  PubMed  CAS  Google Scholar 

  • Yada, T., Suzuki, S., Kobayashi, K., Kobayashi, M., Hoshino, T., Horie, K., and Kimata, K., 1990, Occurrence in chick embryo vitreous humor of a type IX collagen proteoglycan with an extraordinarily large chondroitin sulfate chain and short al polypeptide, J. Biol. Chem. 265:6992–6999.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, N., Benya, P. D., Van der Rest, M., and Ninomiya, Y., 1989, The cloning and sequencing of ai(VIII) collagen cDNAs demonstrate that type VIII collagen is a short chain collagen and contains triple-helical and carboxyl-terminal non-triple-helical domains similar to those of type X collagen, J. Biol. Chem. 264:16022–16029.

    PubMed  CAS  Google Scholar 

  • Yoshioka, H., and Ramirez, F., 1990, Pro-a1(XI) collagen. Structure of the amino-terminal propeptide and expression of the gene in tumor cell lines, J. Biol. Chem. 265:6423–6426.

    PubMed  CAS  Google Scholar 

  • Yurchenco, P. D., and Schittny, J. C., 1990, Molecular architecture of basement membranes FASEB J. 4:1577–1590.

    PubMed  CAS  Google Scholar 

  • Zimmerman, D. R., Fischer, R. W., Winterhalter, K. H., Witmer, R., and Vaughan, L., 1988, Comparative studies of collagens in normal and keratoconus corneas, Exp. Eye Res. 46:431–442.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Linsenmayer, T.F. (1991). Collagen. In: Hay, E.D. (eds) Cell Biology of Extracellular Matrix. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3770-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3770-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6680-5

  • Online ISBN: 978-1-4615-3770-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics