Skip to main content

Environmental Biotechnology: For Sustainable Future

  • Chapter
  • First Online:
Bioremediation and Biotechnology, Vol 2

Abstract

Environmental biotechnology is the integration of scientific and engineering knowledge that is employed to remediate and restore the degraded environment. Together with the setting of standards for industry and enforcement of compliance and the implementation of legislation for environmental protection, environmental biotechnology gained importance and broadness in the 1980s. Environmental biotechnology is not a new area of science. It is there for generations, and we are quite familiar with some old technologies like wastewater treatment, compositing, etc. Basically, its origin is from chemical engineering but with the advancement of time other branches of science like biochemistry, environmental microbiology, molecular biology, environmental engineering contributed to its advancement. Since rapid industrialization, urbanization, and other developments have resulted in a threatened clean environment and depleted natural resources. Higher consumer demand and high standard of living have amplified pollution of air with harmful gases, water bodies with hazardous industrial discharges, and soil with the use of pesticides and use of non-biodegradable products. Some of these pollutants can readily be degraded or be removed by using different approaches, but unfortunately, some environmental contaminants are resistant to a process or stimulus and can accumulate in the environment. Furthermore, the treatment of some pollutants by conventional methods, such as chemical degradation, incineration, or landfilling, can generate other contaminants, which superimposed on the large variety of noxious waste present in the environment and determine increasing consideration to be placed on the development of combination with alternative, economical, and reliable biological treatments. This chapter focuses on the biotechnological approaches with special reference to environmental biotechnology used to combat different environmental pollution. Some new approaches to rejuvenate the degraded environment, future prospects, and new developments for sustainable future are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abioye OP (2011) Soil contamination. IntechOpen, London

    Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Chemosphere 91:869–881

    Article  CAS  PubMed  Google Scholar 

  • Andreoli CV, Von Sperling M, Fernandes F, Ronteltap M (2007) Sludge treatment and disposal. IWA Publishing, London

    Google Scholar 

  • Bajpai P, Anand A, Sharma N, Mishra SP, Bajpai PK, Lachenal D (2006) Bioresources 1:34–44

    Google Scholar 

  • Bollag JM, Dec J, Krishnan SB (1998) Use of plant material for the removal of pollutants by polymerization and binding to humic substances. Citeseer

    Google Scholar 

  • Boyetchko S, Pedersen E, Punja Z, Reddy M (1999) Biopesticides: use and delivery. Springer, Totowa, pp 487–508

    Google Scholar 

  • Caputo AC, Pelagagge PM (2001) Waste-to-energy plant for paper industry sludges disposal: technical-economic study. J Hazard Mater 81:265–283

    Article  CAS  PubMed  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das K (2010) Bioresour Technol 101:3097–3105

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Conti ME (2008) Biological monitoring: theory & applications: bioindicators and biomarkers for environmental quality and human exposure assessment. WIT Press, Southampton

    Google Scholar 

  • Cui Y, Wei Q, Park H, Lieber CM (2001) Science 293:1289–1292

    Article  CAS  PubMed  Google Scholar 

  • Dale BE (2006) Biomass refining global impact—the biobased economy of the 21st century. Biorefin Ind Process Prod 1:41–66

    Google Scholar 

  • Dervash MA, Bhat RA, Shafiq S, Singh DV, Mushtaq N (2020) Biotechnological intervention as an aquatic clean up tool. In: Qadri H, Bhat RA, Dar GH, Mehmood MA (eds) Freshwater pollution dynamics and remediation. Springer, Singapore, pp 183–196

    Chapter  Google Scholar 

  • Doble M, Kruthiventi AK, Gaikar VG (2004) Biotransformations and bioprocesses. CRC Press, Boca Raton

    Book  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri A (2002) Appl Microbiol Biotechnol 59:143–152

    Article  CAS  PubMed  Google Scholar 

  • Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28:83–99

    Article  CAS  Google Scholar 

  • Durrieu C, Tran-Minh C, Chovelon JM, Barthet L, Chouteau C, Védrine C (2006) Algal biosensors for aquatic ecosystems monitoring. Eur Phys J Appl Phys 36:205–209

    Article  Google Scholar 

  • Dutta TK, Samanta TB (1997) Novel catalytic activity of immobilized spores under reduced water activity. Bioorg Med Chem Lett 7:629–632

    Article  CAS  Google Scholar 

  • Foster RN (1986) Innovation: the attacker’s advantage. Summit Books, New York

    Book  Google Scholar 

  • Fraser H (2005) Ministry of Agriculture, Food and Rural Affairs, Ontario. http://www.omafra.gav.on.ca/english/crops/hort/news/vegnews/2005/vg1105_a5.htm

  • Garbisu C, Alkorta I (1997) Bioremediation: principles and future. J Clean Technol Environ Toxicol Occup Med 6:351–366

    CAS  Google Scholar 

  • Garbisu C, Alkorta I, Llama MJ, Serra JL (1998) Aerobic chromate reduction by Bacillus subtilis. Biodegradation 9:133–141

    Article  CAS  PubMed  Google Scholar 

  • Gavrilescu M, Chisti Y (2005) Biotechnology—a sustainable alternative for chemical industry. Biotechnol Adv 23:471–499

    Article  CAS  PubMed  Google Scholar 

  • Gianfreda L, Xu F, Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Biorem J 3:1–26

    Article  CAS  Google Scholar 

  • Grommen R, Verstraete W (2002) Environmental biotechnology: the ongoing quest. J Biotechnol 98:113–123

    Article  CAS  PubMed  Google Scholar 

  • Gu MB, Mitchell RJ, Kim BC (2004) Biomanufacturing. Springer, Basel, pp 269–305

    Book  Google Scholar 

  • Hagger JA, Jones MB, Leonard DP, Owen R, Galloway TS (2006) Integrated environmental assessment and management. Int J 2:312–329

    CAS  Google Scholar 

  • Hamer K, Arevalo E, Deibel I, Hakstege A (2007) Assessment of treatment and disposal options. Sustain Manag Sediment Res 2:133–159

    Article  Google Scholar 

  • Husain Q (2006) Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Crit Rev Biotechnol 26:201–221

    Article  CAS  PubMed  Google Scholar 

  • Huyer M, Page WJ (1988) Zn2+ increases siderophore production in Azotobacter vinelandii. Appl Environ Microbiol 54:2625–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishibashi Y, Cervantes C, Silver S (1990) Chromium reduction in Pseudomonas putida. Appl Environ Microbiol 56:2268–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser J (2001) Bioindicators and biomarkers of environmental pollution and risk assessment. Science Publishers, New Hampshire

    Google Scholar 

  • Karaca A (2004) Effect of organic wastes on the extractability of cadmium, copper, nickel, and zinc in soil. Geoderma 122:297–303

    Article  CAS  Google Scholar 

  • Khan M, Satoh H, Katayama H, Kurisu F, Mino T (2004) Environmental biotechnology: advancement in water and wastewater application in the tropics. IWA Publishing, London, pp 349–355

    Google Scholar 

  • Khan S, Pandotra P, Gupta AP, Salgotra RK, Malik MM, Lone SA, Gupta S (2017) Plant molecular breeding: way forward through next-generation sequencing. In: Zargar SM, Rai V (eds) Plant OMICS and crop breeding. Apple Academic Press, New York, pp 227–260

    Google Scholar 

  • Lal R (1982) Accumulation, metabolism, and effects of organophosphorus insecticides on microorganisms. Adv Appl Microbiol 28:149–200

    Article  CAS  PubMed  Google Scholar 

  • Lam PK (2009) Use of biomarkers in environmental monitoring. Ocean Coast Manag 52:348–354

    Article  Google Scholar 

  • Lam PK, Gray JS (2003) The use of biomarkers in environmental monitoring programmes. Mar Pollut Bull 46:182–186

    Article  CAS  PubMed  Google Scholar 

  • Leung M (2004) Bioremediation: techniques for cleaning up a mess. BioTeach J 2:18–22

    Google Scholar 

  • Luengo JM, Garcı́a B, Sandoval A, Naharro G, Olivera ER (2003) Bioplastics from microorganisms. Curr Opin Microbiol 6:251–260

    Article  CAS  PubMed  Google Scholar 

  • Mata-Alvarez J, Mace S, Llabres P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 74:3–16

    Article  CAS  Google Scholar 

  • Mazzanti M, Zoboli R (2008) Waste generation, waste disposal and policy effectiveness: evidence on decoupling from the European Union. Resour Conserv Recycl 52:1221–1234

    Article  Google Scholar 

  • McCauley A, Jones C, Jacobsen J (2009) Soil pH and organic matter. Nutr Manag Mod 8:1–12

    Google Scholar 

  • Mendonça R, Guerra A, Ferraz A (2002) Delignification of Pinus taeda wood chips treated with Ceriporiopsis subvermispora for preparing high‐yield kraft pulps. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 77:411–418

    Google Scholar 

  • Moldes C, García P, García JL, Prieto MA (2004) In vivo immobilization of fusion proteins on bioplastics by the novel tag BioF. Appl Environ Microbiol 70:3205–3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namgay T, Balwant S, Bhupinder PS, (2010) Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Soil Research 48(7):638–647

    Google Scholar 

  • Newman LA, Doty SL, Gery KL, Heilman PE, Muiznieks I, Shang TQ, Siemieniec ST, Strand SE, Wang X, Wilson AM (1998) Phytoremediation of organic contaminants: a review of phytoremediation research at the University of Washington. J Soil Contam 7:531–542

    Article  CAS  Google Scholar 

  • Nicell JA (2003) Chemical degradation methods for wastes and pollutants. CRC Press, Boca Raton, pp 395–441

    Google Scholar 

  • Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MA (2009) Impact of biochar amendment on fertility of a southeastern Coastal Plain soil. Soil Sci 174:105–112

    Article  CAS  Google Scholar 

  • Nowack B, Schulin R, Robinson BH (2006) Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40:5225–5232

    Article  CAS  PubMed  Google Scholar 

  • Okoh AI, Sibanda T, Gusha SS (2010) Inadequately treated wastewater as a source of human enteric viruses in the environment. Int J Environ Res Public Health 7:2620–2637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olguín EJ (2000) Environmental biotechnology and cleaner bioprocesses. Taylor and Francis, London, pp 3–17

    Google Scholar 

  • Otjen L, Blanchette R, Effland M, Leatham G (1987) Assessment of 30 white rot basidiomycetes for selective lignin degradation. Holzforschung 41:343–349

    Article  CAS  Google Scholar 

  • Park JW, Park BK, Kim JE (2006) Remediation of soil contaminated with 2, 4-dichlorophenol by treatment of minced shepherd’s purse roots. Arch Environ Contam Toxicol 50:191–195

    Article  CAS  PubMed  Google Scholar 

  • Raghukumar C, Muraleedharan U, Gaud V, Mishra R (2004) Xylanases of marine fungi of potential use for biobleaching of paper pulp. J Ind Microbiol Biotechnol 31:433–441

    Article  CAS  PubMed  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals. Wiley, New York

    Google Scholar 

  • Reddy C, Ghai R, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146

    Article  CAS  PubMed  Google Scholar 

  • Reiss M, Hartmeier W (2001) Monitoring of environmental processes with biosensors. In: Biotechnology Set. Wiley-VCH, Weinheim, pp 125–139

    Chapter  Google Scholar 

  • Rodriguez-Mozaz S, Marco MP, De Alda ML, Barceló D (2004) Biosensors for environmental applications: future development trends. Pure Appl Chem 76:723–752

    Article  CAS  Google Scholar 

  • Rubilar O, Diez MC, Gianfreda L (2008) Transformation of chlorinated phenolic compounds by white rot fungi. Crit Rev Environ Sci Technol 38:227–268

    Article  CAS  Google Scholar 

  • Salminen E, Rintala J (2002) Anaerobic digestion of organic solid poultry slaughterhouse waste–a review. Bioresour Technol 83:13–26

    Article  CAS  PubMed  Google Scholar 

  • Sanz JL, Köchling T (2007) Molecular biology techniques used in wastewater treatment: an overview. Process Biochem 42:119–133

    Article  CAS  Google Scholar 

  • Schaar H, Clara M, Gans O, Kreuzinger N (2010) Micropollutant removal during biological wastewater treatment and a subsequent ozonation step. Environ Pollut 158:1399–1404

    Article  CAS  PubMed  Google Scholar 

  • Shafi S, Bhat RA, Bandh SA, Shameem N, Nisa H (2018) Microbes: key agents in the sustainable environment and cycling of nutrients. In: Environmental contamination and remediation. Cambridge Scholars Publishing, Cambridge, pp 179–188

    Google Scholar 

  • Sharyo M, Shimoto H, Sakaguchi H, Isaji M, Fujita Y, Awaji H, Matsukura M, Hata K (1993) The recent progress and general status of the lipase pitch control technology in Japan. Jpn Tappi J 47:1223–1233

    Article  CAS  Google Scholar 

  • Sixta H (2006) Handbook of pulp. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Stevens ES (2002) Green plastics: an introduction to the new science of biodegradable plastics. Princeton University Press, Princeton

    Google Scholar 

  • Su X, Sun F, Wang Y, Hashmi MZ, Guo L, Ding L, Shen C (2015) Identification, characterization and molecular analysis of the viable but nonculturable Rhodococcus biphenylivorans. Sci Rep 5:18590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tekere M, Mswaka A, Zvauya R, Read J (2001) Growth, dye degradation and ligninolytic activity studies on Zimbabwean white rot fungi. Enzym Microb Technol 28:420–426

    Article  CAS  Google Scholar 

  • Tian XF, Fang Z, Guo F (2012) Impact and prospective of fungal pre-treatment of lignocellulosic biomass for enzymatic hydrolysis. Biofuels Bioprod Biorefin 6:335–350

    Article  CAS  Google Scholar 

  • Timmis KN, Steffan RJ, Unterman R (1994) Designing microorganisms for the treatment of toxic wastes. Annu Rev Microbiol 48:525–557

    Article  CAS  PubMed  Google Scholar 

  • Trivedy R, Pathak R (2015) Role of biotechnology in pulp and paper industry. J Indus Poll Control 31:285–288

    Google Scholar 

  • Tucker CL, Fields S (2001) A yeast sensor of ligand binding. Nat Biotechnol 19:1042

    Article  CAS  PubMed  Google Scholar 

  • Vasileva-Tonkova E, Galabova D (2003) Hydrolytic enzymes and surfactants of bacterial isolates from lubricant-contaminated wastewater. Zeitschrift für Naturforschung C 58:87–92

    Article  CAS  Google Scholar 

  • Verma N, Singh M (2005) Biosensors for heavy metals. Biometals 18:121–129

    Article  CAS  PubMed  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Wen J, Zhou S, Chen J (2014) Colorimetric detection of Shewanella oneidensis based on immunomagnetic capture and bacterial intrinsic peroxidase activity. Sci Rep 4:5191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598

    Article  CAS  PubMed  Google Scholar 

  • White C, Shaman AK, Gadd GM (1998) An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nat Biotechnol 16:572

    Article  CAS  PubMed  Google Scholar 

  • Williams PP (1977) Metabolism of synthetic organic pesticides by anaerobic microorganisms. In: Gunther FA (ed) Residue reviews, vol 66. Springer, New York

    Google Scholar 

  • Willke T, Prüße U, Vorlop KD (2005) Biocatalytic and catalytic routes for the production of bulk and fine chemicals from renewable resources. In: Biorefineries-industrial processes and products: status quo and future directions. Wiley-VCH, Weinheim, pp 385–406

    Chapter  Google Scholar 

  • Young RA, Akhtar M (1997) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manzoor, M.M. (2020). Environmental Biotechnology: For Sustainable Future. In: Bhat, R., Hakeem, K., Dervash, M. (eds) Bioremediation and Biotechnology, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-40333-1_14

Download citation

Publish with us

Policies and ethics