Skip to main content

Bioremediation of Toxic Pollutants: Features, Strategies, and Applications

  • Chapter
  • First Online:
Contaminants in Agriculture

Abstract

Advancement in the agricultural science and technology made it possible to increase production and availability of nutrition and enriched food to the increasing population. However, this advancement has also been incorporating pollutants into the environment day by day similar to the industrialization and urbanization. Although nature itself is capable to depollute agricultural pollutants to some extent through general recycling processes, the persistent toxic pollutants need additional efforts for proper detoxification. There are three main approaches, namely, physical, chemical, and biological, which are used to solve this issue. In recent years, special attention has been given to biological approaches due to their low cost, less time and resources requirement, and environmentally friendly nature. The use of biological approaches for abatement of environmental pollution is called bioremediation. Bioremediation is an environment cleaning process which uses microorganisms, fungi, green plants, or their enzymes to reclaim polluted soil and water. This chapter outlines the technologies and strategies involved in bioremediation processes, their special features, recent developments, and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achal V, Pan X, Zhang D (2011) Remediation of copper-contaminated soil by Kocuriaflava CR1, based on microbially induced calcite precipitation. Ecol Eng 37(10):1601–1605

    Google Scholar 

  • Achal V, Pan X, Fu Q, Zhang D (2012a) Biomineralization based remediation of as (III) contaminated soil by Sporosarcina ginsengisoli. J Hazar Mater 201–202:178–184

    Article  CAS  Google Scholar 

  • Achal V, Pan X, Zhang D (2012b) Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Chemosphere 89:764–768

    Article  CAS  PubMed  Google Scholar 

  • Adams GO, Fufeyin PT, Okoroz SE, Ehinomen I (2015) Bioremediation, biostimulation and bioaugmentation: a review. Int J Envt Bioremed Biodegred 3(1):28–39

    CAS  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technol 98(12):2243–2257

    Google Scholar 

  • Akbari A, Ghoshal S (2014) Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site. J Hazard Mater 280:595–602

    Article  CAS  PubMed  Google Scholar 

  • Alcock RE, MacGilliray BH, Busby JS (2011) Understanding the mismatch between the demands of risk assessment and practice of scientists — the case of Deca-BDE. Environ Int 37:216–225

    Article  CAS  PubMed  Google Scholar 

  • Aneja RK, Chaudhary G, Ahluwalia SS, Goyal D (2010) Biosorption of Pb and Zn by Non-Living Biomass of Spirulina sp. Indian J Microbiol 50:438–442

    Article  CAS  PubMed  Google Scholar 

  • Antizar-Ladislao B (2010) Bioremediation: working with bacteria. Elements 6:389–394

    Article  CAS  Google Scholar 

  • Antizar-Ladislao B, Beck AJ, Spanova K, Lopez-Real J, Russell NJ (2007) The influence of different temperature programmes on the bioremediation of polycyclic aromatic hydrocarbons (PAHs) in a coal-tar contaminated soil by in-vessel composting. J Hazard Mater 14:340–347

    Article  CAS  Google Scholar 

  • Antizar-Ladislao B, Spanova K, Beck AJ, Russell NJ (2008) Microbial community structure changes during bioremediation of PAHs in an aged coal-tar contaminated soil by in-vessel composting. Int Biodeterior Biodegrad 61:357–364

    Article  CAS  Google Scholar 

  • Arsam B, Romain L, Laurent S, Rachid O, Badie IM (2007) Gas holdup and bubble size behavior in a large-scale slurry bubble column reactor operating with an organic liquid under elevated pressures and temperatures. Chem Eng J 128:69–84

    Article  CAS  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362

    Article  CAS  PubMed  Google Scholar 

  • Atlas R, Bartha R (1998) Microbial Ecology: Fundamentals and Applications, Benjamin/Cummings Sci Pub, Menlo Park, CA. 99–103

    Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili (2016) Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32:180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blanca A, Angus JB, Katerina S, Joe L, Nicholas JR (2007) The influence of different temperature programmes on the bioremediation of polycyclic aromatic hydrocarbons (PAHs) in a coal-tar contaminated soil by in-vessel composting. J Hazard Mater 14:340–347

    Google Scholar 

  • Blanca A, Katerina S, Angus JB, Nicholas JR (2008) Microbial community structure changes during bioremediation of PAHs in an aged coal-tar contaminated soil by in-vessel composting. Int Biodeteriorat & Biodegrad 61:357–364

    Google Scholar 

  • Banuelos G, Terry N, Leduc DL, Pilon-Smits EAH, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium contaminated sediment. Environ Sci Technol 39:1771–1777

    Article  CAS  PubMed  Google Scholar 

  • Barr D (2002) Biological methods for assessment and remediation of contaminated land: case studies. Construction Industry Research and Information Association, London

    Google Scholar 

  • Bouwer EJ, Zehnder AJB (1993) Bioremediation of organic compounds putting microbial metabolism to work. Trends Biotechnol 11:287–318

    Article  Google Scholar 

  • Burgess JE, Parsons SA, Stuetz RM (2001) Developments in odour control and waste gas treatment biotechnology: a review. Biotechnol Adv 19:35–63

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Jiang M, Zeng Z, Du A, Tan H, Liu Y (2008) TrichodermaatrovirideF6 improves phytoextraction efficiency of mustard (Brassica juncea (L.) Coss. var. foliosaBailey) in Cd, Ni contaminated soils. Chemosphere 71:1769–1173

    Article  CAS  PubMed  Google Scholar 

  • Cerqueira VS, Peralba MR, Camargo FAO, Bento FM (2014) Comparison of bioremediation strategies for soil impacted with petrochemical oily sludge. Int Biodeterior Biodegrad 95:338–345

    Article  CAS  Google Scholar 

  • Chemlal R, Abdi N, Lounici H, Drouiche N, Pauss A, Mameri N (2013) Modeling and qualitative study of diesel biodegradation using biopile process in sandy soil. Int Biodeterior Biodegrad 78:43–48

    Article  CAS  Google Scholar 

  • Chikere CB, Chikere BO, Okpokwasili GC (2012) Bioreactor-based bioremediation of hydrocarbon-polluted Niger Delta marine sediment, Nigeria. 3 Biotech 2:53–66

    Article  PubMed  Google Scholar 

  • Chikere CB, Okoye AU, Okpokwasili GC (2016) Microbial community profiling of active oleophilic bacteria involved in bioreactor based crude-oil polluted sediment treatment. World J Microbiol Biotechnol 32:180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choudhary S, Sar P (2011) Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste. J Hazard Mater 186(1):336–343

    Google Scholar 

  • Danh LT, Truong P, Mammucari R, Tran T, Foster N (2009) Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. Int J Phytoremediation 11:664–691

    Article  CAS  PubMed  Google Scholar 

  • Danika L, LeDuc, Norman T (2005) Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol 32:514–520

    Article  CAS  Google Scholar 

  • Delforno TP, Moura AGL, Okada DY, Sakamoto IK, Varesche MBA (2015) Microbial diversity and the implications of sulfide levels in an anaerobic reactor used to remove an anionic surfactant from laundry wastewater. Bioresour Technol 192:37–45

    Article  CAS  PubMed  Google Scholar 

  • Dhermendra KT, Behari J, Prasenjit S (2008) Application of nanoparticles in waste water treatment. World Appl Sci J 3(3):417–433

    Google Scholar 

  • Dias RL, Ruberto L, Calabro’ A, Balbo AL, Del Panno MT, Mac Cormack WP (2015) Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated Antarctic soil. Polar Biol 38:677–687

    Article  Google Scholar 

  • Dudhane M, Borde M, Jite PK (2012) Effect of aluminium toxicity on growth responses and antioxidant activities in Gmelina arborea Roxb inoculated with AM Fungi. Int J Phytoremediation 14(7):643–655

    Article  CAS  PubMed  Google Scholar 

  • Ekmekyapar F, Aslan A, Bayhan YK, Cakici A (2012) Biosorption of Pb(II) by Nonliving Lichen Biomass of Cladonia rangiformis Hoffm. Int J Environ Res 6(2):417–424

    CAS  Google Scholar 

  • Erakhrumen AA (2007) Phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in developing countries. Edu Res Rev 2:151–156

    Google Scholar 

  • Firmino PIM, Farias RS, Barros AN, Buarque PMC, Rodrı’guez E, Lopes AC, dos Santos AB (2015) Understanding the anaerobic BTEX removal in continuous-flow bioreactors for ex situ bioremediation purposes. Chem Eng J 281:272–280

    Article  CAS  Google Scholar 

  • Frutos FJG, Escolano O, Garcı’a S, Mar Babı’n M, Ferna’ndez MD (2010) Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil. J Hazard Mater 183:806–813

    Article  CAS  Google Scholar 

  • Fulekar MH (2010) Bioremediation Technology for Hazardous Wastes-Recent Advances. In Bioremediation Technology (135–166). Springer, Dordrecht

    Google Scholar 

  • Fuller ME, Kruczek J, Schuster RL, Sheehan PL, Arienti PM (2003) Bioslurry treatment for soils contaminated with very high concentrations of 2,4,6-trinitrophenylmethylnitramine (tetryl). J Hazard Mater 100:245–257

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiol 156:609–643

    Article  CAS  Google Scholar 

  • Garima T, Singh SP (2014) Application of bioremediation on solid waste management: a review. J Bioremed Biodegr 5:248–256

    Google Scholar 

  • Gaur N, Flora G, Yadav M, Archana Tiwari (2013) A review with recent advancements on bioremediation-based abolition of heavy metals. Environ Sci Processes & Impacts 16(2):180–193

    Google Scholar 

  • Ghosh S (2010) Wetland macrophytes as toxic metal accumulators. Int J Environ Sci 1:523–528

    Google Scholar 

  • Glass DJ (2000) Economic potential of phytoremediation. In: hytoremediation of toxic metals – using plants to clean up the environment, vol 7. Wiley, New York, pp 15–33

    Google Scholar 

  • Glazer AN, Nikaido H (1995) Microbial biotechnology: fundamentals of applied microbiology. Freeman, New York

    Google Scholar 

  • Gomez F, Sartaj M (2014) Optimization of field scale biopiles for bioremediation of petroleum hydrocarbon contaminated soil at low temperature conditions by response surface methodology (RSM). Int Biodeterior Biodegrad 89:103–109

    Article  CAS  Google Scholar 

  • Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, He Y (2010) Bioremediation of heavy metals by growing hyper accumulator endophytic bacterium Bacillus sp. L14. Bioresource Tech 101(22):8599–8605

    Google Scholar 

  • Hajabbasi AM, Khoshgoftarmanesh A, Dorostkar V (2011) Landfarming process effects on biochemical properties of petroleum-contaminated soils. Soil Sediment Contam Int J 20:234–248

    Article  CAS  Google Scholar 

  • Henis Y (1997) Bioremediation in agriculture: dream or reality? In Modern Agriculture and the Environment (481–489). Springer, Dordrecht

    Google Scholar 

  • Höhener P, Ponsin V (2014) In situ vadose zone bioremediation. Curr Opin Biotechnol 27:1–7

    Article  PubMed  CAS  Google Scholar 

  • Hrynkiewicz K, Baum C (2012) The potential of rhizosphere microorganisms to promote the plant growth in disturbed soils. In Environmental protection strategies for sustainable development (35–64). Springer, Dordrecht

    Google Scholar 

  • Hussain S, Siddique T, Arshad M, Saleem M (2009) Bioremediation and phytoremediation of pesticides: recent advances. Critic Rev Environ Sci Tech 39:843–907

    Article  CAS  Google Scholar 

  • Jiang CY, Sheng XF, Qian M, Wang QY (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72(2):157–164

    Google Scholar 

  • Kao CM, Chen CY, Chen SC, Chien HY, Chen YL (2008) Application of in situ biosparging to remediate a petroleum hydrocarbon spill site: field and microbial evaluation. Chemosphere 70:1492–1499

    Article  CAS  PubMed  Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manag 71:95–122

    Article  Google Scholar 

  • Kirk TK, Lamar RT, Glaser JA (1992) The potential of white-rot fungi in bioremediation. In: Mongkolsuk S, Lovett PS, Trempy JE (eds) Biotechnology and environmental science – molecular approaches. Proced. Int. Conf. Biotechnol. Environ. Sci. Mol. Approach, New York, pp 131–138

    Google Scholar 

  • Krystofova O, Zitka O, Krizkova S, Hynek D, Shestivska V, Adam V, Hubalek J, Mackova M, Macek T, Zehnalek J (2012) Int. J Electrochem Sci 7:886–907

    CAS  Google Scholar 

  • KudjoDzantor E (2007) Phytoremediation: the state of rhizosphere engineering for accelerated rhizodegradation of xenobiotic contaminants. J Chem Technol Biotechnol 82:228–232

    Article  CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant-Microbe Interact 7:6–15

    Article  Google Scholar 

  • Kumar JIN, Soni H, Kumar RN, Bhatt I (2008) Macrophytes in phytoremediation of heavy metal contaminated water and sediments in Pariyej community reserve, Gujarat. India Turk J Aquat Fish Sci 8:193–200

    Google Scholar 

  • Kumar A, Bisht BS, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1(6):1079–1093

    Google Scholar 

  • Lambert JM, Yang T, Thomson NR, Barker JF (2009) Pulsed biosparging of a residual fuel source emplaced at CFB borden. Int J Soil Sedi Water 2(3):6

    Google Scholar 

  • Lee YC, Chang SP (2011) The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresour Technol 102(9):5297–5304

    Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbial Rev 53(3):305–315

    Google Scholar 

  • Liu D, Zou J, Wang M, Jiang W (2008) Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L. Bioresour Technol 99(7):2628–2636

    Article  CAS  PubMed  Google Scholar 

  • Loukidou MX, Matis KA, Zouboulis AI, Liakopoulou-Kyriakidou M (2003) Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Res 37(18):4544–4552

    Article  CAS  PubMed  Google Scholar 

  • Lyyra S, Meagher RB, Kim T, Heaton A, Montello P, Balish RS, Merkle SA (2007) Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury. Plant Biotechnol J 5(2):254–262

    Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyper accumulates arsenic. Nature 409(6820):579

    Google Scholar 

  • Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  CAS  PubMed  Google Scholar 

  • Maila MP, Colete TE (2004) Bioremediation of petroleum hydrocarbons through land farming: are simplicity and cost-effectiveness the only advantages? Rev Environ Sci Biotechnol 3:349–360

    Article  CAS  Google Scholar 

  • Mahar A, Wang, P, Ali A, Awasthi MK, Lahori AH, Wang Q, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environl Safety 26:111–121

    Google Scholar 

  • Mane PC, Bhosle AB (2012) Bioremoval of Some Metals by Living Algae Spirogyra sp. and Spirullina sp. from aqueous solution. Int J Environ Res 6(2):571–576

    Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11:843–872

    Article  CAS  Google Scholar 

  • Mani D, Sharma B, Kumar C, Balak S (2012) Cadmium and lead bioaccumulation during growth stages alters sugar and vitamin C content in dietary vegetables. Proc Natl Acad Sci India Sect B Biol Sci 82(4):477–488

    Article  CAS  Google Scholar 

  • Marcia P, Brancilene SA, Charlwood BV (1999) Novel biotechnological approaches in environmental remediation research. Biotechnol Adv 17:679–687

    Article  Google Scholar 

  • McIntyre T (2003) Phytoremediation of heavy metals from soils. Adv Biochem Engg Biotechnol 78:97–123

    CAS  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375

    Article  CAS  PubMed  Google Scholar 

  • Memon AR, Aktoprakligil D, Ozdemir A, Vertii A (2001) Heavy metal accumulation and detoxification mechanisms in plants. Turk J Bot 25:111–121

    Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116(3):278–283

    Article  CAS  PubMed  Google Scholar 

  • Mihopoulos PG, Suidan MT, Sayles GD (2000) Vapor phase treatment of PCE by lab-scale anaerobic bioventing. Water Res 34:3231–3237

    Article  CAS  Google Scholar 

  • Mihopoulos PG, Suidan MT, Sayles GD, Kaskassian S (2002) Numerical modeling of oxygen exclusion experiments of anaerobic bioventing. J Contam Hydrol 58:209–220

    Article  CAS  PubMed  Google Scholar 

  • Mohamad OA, Hao X, Xie P, Hatab S, Lin Y, Wei G (2012) Microbes Environ 27:234–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Mustafa YA, Abdul-Hameed HM, Razak ZA (2015) Biodegradation of 2, 4-dichlorophenoxyacetic acid contaminated soil in a roller slurry bioreactor. Clean-Soil Air Water 43:1115–1266

    Article  CAS  Google Scholar 

  • Natrajan KA (2008) Microbial aspects of acid mine drainage and its bioremediation. Trans Nonferrous Metals Soc China 18:1352–1360

    Article  Google Scholar 

  • Niu GL, Zhang JJ, Zhao S, Liu H, Boon N et al (2009) Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73. Environ Pollut 157:763–771

    Article  CAS  PubMed  Google Scholar 

  • Okpokwasili GC (2007) Biotechnology and clean environment, in Proceedings of the 20th Annual conference of the Biotechnology Society of Nigeria (BSN) (Abakaliki: Ebonyi State University)

    Google Scholar 

  • Pakdaman BS, Goltapeh EM (2006) An in vitro study on the possibility of rapeseed white stem rot disease control through the application of prevalent herbicides and Trichoderma species. Pak J Biol Sci 10:7–12

    Google Scholar 

  • Paudyn K, Rutter A, Rowe RK, Poland JS (2008) Remediation of hydrocarbon contaminated soils in the Canadian Arctic by land farming. Cold Reg Sci Technol 53:102–114

    Article  Google Scholar 

  • Phang SM, Chu WL, Rabiei R (2015) Phycoremediation. In: Sahoo D, Seckbach J (eds) The algae world. Cellular origin, life in extreme habitats and astrobiology, vol 26. Springer, Dordrecht

    Google Scholar 

  • Philp JC, Atlas RM (2005) Bioremediation of contaminated soils and aquifers. In: Atlas RM, Philp JC (eds) Bioremediation: applied microbial solutions for real-world environmental cleanup. American Society for Microbiology (ASM) Press, Washington, D.C., pp 139–236

    Chapter  Google Scholar 

  • Plangklang P, Alissara RA (2010) Bioaugmentation of carbofuran by Burkholderia cepacia PCL3 in a bioslurry phase sequencing batch reactor. Proc Chem 45:230–238

    CAS  Google Scholar 

  • Pletsch M, de Araujo B, Charlwood B (1999) Novel biotechnological approaches in environmental remediation research. Biotechnol Adv 17:679–687

    Article  CAS  PubMed  Google Scholar 

  • Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F et al (2011) Phytoremediation potential of Populus alba and Morus alba for cadmium, chromium and nickel absorption from polluted soil. Int J Environ Res 5:961–970

    CAS  Google Scholar 

  • Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R, Sethunathan N (2010) The impacts of environmental pollutants on microalgae and cyanobacteria. Crit Rev Environ Sci Technol 40:699–821

    Article  CAS  Google Scholar 

  • Ramakrishnan B, Megharaj M, Venkateswarlu K, Sethunathan N, Naidu R (2011) Mixtures of environmental pollutants: effects on microorganisms and their activities. Rev Environ Contam Toxicol 211:63–120

    CAS  PubMed  Google Scholar 

  • Ramasamy RK, Congeevaram S, Thamaraiselvi K (2011) Evaluation of isolated fungal strain from e-waste recycling facility for effective sorption of toxic heavy metals Pb(II) ions and fungal protein molecular characterization-a Mycoremediation approach. Asian J Exp Biol 2(2):342–347

    Google Scholar 

  • Rayner JL, Snape I, Walworth JL, Harvey PM, Ferguson SH (2007) Petroleum–hydrocarbon contamination and remediation by microbioventing at sub-Antarctic Macquarie Island. Cold Reg Sci Technol 48:139–153

    Article  Google Scholar 

  • Razzaq (2017) Phytoremediation: an environmental friendly technique–a review. J Environ Anal Chem 4(2):2380–2391

    Google Scholar 

  • Roseberg E (1993) Exploring microbial growth on hydrocarbons- new markets. Tibtech 11:419–424

    Article  Google Scholar 

  • Ruiz ON, Alvarez D, Gonzalez-Ruiz G, Torres C (2011) Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC Biotechnol 11:82–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai Y, Ma Y, Xu C, Wu H, Zhu W (2012) Phytodesalination of a salt affected soil with four halophytes in China. J Arid Land Stud 22:17–20

    Google Scholar 

  • Sanscartier D, Zeeb B, Koch I, Reimer K (2009) Bioremediation of diesel-contaminated soil by heated and humidified biopile system in cold climates. Cold Reg Sci Technol 55:167–173

    Article  Google Scholar 

  • Saunders RJ, Paul NA, Hu Y, de Nys R (2012) Sustainable sources of biomass for bioremediation of heavy metals in waste water derived from coal-fired power generation. PloS one 7(5):36470

    Google Scholar 

  • Say R, Yimaz N, Denizli A (2003) Removal of heavy metal ions using the fungus Penicillium canescens. Adsorpt Sci Technol 21:643–650

    Article  CAS  Google Scholar 

  • Sei K, Nakao M, Mori KM, Ike M, Kohno T, Fujita M (2001) Design of PCR primers and a gene probe for extensive detection of poly (3-hydroxybutyrate) (PHB)-degrading bacteria possessing fibronectin type III linker type- PHB depolymerases. Appl Microbiol Biotechnol 55:801–806

    Article  CAS  PubMed  Google Scholar 

  • Sekara A, Poniedzialeek M, Ciura J, Jedrszczyk E (2005) Cadmium and lead accumulation and distribution in the organs of nine crops: implications for phytoremediation. Pol J Environ Stud 14:509–516

    CAS  Google Scholar 

  • Selvam A, Wong JW (2008) Phytochelatin synthesis and cadmium uptake of Brassica napus. Environ Technol 29:765–773

    Article  CAS  PubMed  Google Scholar 

  • Shah JK, Sayles GD, Suidan MT, Mihopoulos PG, Kaskassian SR (2001) Anaerobic bioventing of unsaturated zone contaminated with DDT and DNT. Water Sci Technol 43:35–42

    Article  CAS  PubMed  Google Scholar 

  • Shannon MJ, Unterman R (1993) Evaluating bioremediation: distinguishing fact from fiction. Anu Rev Microbiol 47:24

    Google Scholar 

  • Sharma S (2012) Bioremediation: features, strategies and applications. Asian J Pharmac Life Sci 2(2):202–213

    Google Scholar 

  • Shukla KP, Singh NK, Sharma S (2010) Bioremediation: developments, current practices and perspectives. Genetic Eng Biotech J 3:1–20

    CAS  Google Scholar 

  • Silva-Castro GA, Uad I, Go’nzalez-Lo’pez J, FandinËœo CG, Toledo FL, Calvo C (2012) Application of selected microbial consortia combined with inorganic and oleophilic fertilizers to recuperate oil-polluted soil using land farming technology. Clean Technol Environ Policy 14:719–726

    Article  CAS  Google Scholar 

  • Silva-Castro GA, Uad I, Rodrı’guez-Calvo A, Gonza’lez-Lo’pez J, Calvo C (2015) Response of autochthonous microbiota of diesel polluted soils to land- farming treatments. Environ Res 137:49–58

    Article  CAS  PubMed  Google Scholar 

  • Singh S (2012) Phytoremediation: a sustainable alternative for environmental challenges. Int J Gr Herb Chem 1:133–139

    CAS  Google Scholar 

  • Singh OV, Jain RK (2003) Phytoremediation of toxic aromatic pollutants from soil. Appd Microbiol Biotechnol 63:128–135

    Article  CAS  Google Scholar 

  • Singhal RK, Joshi S, Tirumalesh K, Gurg RP (2004) Reduction of uranium concentration in well water by Chlorella (Chlorella pyrenoidosa) a fresh water algae immobilized in calcium alginate. J Radioanal Nuclear Chem 261:73–78

    Article  CAS  Google Scholar 

  • Sulmon C, Gouesbet G, Binet F, Martin-Laurent F, Amrani AE, Couée I (2007) Sucrose amendment enhances phytoaccumulation of the herbicide atrazine in Arabidopsis thaliana. Environ Pollut 145:507–515

    Article  CAS  PubMed  Google Scholar 

  • Thome’ A, Reginatto C, Cecchin I, Colla LM (2014) Bioventing in a residual clayey soil contaminated with a blend of biodiesel and diesel oil. J Environ Eng 140:1–6

    Article  CAS  Google Scholar 

  • Tiwari S, Kumari B, Singh SN (2008) Evaluation of metal mobility/ immobility in fly ash induced by bacterial strains isolated from rhizospheric zone of Typha latifolia growing on fly ash dumps. Bioresour Technol 99:1305–1310

    Article  CAS  PubMed  Google Scholar 

  • Uqab B, Mudasir S, Nazir R (2016) Review on bioremediation of pesticides. J Bioremed Biodegr 7(3):343–347

    Google Scholar 

  • Vanderford M, Shanks JV, Hughes JB (1997) Phytotransformation of trinitrotoluene (TNT) and distribution of metabolic products in Myriophyllum aquaticum. J Biotechnol Lett 19:277–280

    Article  CAS  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Article  CAS  Google Scholar 

  • Vesely T, Tlustos P, Szakova J (2012) Organic acid enhanced soil risk element (Cd, Pb and Zn) leaching and secondary bioconcentration in water lettuce (Pistia stratiotes L.) in the rhizofiltration process. Int J Phytoremediat 14(4):335–349

    Article  CAS  Google Scholar 

  • Vidali M (2001) Bioremediation: an overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Vullo DL, Ceretti HM, Daniel MA, Ramírez SA, Zalts A (2008) Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Bioresource Technol 99(13): 5574–5581

    Google Scholar 

  • Whelan MJ, Coulon F, Hince G, Rayner J, McWatters R, Spedding T, Snape I (2015) Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere 131:232–240

    Article  CAS  PubMed  Google Scholar 

  • Wojas S, Hennig J, Plaza S, Geisler M, Siemianowski O et al (2009) Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation. Environ Pollut 157(10):2781–2789

    Article  CAS  PubMed  Google Scholar 

  • Wood TK (2008) Molecular approaches in bioremediation. Curr Opin Biotechnol 19:572–578

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Crapper M (2009) Simulation of biopile processes using a hydraulics approach. J Hazard Mater 171(1–3):1103–1111

    Article  CAS  PubMed  Google Scholar 

  • Wu HB, Tang SR (2009) Using CO2 to increase the biomass of a Sorghum vulgare 9 Sorghum vulgare var. Sudanese hybrid and Trifolium pratense L and to trigger hyperaccumulation of cesium. J Hazard Mater 170:861–870

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20

    Article  Google Scholar 

  • Xu P, Ma W, Han H, Jia S, Hou B (2015) Isolation of a naphthalene- degrading strain from activated sludge and bioaugmentation with it in a MBR treating coal gasification wastewater. Bull Environ Contam Toxicol 94:358–364

    Article  CAS  PubMed  Google Scholar 

  • Yoon JM, Oliver DJ, Shanks JV (2008) Phytotransformation of 2, 4-Dinitrotoluene in Arabidopsis thaliana: toxicity, fate, and gene expression studies in vitro. Biotech Prog 19:1524–1531

    Article  CAS  Google Scholar 

  • Yuwei C, Jianlong W (2011) Chem Eng J 168:286–292

    Article  CAS  Google Scholar 

  • Zangi-Kotler M, Ben-Dov E, Tiehm A, Kushmaro A (2015) Microbial community structure and dynamics in a membrane bioreactor supplemented with the flame retardant dibromoneopentyl glycol. Environ Sci Pollut Res Int 22:17615–17624

    Article  CAS  PubMed  Google Scholar 

  • Zarei M, Hempel S, Wubet T, Schafer T, Savaghebi G et al (2010) Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ Pollut 158:2757–2765

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, A. et al. (2020). Bioremediation of Toxic Pollutants: Features, Strategies, and Applications. In: Naeem, M., Ansari, A., Gill, S. (eds) Contaminants in Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-41552-5_18

Download citation

Publish with us

Policies and ethics