Skip to main content

Matrix Metalloproteinases’ Role in Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1245))

Abstract

Cancer cells evolve in the tumor microenvironment (TME) by the acquisition of characteristics that allow them to initiate their passage through a series of events that constitute the metastatic cascade. For this purpose, tumor cells maintain a crosstalk with TME non-neoplastic cells transforming them into their allies. “Corrupted” cells such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and tumor-associated neutrophils (TANs) as well as neoplastic cells express and secrete matrix metalloproteinases (MMPs). Moreover, TME metabolic conditions such as hypoxia and acidification induce MMPs’ synthesis in both cancer and stromal cells. MMPs’ participation in TME consists in promoting events, for example, epithelial-mesenchymal transition (EMT), apoptosis resistance, angiogenesis, and lymphangiogenesis. MMPs also facilitate tumor cell migration through the basement membrane (BM) and extracellular matrix (ECM). The aim of the present chapter is to discuss MMPs’ contribution to the evolution of cancer cells, their cellular origin, and their influence in the main processes that take place in the TME.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-FU:

5-Fluorouracil

ADAMS:

A disintegrin and metalloproteinases

ADAMTSs:

ADAMs with thrombospondin motifs

ADFs:

Adipocyte-derived fibroblasts

AM:

Adrenomedullin

AP-1:

Activator protein-1

AR:

Androgen receptor

ASCs:

Adipocyte/stromal stem cells

BASCs:

Bronchio-alveolar stem cells

bFGF2:

Basic fibroblast growth factor-2

BM:

Basement membrane

BMDMCs:

Bone marrow-derived mesenchymal stem cells

bmMSCs:

Bone marrow mesenchymal stem cells

CAAs:

Cancer-associated adipocytes

CAFs:

Cancer-associated fibroblasts

CCL2:

Chemokine C-C motif ligand 2

CM:

Conditioned medium

COX2:

Cyclooxygenase 2

CSCs:

Cancer stem cells

CXCL12:

C-X-C motif chemokine 12

CXCR4:

Chemokine receptor-4

DFSP:

Dermatofibrosarcoma protuberans

ECM:

Extracellular matrix

ECs:

Endothelial cells

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial-mesenchymal transition

endMT:

Endothelial-mesenchymal transition

ENO-1:

Enolase-1

Epo:

Erythropoietin

ER:

Estrogen receptor

EREG:

Pan-HER ligand epiregulin

ERK:

Extracellular signal-regulated kinase

Et-1:

Endothelin-1

ETP:

Endotrophin

ETS:

E-twenty-six-1

EVs:

Extracellular vesicles

FASLG:

FAS ligand

FIH-1:

Factor-inhibiting HIF-1

FOXC2:

Forkhead box protein C2

FoxP3+:

Recruit forkhead box P3

Fru-2,6-P2:

Fructose 2-6 biphosphate

FSP-1:

Fibroblast-secreted protein-1

FZD:

Frizzled

GPI:

Glycosylphosphatidylinositol

GSCs:

Glioma stem cells

HA:

Hyaluronic acid

HGF:

Hepatic growth factor

HIFs:

Hypoxia-inducible factors

HSCs:

Hematopoietic stem cells

Hsp-90:

Heat shock protein-90

HuVECs:

Human umbilical vein endothelial cells

IFN-γ:

Interferon-γ

IGF-1:

Insulin-like growth factor-1

IL:

Interleukin

IL-2Rα:

Interleukin-2 receptor α

JNK:

c-Jun N-terminal kinase

KDR:

Kinase insert domain receptor

KIF1B:

Kinesin-like protein 1B

KitL:

Kit ligand

KLF8:

Kruppel-like factor 8

LECs:

Lymphatic endothelial cells

LLC:

Lewis lung carcinoma

LN:

Lymph node

LOX1:

Lectin-type oxidase LDL receptor 1

LPS:

Lipopolysaccharide

LRP1:

Low-density lipoprotein (LDL) receptor-related protein 1

LVs:

Lymph vessels

LYVE-1:

Lymphatic vessel endothelial hyaluronan receptor-1

MAPK:

Mitogen-activating protein kinase

MaSCs:

Mammary stem cells

MCP-1:

Monocyte chemotactic protein-1

MCs:

Mast cells

M-CSF:

Monocyte colony-stimulating factor

MDSCs:

Myeloid-derived suppressor cells

MHC:

Major histocompatibility complex

MICA:

MHC class I-related chain molecules A

MM:

Multiple melanoma

MMPs:

Matrix metalloproteinases

MMRN2:

Multimerin-2

MMT:

Mesenchymal-mesenchymal transition

MSLN F:

Mesothelin

MT-MMPs:

Membrane-type MMPs

NE:

Neutrophil elastase

NF-κB:

Nuclear factor κB

NGAL:

Neutrophil gelatinase-associated lipocalin

NGF:

Nerve growth factor

NHE1:

Na+/H+ exchanger 1

NK:

Natural killer

NKG2D:

Natural killer group 2D

NRP-2:

Neuropilin-2

NSCLC:

Non-small cell lung cancer

OPN-MZF1:

Osteospondin-myeloid zinc finger 1

PAI:

Plasminogen activator inhibitor

PAR-1:

Protease-activated receptor-1

PDA:

Pancreatic ductal adenocarcinoma

PDGF-BB:

Platelet-derived growth factor-BB

PDGFRβ:

Platelet-derived growth factor receptor β

PEA-3:

Polyoma enhancer activator protein-3

PECAM-1:

Platelet endothelial cell adhesion molecule-1

PF4:

Platelet factor-4

PFK-1:

Phosphofructokinase-1

PFK-2/FBPase-2:

6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase

PGK1:

Phosphoglycerate kinase-1

PI3K:

Phosphoinositide 3-kinase

PPARγ:

Peroxisome proliferator-activated receptor-γ

Rac:

Rho-related C3 botulinum toxin substrate

RANTES:

Regulated on activation, normal T cell expressed and secreted (CCL5)

ROCK:

rhoA-dependent kinase

ROS:

Reactive oxygen species

SCCs:

Squamous carcinoma cells

SCF:

Stem cell factor

SCs:

Stem cells

SDF-1:

Stromal cell-derived factor 1

sE-Cad:

Soluble E-cadherin

SERPINE1:

Serine protease inhibitor E1

sKitL:

Soluble kit ligand

Sp-1:

Specific protein-1

TAMs:

Tumor-associated macrophages

TANs:

Tumor-associated neutrophils

TCF:

T-cell factor

TECs:

Tumor endothelial cells

TFPI-2:

Tissue factor pathway inhibitor-2

TGFβ:

Transforming growth factor-β

TIGAR:

TP53-induced glycolysis and apoptosis regulator

TIMPs:

Tissue inhibitors of metalloproteinases

TME:

Tumor microenvironment

TNFRSF11B:

Tumor necrosis factor receptor superfamily member 11 b

TNFα:

Tumor necrosis factor-α

TXF/LEF1:

T-cell factor/lymphoid enhancer factor 1

uPAR:

Urokinase plasminogen activator receptor

VEGF:

Vascular endothelial growth factor

VHL:

Von Hippel-Lindau

VSMCs:

Vascular smooth muscle cells

ZEB1:

Zinc finger E-box-binding homeobox 1

α-SMA:

α-Smooth muscle actin

References

  1. Maley CC, Aktipis A, Graham TA et al (2017) Classifying the evolutionary and ecological features of neoplasms. Nat Rev Cancer 17(10):605–619. https://doi.org/10.1038/nrc.2017.69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim J, Tanner K (2015) Recapitulating the tumor ecosystem along the metastatic cascade using 3D culture models. Front Oncol 5(170). https://doi.org/10.3389/fonc.2015.00170

  3. Wang M, Zhao J, Zhang L et al (2017) Role of tumor microenvironment in tumorigenesis. J Cancer 8(5):761–773. https://doi.org/10.7150/jca.17648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen F, Zhuang X, Lin L et al (2015) New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med 13:45. https://doi.org/10.1186/s12916-015-0278-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Loffek S, Schilling O, Franzke CW (2011) Biological role of matrix metalloproteinases a critical balance. Eur Respir J 38(1):191–208. https://doi.org/10.1183/09031936.00146510

    Article  CAS  PubMed  Google Scholar 

  6. Gonzalez-Avila G, Sommer B, Mendoza-Posada DA et al (2019) Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit Rev Oncol Hematol 137:57–83. https://doi.org/10.1016/j.critrevonc.2019.02.010

    Article  PubMed  Google Scholar 

  7. Cui N, Hu M, Khalil RA (2017) Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci 147:1–73. https://doi.org/10.1016/bs.pmbts.2017.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tallant C, Marrero A, Gomis-Rüth FX (2010) Matrix metalloproteinases: fold and function of their catalytic domains. Biochim Biophys Acta 1803(1):20–28. https://doi.org/10.1016/j.bbamcr.2009.04.003

    Article  CAS  PubMed  Google Scholar 

  9. Amălinei C, Căruntu ID, Giuşcă SE et al (2010) Matrix metalloproteinases involvement in pathologic conditions. Romanian J Morphol Embryol 51(2):215–228. DOI: not available

    Google Scholar 

  10. Lambert E, Dassé E, Haye B, Petitfrère E (2004) TIMPs as multifacial proteins. Crit Rev Oncolol Hematol 49(3):187–198. https://doi.org/10.1016/j.critrevonc.2003.09.008

    Article  Google Scholar 

  11. Jackson HW, Defamie V, Waterhouse P et al (2017) TIMPs: versatile extracellular regulators in cancer. Nat Rev Cancer 17(1):38–53. https://doi.org/10.1038/nrc.2016.115

    Article  CAS  PubMed  Google Scholar 

  12. Itoh Y (2015) Membrane-type matrix metalloproteinases: their functions and regulations. Matrix Biol 44–46:207–223. https://doi.org/10.1016/j.matbio.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  13. Ogata Y, Itoh Y, Nagase H (1995) Steps involved in activation of the pro-matrix metalloproteinase 9 (progelatinase B)-tissue inhibitor of metalloproteinase-1 complex by 4- aminophenylmercuric acetate and proteinases. J Biol Chem 270(31):18506–18511. https://doi.org/10.1074/jbc.270.31.18506

    Article  CAS  PubMed  Google Scholar 

  14. Arpino V, Brock M, Gill SE (2015) The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol 44–46:247–254. https://doi.org/10.1016/j.matbio.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  15. Yan C, Boyd DD (2007) Regulation of matrix metalloproteinase gene expression. J Cell Physiol 211(1):19–26. https://doi.org/10.1002/jcp.20948

    Article  CAS  PubMed  Google Scholar 

  16. Warburg O (1925) The metabolism of carcinoma cells. Cancer Res 9(1):148–163. https://doi.org/10.1158/jcr.1925.148

    Article  CAS  Google Scholar 

  17. Elstrom RL, Bauer DE, Buzzai M et al (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64(11):3892–3899. https://doi.org/10.1158/0008-5472.CAN-03-2904

    Article  CAS  PubMed  Google Scholar 

  18. Wieman HL, Wofford JA, Rathmell JC (2007) Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell 18(4):1437–1446. https://doi.org/10.1091/mbc.e06-07-0593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hirschey MD, DeBerardinis RJ, Diehl AME et al (2015) Dysregulated metabolism contributes to oncogenesis. Semin Cancer Biol 35 Suppl:S129–S150. https://doi.org/10.1016/j.semcancer.2015.10.002

  20. Bensaad K, Tsuruta A, Selak MA et al (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120. https://doi.org/10.1016/j.cell.2006.05.036

    Article  CAS  PubMed  Google Scholar 

  21. Ji K, Mayernik L, Moin K et al (2019) Acidosis and proteolysis in the tumor microenvironment. Cancer Metastasis Rev. https://doi.org/10.1007/s10555-019-09796-3

  22. Kryczka J, Papiewska-Pajak I, Kowalska MA et al (2019) Cathepsin B is upregulated and mediates ECM degradation in colon adenocarcinoma HT29 cells overexpressing Snail. Cell 8(3):pii:E203. https://doi.org/10.3390/cells8030203

    Article  CAS  Google Scholar 

  23. Greco MR, Antelmi E, Busco G et al (2014) Protease activity at invadopodial focal digestive areas is dependent on NHE1-driven acidic pHe. Oncol Rep 31(2):940–946. https://doi.org/10.3892/or.2013.2923

    Article  CAS  PubMed  Google Scholar 

  24. Capello M, Ferri-Borgogno S, Riganti C et al (2016) Targeting the Warburg effect in cancer cells through ENO1 knockdown rescues oxidative phosphorylation and induces growth arrest. Oncotarget 7(5):5598–5612. https://doi.org/10.18632/oncotarget.6798

  25. Brisson L, Gillet L, Calaghan S et al (2011) Na(V)1.5 enhances breast cancer cell invasiveness by increasing NHE1-dependent H(+) efflux in caveolae. Oncogene 30(17):2070–2076. https://doi.org/10.1038/onc.2010.574

    Article  CAS  PubMed  Google Scholar 

  26. Murphy G, Stanton H, Cowell S et al (1999) Mechanisms for pro matrix metalloproteinase activation. APMIS 107(1):38–44. https://doi.org/10.1111/j.1699-0463.1999.tb01524.x

  27. Hsiao KC, Shih NY, Fang HL et al (2013) Surface α-enolase promotes extracellular matrix degradation and tumor metastasis and represents a new therapeutic target. PLoS One 8(7):e69354. https://doi.org/10.1371/journal.pone.0069354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dhani N, Fyles A, Hedley D et al (2015) The clinical significance of hypoxia in human cancers. Semin Nucl Med 45(2):110–121. https://doi.org/10.1053/j.semnuclmed.2014.11.002

    Article  PubMed  Google Scholar 

  29. Sullivan R, Graham CH (2007) Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev 26(2):319–331. https://doi.org/10.1007/s10555-007-9062-2

    Article  CAS  PubMed  Google Scholar 

  30. Lu X, Kang Y (2010) Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res 16(4):5928–5935. https://doi.org/10.1158/1078-0432.CCR-10-1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsai YP, Wu KJ (2012) Hypoxia-regulated target genes implicated in tumor metastasis. J Biomed Sci 19:102. https://doi.org/10.1186/1423-0127-19-102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Duan C (2016) Hypoxia-inducible factor 3 biology: complexities and emerging themes. Am J Physiol Cell Physiol 310(4):C260–C269. https://doi.org/10.1152/ajpcell.00315.2015

    Article  PubMed  Google Scholar 

  33. Choi JY, Jang YS, Min SY et al (2011) Overexpression of MMP-9 and HIF-1α in breast cancer cells under hypoxic conditions. J Breast Cancer 14(2):88–95. https://doi.org/10.4048/jbc.2011.14.2.88

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhu S, Zhou Y, Wang L et al (2011) Transcriptional upregulation of MT2-MMP in response to hypoxia is promoted by HIF-1α in cancer cells. Mol Carcinog 50(10):770–780. https://doi.org/10.1002/mc.20678

    Article  CAS  PubMed  Google Scholar 

  35. Fujiwara S, Nakagawa K, Harada H et al (2007) Silencing hypoxia-inducible factor 1α inhibits cell migration and invasion under hypoxic environment in malignant gliomas. Int J Oncol 30(4):793–802. https://doi.org/10.3892/ijo.30.4.793

    Article  CAS  PubMed  Google Scholar 

  36. Lin JL, Wang MJ, Lee D et al (2008) Hypoxia-inducible factor-1α regulates matrix metalloprotease-1 activity in human bone marrow-derived mesenchymal stem cells. FEBS Lett 582(17):2615–2619. https://doi.org/10.1016/j.febslet.2008.06.033

    Article  CAS  PubMed  Google Scholar 

  37. Jing SW, Wang YD, Kuroda M et al (2012) HIF-1α contributes to hypoxia-induced invasion and metastasis of esophageal carcinoma via inhibiting E-cadherin and promoting MMP-2 expression. Acta Med Okayama 66(5):399–407. https://doi.org/10.18926/AMO/48964

    Article  CAS  PubMed  Google Scholar 

  38. Shan Y, You B, Shi S et al (2018) Hypoxia-induced matrix metalloproteinase 13 expression in exosomes from nasopharyngeal carcinoma enhances metastases. Cell Death Dis 9(3):382. https://doi.org/10.1038/s41419-018-0425-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miyoshi A, Kitajima Y, Ide T et al (2006) Hypoxia accelerates cancer invasion of hepatoma cells by upregulating MMP expression in aHIF-1α-independent manner. Int J Oncol 29(6):1533–1539. https://doi.org/10.3892/ijo.29.6.1533

    Article  CAS  PubMed  Google Scholar 

  40. Ghosh S, Basu M, Roy SS (2012) ETS-1 protein regulates vascular endothelial growth factor-induced matrix metalloproteinase-9 and matrix metalloproteinase-13 expression in human ovarian carcinoma cell line SKOV-3. J Biol Chem 287(18):15001–15015. https://doi.org/10.1074/jbc.M111.284034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pang JS, Yen JH, Wu HT et al (2017) Gallic acid inhibited matrix invasion and AP-1/ETS-1-mediated MMP-1 transcription in human nasopharyngeal carcinoma cells. Int J Mol Sci 18(7).pii: E1314.). https://doi.org/10.3390/ijms18071354

  42. Muñoz-Najar UM, Neurath KM, Vumbaca F et al (2006) Hypoxia stimulates breast carcinoma cell invasion through MT1-MMP and MMP-2 activation. Oncogene 25(16):2379–2392. https://doi.org/10.1038/sj.onc.1209273

    Article  CAS  PubMed  Google Scholar 

  43. Sun X, Wei L, Chen Q et al (2010) CXCR4/SDF1 mediate hypoxia induced chondrosarcoma cell invasion through ERK signaling and increase MMP-1 expression. Mol Cancer 9:17. https://doi.org/10.1186/1476-4598-9-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang CH, Yang WH, Chang SY et al (2009) Regulation of membrane-type 4 matrix metalloproteinase by SLUG contributes to hypoxia-mediated metastasis. Neoplasia 11(12):1371–1382. https://doi.org/10.1593/neo.91326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jung HY, Fattet L, Yang J (2015) Molecular pathways: linking tumor microenvironment to epithelial-mesenchymal transition in metastasis. Clin Cancer Res 21(5):962–968. https://doi.org/10.1158/1078-0432.CCR-13-3173

    Article  CAS  PubMed  Google Scholar 

  46. Wong SHM, Fang CM, Chuah LH (2018) E-cadherin: its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hematol 121:11–22. https://doi.org/10.1016/j.critrevonc.2017.11.010

    Article  PubMed  Google Scholar 

  47. Diaz VM, Viñas-Castells R, García de Herreros A (2014) Regulation of the protein stability of EMT transcription factors. Cell Adhes Migr 8(4):418–428. https://doi.org/10.4161/19336918.2014.969998

    Article  CAS  Google Scholar 

  48. Li W, Li W, Deng L et al (2015) Decreased MT1-MMP in gastric cancer suppressed cell migration and invasion via regulating MMPs and EMT. Tumour Biol 36(9):6883–6889. https://doi.org/10.1007/s13277-015-3381-7

    Article  CAS  PubMed  Google Scholar 

  49. Lin CY, Tsai PH, Kandaswami CC et al (2011) Matrix metalloproteinase-9 cooperates with transcription factor Snail to induce epithelial-mesenchymal transition. Cancer Sci 102(4):815–827. https://doi.org/10.1111/j.1349-7006.2011.01861.x

    Article  CAS  PubMed  Google Scholar 

  50. Bae GY, Choi SJ, Lee JS et al (2013) Loss of E-cadherin activates EGFR-MEK/ERK signaling which promotes invasion via the ZEB1/MMP-2 axis in non-small cell lung cancer. Oncotarget 4(12):2512–2522. https://doi.org/10.18632/oncotarget.1463

    Article  PubMed  PubMed Central  Google Scholar 

  51. Radisky DC, Levy DD, Littepage LE et al (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436(7047):123–127. https://doi.org/10.1038/nature03688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Noë V, Fingleton B, Jacobs K et al (2001) Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 114(Pt 1):111–118. DOI: not available

    PubMed  Google Scholar 

  53. Synowicz J, Adley BP, Gleason KJ et al (2007) Engagement of collagen binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells. Cancer Res 67(5):2020–2039. https://doi.org/10.1158/0008-5472.CAN-06-2808

    Article  CAS  Google Scholar 

  54. Cao J, Chiarelli C, Richman O (2008) Membrane type 1 matrix metalloproteinase induces epithelial-to-mesenchymal transition in prostate cancer. J Biol Chem 283(10):6232–6240. https://doi.org/10.1074/jbc.M705759200

    Article  CAS  PubMed  Google Scholar 

  55. Brusgard JL, Choe M, Chumsri S et al (2015) RUNX2 and TAZ-dependent signaling pathways regulate soluble E-cadherin levels and tumorsphere formation in breast cancer cells. Oncotarget 6(29):28132–28150. https://doi.org/10.18632/oncotarget.4654

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hu QP, Kuang JY, Yang QK et al (2016) Beyond a tumor suppressor: soluble E-cadherin promotes the progression of cancer. Int J Cancer 138(12):2804–2812. https://doi.org/10.1002/ijc.29982

  57. Nawrocki-Raby B, Giles C, Polette M et al (2003) Upregulation of MMPs by soluble E-cadherin in human lung tumor cells. Int J Cancer 105(6):790–795. https://doi.org/10.1002/ijc.11168

    Article  CAS  PubMed  Google Scholar 

  58. David JM, Rajasekaran AK (2012) Dishonorable discharge: the oncogenic roles of cleaved E-cadherin fragments. Cancer Res 72(12):2917–2923. https://doi.org/10.1158/0008-5472.CAN-11-3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sherwood V (2015) WNT signaling: an emerging mediator of cancer cell metabolism? Mol Cell Biol 35(1):2–10. https://doi.org/10.1128/MCB.00992-14

    Article  CAS  PubMed  Google Scholar 

  60. Blavier L, Lazaryev A, Shi XH et al (2010) Stromelysin-1 (MMP-3) is a target and a regulator of Wnt1-induced epithelial-mesenchymal transition (EMT). Cancer Biol Ther 10(2):198–208. https://doi.org/10.4161/cbt.10.2.12193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ren D, Minami Y, Nishita M (2011) Critical role of Wnt5a-Ror2 signaling in motility and invasiveness of carcinoma cells following Snail-mediated epithelial-mesenchymal transition. Genes Cells 16(3):304–315. https://doi.org/10.1111/j.1365-2443.2011.01487.x

    Article  CAS  PubMed  Google Scholar 

  62. Bauer M, Bénard J, Gaasterland T, Willert K, Cappellen D (2013) WNT5A encodes two isoforms with distinct functions in cancers. PLoS One 8(11):e80526. https://doi.org/10.1371/journal.pone.0080526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Huang TC, Lee PT, Wu MH (2017) Distinct roles and differential expression levels of Wnt5a mRNA isoforms in colorectal cancer cells. PLoS One 12(8):e0181034. https://doi.org/10.1371/journal.pone.0181034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang CC, Zhu LF, Xu XH et al (2013) Membrane type 1 matrix metalloproteinase induces an epithelial to mesenchymal transition and cancer stem cell-like properties in SCC9 cells. BMC Cancer 13:171. https://doi.org/10.1186/1471-2407-13-171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hjelmeland AB, Wu Q, Heddleston JM et al (2011) Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ 18(5):829–840. https://doi.org/10.1038/cdd.2010.150

    Article  CAS  PubMed  Google Scholar 

  66. Huang S, Tang Y, Peng X et al (2016) Acidic extracellular pH promotes prostate cancer bone metastasis by enhancing PC-3 stem cell characteristics, cell invasiveness and VEGF-induced vasculogenesis of BM-EPCs. Oncol Rep 36(4):2025–2032. https://doi.org/10.3892/or.2016.4997

    Article  CAS  PubMed  Google Scholar 

  67. Kessenbrock K, Dijkgraaf GJ, Lawson DA et al (2013) A role for matrix metalloproteinases in regulating mammary stem cell function via the Wnt signaling pathway. Cell Stem Cell 13(3):300–313. https://doi.org/10.1016/j.stem.2013.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sawey ET, Johnson JA, Crawford HC (2007) Matrix metalloproteinase 7 controls pancreatic acinar cell transdifferentiation by activating the Notch signaling pathway. Proc Natl Acad Sci U S A 104(49):19327–19332. https://doi.org/10.1073/pnas.0705953104

    Article  PubMed  PubMed Central  Google Scholar 

  69. Heissig B, Hattori K, Dias S et al (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109(5):625–637. https://doi.org/10.1016/S0092-8674(02)00754-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Justilien V, Regala RP, Tseng IC et al (2012) Matrix metalloproteinase-10 is required for lung cancer stem cell maintenance, tumor initiation and metastatic potential. PLoS One 7(4):e35040. https://doi.org/10.1371/journal.pone.0035040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nishida C, Kusubata K, Tashiro Y et al (2012) MT1-MMP plays a critical role in hematopoiesis by regulating HIF-mediated chemokine/cytokine gene transcription within niche cells. Blood 119(23):5405–5416. https://doi.org/10.1182/blood-2011-11-390849

    Article  CAS  PubMed  Google Scholar 

  72. Sakamoto T, Seiki M (2010) A membrane protease regulates energy production in macrophages by activating hypoxia-inducible factor-1 via a non-proteolytic mechanism. J Biol Chem 285(39):29951–29964. https://doi.org/10.1074/jbc.M110.132704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Levesque JP, Hendy J, Takamatsu Y (2003) Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induce by GCSF or cyclophosphamide. J Clin Invest 111(2):187–196. https://doi.org/10.1172/JCI15994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. McQuibban GA, Butler GS, Gong JH et al (2001) Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 276(47):43503–43508. https://doi.org/10.1074/jbc.M107736200

    Article  CAS  PubMed  Google Scholar 

  75. Steinl C, Essl M, Schreiber TD et al (2013) Release of matrix metalloproteinase-8 during physiological trafficking and induced mobilization of human hematopoietic stem cells. Stem Cells Dev 22(9):1307–1318. https://doi.org/10.1089/scd.2012.0063

    Article  CAS  PubMed  Google Scholar 

  76. Sheu BC, Hsu SM, Ho HN et al (2001) A novel role of metalloproteinase in cancer-mediated immunosuppression. Cancer Res 61(1):237–242. DOI: not available

    CAS  PubMed  Google Scholar 

  77. Yamada N, Yamanegi K, Ohyama H et al (2012) Hypoxia downregulates the expression of cell surface MICA without increasing soluble MICA in osteosarcoma cells in a HIF-1α dependent manner. Int J Oncol 41(6):2005–2012. https://doi.org/10.3892/ijo.2012.1630

    Article  CAS  PubMed  Google Scholar 

  78. Yang FQ, Liu M, Yang FP et al (2014) Matrix metallopeptidase 2 (MMP-2) mediates MHC class I polypeptide-related sequence A (MICA) shedding in renal cell carcinoma. Actas Urol Esp 38(3):172–178. https://doi.org/10.1016/j.acuro.2013.09.015

    Article  CAS  PubMed  Google Scholar 

  79. Sun D, Wang X, Zhang H et al (2011) MMP9 mediates MICA shedding in human osteosarcomas. Cell Biol Int 35(6):569–574. https://doi.org/10.1042/CBI20100431

  80. Liu G, Atteridge CL, Wang X et al (2010) The membrane type matrix metalloproteinase MMP14 mediates constitutive shedding of MHC class 1 chain-related molecule A independent of A disintegrin and metalloproteinases. J Immunol 184(7):3346–3350. https://doi.org/10.4049/jimmunol.0903789

    Article  CAS  PubMed  Google Scholar 

  81. Ziani L, Safta-Saadoun TB, Gourbeix J et al (2017) Melanoma-associated fibroblasts decrease tumor cell susceptibility to NK cell-mediated killing through matrix-metalloproteinases secretion. Oncotarget 8(12):19780.19794. https://doi.org/10.18632/oncotarget.15540

    Article  PubMed  PubMed Central  Google Scholar 

  82. Jenkins G (2008) The role of proteases in transforming growth factor-beta activation. Int J Biochem Cell Biol 40(6–7):1068–1078. https://doi.org/10.1016/j.biocel.2007.11.026

    Article  CAS  PubMed  Google Scholar 

  83. Gorelik L, Flavell RA (2001) Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 7(10):1118–1122. https://doi.org/10.1038/nm1001-1118

    Article  CAS  PubMed  Google Scholar 

  84. Kopp HG, Placke T, Salih HR (2009) Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res 69(19):7775–7783. https://doi.org/10.1158/0008-5472.CAN-09-2123

    Article  CAS  PubMed  Google Scholar 

  85. Bonavita E, Galdiero MR, Jaillon S et al (2015) Phagocytes as corrupted policemen in cancer-related inflammation. Adv Cancer Res 128:141–171. https://doi.org/10.1016/bs.acr.2015.04.013

    Article  CAS  PubMed  Google Scholar 

  86. Sousa S, Brion R, Lintunen M et al (2015) Human breast cancer cells educate macrophages toward the M2 activation status. Breast Cancer Res 17:101. https://doi.org/10.1186/s13058-015-0621-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kamoshida G, Matsuda A, Miura R et al (2013) Potentiation of tumor cell invasion by co-culture with monocytes accompanying enhance production of matrix metalloproteinase and fibronectin. Clin Exp Metastasis 30(3):289–297. https://doi.org/10.1007/s10585-012-9536-7

    Article  CAS  PubMed  Google Scholar 

  88. Whipple CA (2015) Tumor talk: understanding the conversation between the tumor and its microenvironment. Cancer Cell Microenviron 2(2):e773. DOI: not available.

    Google Scholar 

  89. Vinnakota K, Zhang Y, Selvanesan BC et al (2017) M2-like macrophages induce colon cancer cell invasion via matrix metalloproteinases. J Cell Physiol 232(12):3468–3480. https://doi.org/10.1002/jcp.25808

    Article  CAS  PubMed  Google Scholar 

  90. Pelekanou V, Villarroel-Espindola F, Schalper KA et al (2018) CD68, CD163, and matrix metalloproteinase 9 (MMP-9) co-localization in breast tumor microenvironment predicts survival differently in ER-positive and -negative cancers. Breast Cancer Res 20(1):154. https://doi.org/10.1186/s13058-018-1076-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pettersen JS, Fuentes-Duculan J, Suárez-Fariñas M, et al (2011) Tumor-associated macrophages in the cutaneous SCC microenvironment are heterogeneously activated. J Invest Dermatol 131(6):1322–1330. https://doi.org/10.1038/jid.2011.9

  92. Fujimura T, Kakizaki A, Sato Y et al (2017) The immunological roles of periostin/tumor-associated macrophages axis in development of dermatofibrosarcoma protuberans. Anticancer Res 37(6):2867–2873. https://doi.org/10.21873/anticanres.11639

    Article  CAS  PubMed  Google Scholar 

  93. Mantovani A (2009) The yin-yan of tumor-associate neutrophils. Cancer Cell 16(3):173–174. https://doi.org/10.1016/j.ccr.2009.08.014

    Article  CAS  PubMed  Google Scholar 

  94. Varol C, Sagi I (2018) Phagocyte-extracellular matrix crosstalk empowers tumor development and dissemination. FEBS J 285(4):734–751. https://doi.org/10.1111/febs.14317

    Article  CAS  PubMed  Google Scholar 

  95. Singh S, Mehta N, Lilian J et al (2017) Initiative action of tumor-associated macrophage during tumor metastasis. Biochim Open 4:8–18. https://doi.org/10.1016/j.biopen.2016.11.002

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hurt B, Schulick R, Edil B et al (2017) Cancer-promoting mechanisms of tumor-associated neutrophils. Am J Surg 214(5):938–944. https://doi.org/10.1016/j.amjsurg.2017.08.003

    Article  PubMed  Google Scholar 

  97. Vannitamby A, Seow HJ, Anderson G et al (2017) Tumour-associated neutrophils and loss of epithelial PTEN can promote corticosteroid-insensitive MMP-9 expression in the chronically inflamed lung microenvironment. Thorax 72(12):1140–1143. https://doi.org/10.1136/thoraxjnl-2016-209389

    Article  PubMed  Google Scholar 

  98. Benson DD, Meng X, Fullerton DA et al (2012) Activation state of stromal inflammatory cells in murine metastatic pancreatic adenocarcinoma. Am J Physiol Regul Intergr Comp Physiol 302(9):R1067–R1075. https://doi.org/10.1152/ajpregu.00320.2011

    Article  CAS  Google Scholar 

  99. Ardi VC, Van den Steen PE, Opdenakker G et al (2009) Neutrophil MMP-9 proenzyme, unencumbered by TIMP-1, undergoes efficient activation in vivo and catalytically induces angiogenesis via basic fibroblast growth factor (FCG-2)/FGFR-2 pathway. J Biol Chem 284(38):25854–25866. https://doi.org/10.1074/jbc.M109.033472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Deryugina EI, Zajac E, Juncker-Jensen A et al (2014) Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment. Neoplasia 16(10):771–788. https://doi.org/10.1016/j.neo.2014.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yan L, Borregaard N, Kjeldsen L et al (2001) The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J Biol Chem 276(40):37258–37265. https://doi.org/10.1074/jbc.M106089200

    Article  CAS  PubMed  Google Scholar 

  102. Bolignano D, Donato V, Lacquaniti A et al (2010) Neutrophil gelatinase-associated lipocalin (NGAL) in human neoplasias: a new protein enters the scene. Cancer Lett 288(1):10–16. https://doi.org/10.1016/j.canlet.2009.05.027

    Article  CAS  PubMed  Google Scholar 

  103. Coussens LM, Tinkle CL, Hanahan D et al (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103(3):481–490. https://doi.org/10.1016/s0092-8674(00)00139-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Acuff HB, Carter KJ, Fingleton B et al (2006) Matrix metalloproteinase-9 from bone marrow derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Res 66(1):259–266. https://doi.org/10.1158/0008-5472.CAN-05-2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lin C, Lin W, Yeh S et al (2015) Infiltrating neutrophils increase bladder cancer cell invasion via modulation of androgen receptor (AR)/MMP-13 signals. Oncotarget 6(40):43081–43089. https://doi.org/10.18632/oncotarget.5638

    Article  PubMed  PubMed Central  Google Scholar 

  106. Cools-Lartigue J, Spicer J, Najmeh S et al (2014) Neutrophil extracellular traps in cancer progression. Cell Mol Life Sci 71(21):4179–4194. https://doi.org/10.1007/s00018-014-1683-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Komi DEA, Redegeld FA (2019) Role of mast cells in shaping the tumor microenvironment. Clin Rev Allergy Immunol. https://doi.org/10.1007/s12016-019-08753-w

  108. Theoharides TC, Conti P (2004) Mast cells: the Jekyll and Hyde of tumor growth. Trends Immunol 25(5):235–241. https://doi.org/10.1016/j.it.2004.02.013

    Article  CAS  PubMed  Google Scholar 

  109. Dyduch G, Kaczmarczyk K, Okoń K (2012) Mast cells and cancer: enemies or allies? Pol J Pathol 63(1):1–7. DOI: not available

    CAS  PubMed  Google Scholar 

  110. Baram D, Vaday GG, Salamon P et al (2001) Human mast cells release metalloproteinase-9 on contact with activated T cells: juxtacrine regulation by TNF-alpha. J Immunol 167(7):4008–4016. https://doi.org/10.4049/jimmunol.167.7.4008

    Article  CAS  PubMed  Google Scholar 

  111. Fang KC, Wolters PJ, Steinhoff M et al (1999) Mast cell expression of gelatinases A and B is regulated by kit ligand and TGF-beta. J Immunol 162(9):5528–5535. DOI: not available

    CAS  PubMed  Google Scholar 

  112. Pittoni P, Tripodo C, Piconese S et al (2011) Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers. Cancer Res 71(18):5987–5997. https://doi.org/10.1158/0008-5472.CAN-11-1637

    Article  CAS  PubMed  Google Scholar 

  113. Di Girolamo N, Wakefield D (2000) In vitro and in vivo expression of interstitial collagenase/MMP-1 by human mast cells. Dev Immunol 7(2–4):131–142. https://doi.org/10.1155/2000/82708

    Article  PubMed  PubMed Central  Google Scholar 

  114. Vyzoukaki R, Tsirakis G, Pappa CA et al (2015) The impact of mast cell density on the progression of bone disease in multiple myeloma patients. Int Arch Allergy Immunol 168(4):263–268. https://doi.org/10.1159/000443275

    Article  CAS  PubMed  Google Scholar 

  115. Jiang Y, Wu Y, Hardie WJ et al (2017) Mast cell chymase affects the proliferation and metastasis of lung carcinoma cells in vitro. Oncol Lett 14(3):3193–3198. https://doi.org/10.3892/ol.2017.6487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ribatti D (2013) Mast cells and macrophages exert beneficial and detrimental effects on tumor progression and angiogenesis. Immunol Lett 152(2):83–88. https://doi.org/10.1016/j.imlet.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  117. Räsänen K, Vheri A (2010) Activation of fibroblasts in cancer stroma. Exp Cell Res 16(17):2713–2722. https://doi.org/10.1016/j.yexcr.2010.04.032

    Article  CAS  Google Scholar 

  118. Shiga K, Hara M, Nagasaki T et al (2015) Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers (Basel) 7(4):2443–2458. https://doi.org/10.3390/cancers7040902

    Article  Google Scholar 

  119. Heneberg P (2016) Paracrine tumor signaling induces transdifferentiation of surrounding fibroblasts. Crit Rev Oncol Hematol 97:303–311. https://doi.org/10.1016/j.critrevonc.2015.09.008

    Article  PubMed  Google Scholar 

  120. Weber CE, Kothari AN, Wai PY et al (2015) Osteopontin mediates an MZF1-TGF-β1-dependent transformation of mesenchymal stem cell into cancer-associated fibroblast in breast cancer. Oncogene 34(37):4821–4833. https://doi.org/10.1038/onc.2014.410

    Article  CAS  PubMed  Google Scholar 

  121. Tsellou E, Kiaris H (2008) Fibroblast independency in tumors: implications in cancer therapy. Future Oncol 4(3):427–432. https://doi.org/10.2217/14796694.4.3.427

    Article  PubMed  Google Scholar 

  122. De Wever O, Van Bockstal M, Mareel M et al (2014) Carcinoma-associated fibroblasts provide operational flexibility in metastasis. Semin Cancer Biol 25:35–46. https://doi.org/10.1016/j.semcancer.2013.12.009

    Article  CAS  Google Scholar 

  123. Kwa MQ, Herum KM, Brakebusch C (2019) Cancer-associated fibroblasts: how do they contribute to metastasis? Clin Exp Metastasis 36(2):71–86. https://doi.org/10.1007/s10585-019-09959-0

    Article  CAS  PubMed  Google Scholar 

  124. Liu T, Zhou L, Li D et al (2019) Cancer-associated fibroblasts build and secure the tumor microenvironment. Front Cell Dev Biol 7(60). https://doi.org/10.3389/fcell.2019.00060

  125. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67. https://doi.org/10.1016/j.cell.2010.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Eck SM, Côté AL, Winkelman WD et al (2009) CXCR4 and matrix metalloproteinase-1 are elevated in breast carcinoma-associated fibroblasts and in normal mammary fibroblasts exposed to factors secreted by breast cancer cells. Mol Cancer Res 7(7):1033–1044. https://doi.org/10.1158/1541-7786.MCR-09-0015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Boire A, Covic L, Agarwal A et al (2005) PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120(3):303–313. https://doi.org/10.1016/j.cell.2004.12.018

    Article  CAS  PubMed  Google Scholar 

  128. Wang T, Jia J, Zhang H et al (2017) TGF-β induced PAR-1 expression promotes tumor progression and osteoclast differentiation in giant cell tumor of bone. Int J Cancer 141(8):1630–1642. https://doi.org/10.1002/ijc.30862

    Article  CAS  PubMed  Google Scholar 

  129. Gaggioli C, Hooper S, Hidalgo-Carcedo C et al (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 9(12):1392–1400. https://doi.org/10.1038/ncb1658

    Article  CAS  PubMed  Google Scholar 

  130. Yamaguchi H, Sakai R (2015) Direct interaction between carcinoma cells and cancer associated fibroblasts for the regulation of cancer invasion. Cancers (Basel) 7(4):2054–2062. https://doi.org/10.3390/cancers7040876

    Article  CAS  Google Scholar 

  131. Bates AL, Pickup MW, Hallett MA et al (2015) Stromal matrix metalloproteinase 2 regulates collagen expression and promotes the outgrowth of experimental metastases. J Pathol 235(5):773–783. https://doi.org/10.1002/path.4493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lederle W, Hartentein B, Meides A et al (2010) MMP13 as a stromal mediator in controlling persistent angiogenesis in skin carcinoma. Carcinogenesis 31(7):1175–1184. https://doi.org/10.1093/carcin/bgp248

    Article  CAS  PubMed  Google Scholar 

  133. Egelbad M, Littlepage LE, Werb Z (2005) The fibroblastic coconspirator in cancer progression. Cold Sping Harb Symp Quant Biol 70:383–388. https://doi.org/10.1101/sqb.2005.70.007

    Article  Google Scholar 

  134. Schmidt-Hansen B, Ornas D, Grigorian M et al (2004) Extracellular S100A4(mts1) stimulates invasive growth of mouse endothelial cells and modulates MMP-13 matrix metalloproteinase activity. Oncogene 23(32):5487–5495. https://doi.org/10.1038/sj.onc.1207720

    Article  CAS  PubMed  Google Scholar 

  135. Gaud G, Iochmann S, Guillon-Munos A et al (2011) TFPI-2 silencing increases tumour progression and promotes metalloproteinase 1 and 3 through tumour-stromal cell interactions. J Cell Mol Med 15(2):196–208. https://doi.org/10.1111/j.1582-4934.2009.00989.x

  136. Wang J, Ying G, Wang J (2010) Characterization of phosphoglycerate kinase-1 expression of stromal cells derived from tumor microenvironment in prostate cancer progression. Cancer Res 70(2):471–480. https://doi.org/10.1158/0008-5472.CAN-09-2863

  137. Nieman KM, Romero IL, Houten B et al (2013) Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim Biopys Acta 1831(10):1533–1541. https://doi.org/10.1016/j.bbalip.2013.02.010

  138. Tan J, Buache E, Chenard MP et al (2011) Adipocyte is a non-trivial, dynamic partner of breast cancer cells. Int J Dev Biol 55(7–9):851–859. https://doi.org/10.1387/ijdb.113365jt

    Article  PubMed  Google Scholar 

  139. Bochet L, Lehuédé C, Dauvillier S et al (2013) Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res 73(18):5657–5668. https://doi.org/10.1158/0008-5472.CAN-13-0530

    Article  CAS  PubMed  Google Scholar 

  140. Choi J, Cha YJ, Koo JS (2018) Adipocyte biology in breast cancer: from silent bystander to active facilitator. Prog Lipid Res 69:11–20. https://doi.org/10.1016/j.plipres.2017.11.002

    Article  CAS  PubMed  Google Scholar 

  141. Yao-Borengasser A, Monzavi-Karbassi B, Hedges RA et al (2015) Adipocyte hypoxia promotes epithelial-mesenchymal transition-related gene expression and estrogen receptor-negative phenotype in breast cancer cells. Oncol Rep 33(6):2689–2694. https://doi.org/10.3892/or.2015.3880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Andarawewa KL, Motrescu ER, Chenard MP et al (2005) Stromelysin-3 is a potent negative regulator of adipogenesis participating to cancer cell-adipocyte interaction/crosstalk at the tumor invasive front. Cancer Res 65(23):108562–110871. https://doi.org/10.1158/0008-5472.CAN-05-1231

    Article  CAS  Google Scholar 

  143. Motrescu ER, Blaise S, Etique N et al (2008) Matrix metalloproteinase-11/sromelysin-3 exhibits collagenolytic function against collagen VI under normal and malignant conditions. Oncogene 27(49):6347–6355. https://doi.org/10.1038/onc.2008.218

    Article  CAS  PubMed  Google Scholar 

  144. Park J, Scherer PE (2012) Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Invest 122(11):4243–4256. https://doi.org/10.1172/JCI63930

  145. Ito Y, Ishiguro H, Kobayashi N et al (2015) Adipocyte-derived monocyte chemotactic protein-1(MCP-1) promotes prostate cancer progression trough the induction of MMP-2 activity. Prostate 75(10):1009–1019. https://doi.org/10.1002/pros.22972

    Article  CAS  PubMed  Google Scholar 

  146. Xie H, Li L, Zhu G et al (2015) Infiltrated pre-adipocytes increase prostate cancer metastasis via modulation of the miR-301a/androgen receptor (AR)/TGFβ1/Smad/MMP9 signals. Oncotarget 6(14):12326–12339. https://doi.org/10.18632/oncotarget.3619

    Article  PubMed  PubMed Central  Google Scholar 

  147. Ghasemi A, Saeidi J, Azimi-Nejad M et al (2019) Leptin-induced signaling pathways in cancer migration and invasion. Cell Oncol (Dordr) 42(3):243–260. https://doi.org/10.1007/s13402-019-00428-0

    Article  CAS  Google Scholar 

  148. Fan Y, Gan Y, Shen Y et al (2015) Leptin signaling enhances cell invasión and promotes the metastasis of human pancreatic cancer via increasing MMP-13 production. Oncotarget 6(18):16120–16134. https://doi.org/10.18632/oncotarget.3878

    Article  PubMed  PubMed Central  Google Scholar 

  149. Yeh WL, Lu DY, Lee MJ et al (2009) Leptin induces migration and invasion of glioma cells through MMP-13 production. Glia 57(4):454–464. https://doi.org/10.1002/glia.20773

    Article  PubMed  Google Scholar 

  150. Strong AL, Ohlstein JF, Biagas BA, et al (2015) Leptin produced by obese adipose stromal /stem cells enhances proliferation and metastasis of estrogen receptor positive breast cancers. Breast Cancer Res 17:112. https://doi.org/10.1186/s13058-015-0622-z 

  151. Strong AL, Semon JA, Strong TA, et al (2012) Obesity-associated dysregulation of calpastatin and MMP-15 in adipose-derived stromal cells results in their enhanced invasion. Stem Cells 30(12):2774-2783. https://doi.org/10.1002/stem.1229 

  152. Ghasemi A, Hashemy SI, Aghaei M et al (2018) Leptin induces matrix metalloproteinase 7 expression to promote ovarian cancer cell invasion by activating ERK and JNK pathways. J Cell Biochem 119(2):2333–2344. https://doi.org/10.1002/jcb.26396

    Article  CAS  PubMed  Google Scholar 

  153. Chang MC, Chen CA, Chen PJ et al (2012) Mesothelin enhances invasion of ovarian cancer by inducing MMP-7 through MAPK/ERK and JNK pathways. Biochem J 442(2):293–302. https://doi.org/10.1042/BJ20110282

    Article  CAS  PubMed  Google Scholar 

  154. Wang FQ, So J, Reierstad S et al (2005) Matrilysin (MMP-7) promotes invasion of ovarian cancer cells by activation of progelatinase. Int J Cancer 114(1):19–31. https://doi.org/10.1002/ijc.20697

    Article  CAS  PubMed  Google Scholar 

  155. Dong Z, Xu X, Du L et al (2013) Leptin-mediated regulation of MT1-MMP localization is KIF1B dependent and enhances gastric cancer cell invasion. Carcinogenesis 34(5):974–983. https://doi.org/10.1093/carcin/bgt028

    Article  CAS  PubMed  Google Scholar 

  156. Wang H, Cheng H, Shao Q et al (2014) Leptin-promoted human extravillous trophoblast invasion is MMP14 dependent and requires the cross talk between Notch1 and PI3K/Akt signaling. Biol Reprod 90(4):78. https://doi.org/10.1095/biolreprod.113.114876

    Article  CAS  PubMed  Google Scholar 

  157. Shimoda M, Khokha R (2017) Metalloproteinases in extracellular vesicles. Biochim Biophys Acta, Mol Cell Res 1864(11 PtA):1989–2000. https://doi.org/10.1016/j.bbamcr.2017.05.027

    Article  CAS  Google Scholar 

  158. Choi D, Lee TH, Spinelli C et al (2017) Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation. Semin Cell Dev Biol 67:11.22. https://doi.org/10.1016/j.semcdb.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  159. Shay G, Lynch CC, Fingleton B (2015) Moving targets: emerging roles for MMPs in cancer progression and metastasis. Matrix Biol 44–46:200–206. https://doi.org/10.1016/j.matbio.2015.01.019

    Article  CAS  PubMed  Google Scholar 

  160. Hakulinen J, Sankkila L, Sugiyama N et al (2008) Secretion of active membrane type 1 matrix metalloproteinase (MMP-14) into extracellular space in microvesicular exosomes. J Cell Biochem 105(5):1211–1218. https://doi.org/10.1002/jcb.21923

    Article  CAS  PubMed  Google Scholar 

  161. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. https://doi.org/10.1038/nature10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tsuchiya K, Hida K, Hida Y et al (2010) Adrenomedullin antagonist suppresses tumor formation in renal cell carcinoma through inhibitory effects on tumor endothelial cells and endothelial progenitor mobilization. Int J Oncol 36(6):1379–1386. https://doi.org/10.3892/ijo_00000622

    Article  CAS  PubMed  Google Scholar 

  163. Hida K, Kawamoto T, Ohga N et al (2011) Altered angiogenesis in the tumor microenvironment. Pathol Int 61(11):630–637. https://doi.org/10.1111/j.1440-1827.2011.02726.x

    Article  CAS  PubMed  Google Scholar 

  164. Ucuzian A, Am Gassman AA, East AT et al (2010) Molecular mediators of angiogenesis. J Burn Care Res 31(1):158–175. https://doi.org/10.1097/BCR.0b013e3181c7ed82

    Article  PubMed  Google Scholar 

  165. Mazor R, Asaigh T, Shaked H et al (2013) Matrix metalloproteinase-1-mediated up-regulation of vascular endothelial growth factor-2 in endothelial cells. J Biol Chem 288(1):598–607. https://doi.org/10.1074/jbc.M112.417451

    Article  CAS  PubMed  Google Scholar 

  166. Gupta GP, Nguyen DX, Chiang AC et al (2007) Mediators of vascular remodeling co-opted for sequential steps in lung metastasis. Nature 446(7137):765–770. https://doi.org/10.1038/nature05760

    Article  CAS  PubMed  Google Scholar 

  167. Ito TK, Ishii G, Saito S et al (2009) Degradation of soluble VEGF receptor-1 by MMP-7 allows VEGF access to endothelial cells. Blood 113(10):2363–2369. https://doi.org/10.1182/blood-2008-08-172742

    Article  CAS  PubMed  Google Scholar 

  168. Fang C, Wen G, Zhang L et al (2013) An important role of matrix metalloproteinase-8 in angiogenesis in vitro and in vivo. Cardiovasc Res 99(1):146–155. https://doi.org/10.1093/cvr/cvt060

    Article  CAS  PubMed  Google Scholar 

  169. Andreuzzi E, Colladel R, Pellicani R et al (2017) The angiostatic molecule Multimerin 2 is processed by MMP-9 to allows sprouting angiogenesis. Matrix Biol 64:40–53. https://doi.org/10.1016/j.matbio.2017.04.002

    Article  CAS  PubMed  Google Scholar 

  170. Lorenzon E, Colladel R, Andreuzzi E et al (2012) MULTIMERIN2 impairs tumor angiogenesis and growth by interfering with VEGF-A/VEGFR2 pathway. Oncogene 31(26):3136–3147. https://doi.org/10.1038/onc.2011.487

    Article  CAS  PubMed  Google Scholar 

  171. Chantrain CF, Shimada H, Jodele S et al (2004) Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res 64(5):1675–1686. https://doi.org/10.1158/0008-5472.can-03-0160

    Article  CAS  PubMed  Google Scholar 

  172. Davis GF, Statman AN, Sacharidou A et al (2011) Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. Int Rev Cell Mol Bio 288:101–165. https://doi.org/10.1016/B978-0-12-386041-5.00003-0

  173. Saunders WB, Bohnsack BL, Faske JB et al (2006) Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J Cell Biol 175(1):179–191. https://doi.org/10.1083/jcb.200603176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Stratman AN, Malotte KM, Mahan RD et al (2009) Pericyte recruitment during vasculogenic tube assemble stimulates endothelial basement membrane matrix formation. Blood 114(24):5091–5101. https://doi.org/10.1182/blood-2009-05-222364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lehti K, Rose NF, Valavaara S et al (2009) MT1-MMP promotes vascular smooth muscle dedifferentiation through LRP1 processing. J Cell Sci 122(Pt1):126–135. https://doi.org/10.1242/jcs.035279

    Article  CAS  PubMed  Google Scholar 

  176. Chan KC, Ko JM, Lung HL et al (2011) Catalytic activity of matrix metalloproteinase-19 is essential for tumor suppressor and anti-angiogenic activities in nasopharyngeal carcinoma. Int J Cancer 129(8):1826–1837. https://doi.org/10.1002/ijc.25855

    Article  CAS  PubMed  Google Scholar 

  177. Lee S, Jilani SM, Nikolova GV et al (2005) Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 269(64):681–691. https://doi.org/10.1083/jcb.200409115

    Article  CAS  Google Scholar 

  178. Tabruyn SP, Griffioen AW (2007) Molecular pathways of angiogenesis inhibition. Biochem Biophys Res Commun 355(1):1–5. https://doi.org/10.1016/j.bbrc.2007.01.123

    Article  CAS  PubMed  Google Scholar 

  179. Radziwon-Balicka A, Ramer C, Moncada del la Rosa C et al (2013) Angiostatin inhibits endothelial MMP-2 and MMP-14 expression: a hypoxia specific mechanism of action. Vasc Pharmacol 58(4):280–291. https://doi.org/10.1016/j.vph.2012.11.003

    Article  CAS  Google Scholar 

  180. Monboisse JC, Oudart JB, Ramont L et al (2014) Matrikines from basement membrane collagens: a new anti-cancer strategy. Biochim Biophys Acta 1840(8):2589–2598. https://doi.org/10.1016/j.bbagen.2013.12.029

    Article  CAS  PubMed  Google Scholar 

  181. Ricard-Blum S, Salza R (2014) Matricryptins and matrikines: biologically active fragments of the extracellular matrix. Exp Dermatol 23(7):457–463. https://doi.org/10.1111/exd.12435

    Article  CAS  PubMed  Google Scholar 

  182. Ricard-Blum VSD (2016) Matricryptins network with matricellular receptors at the surface of endothelial and tumor cells. Front Pharmacol 7(11). https://doi.org/10.3389/fphar.2016.00011

  183. Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3(6):422–433. https://doi.org/10.1038/nrc1094

    Article  CAS  PubMed  Google Scholar 

  184. Lee SJ, Jang JW, Kim YM et al (2002) Endostatin binds to the catalytic domain of matrix metalloproteinase-2. FEBS Lett 519(1–3):147–152. https://doi.org/10.1016/s0014-5793(02)02742-4

    Article  CAS  PubMed  Google Scholar 

  185. Bellon G, Martiny L, Robinet A (2004) Matrix metalloproteinases and matrikines in angiogenesis. Crit Rev Oncol Hematol 49(3):203–220. https://doi.org/10.1016/j.critrevonc.2003.10.004

    Article  PubMed  Google Scholar 

  186. Kholia S, Ranghino A, Garnieri P et al (2016) Extracellular vesicles as new players in angiogenesis. Vasc Pharmacol 86:64–70. https://doi.org/10.1016/j.vph.2016.03.005

    Article  CAS  Google Scholar 

  187. Taraboletti G, D’Ascenzo S, Borsotti P et al (2002) Shedding of the matrix metalloproteinases MMP-2, MMP-9 and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am J Pathol 160(2):673–680. https://doi.org/10.1016/S0002-9440(10)64887-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Millimaggi D, Mari M, D’Ascenzo S et al (2007) Tumor vesicle-associated CD147 modulates the angiogenic capability of endothelial cells. Neoplasia 9(4):349–357. https://doi.org/10.1593/neo.07133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476. https://doi.org/10.1016/j.cell.2010.01.045

    Article  CAS  PubMed  Google Scholar 

  190. Cao Y (2005) Opinion: emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nat Rev Cancer 5(9):735–743. https://doi.org/10.1038/nrc1693

    Article  CAS  PubMed  Google Scholar 

  191. Qiu X, Yao S, Zhang S (2010) Advances in the research on lymphangiogenesis in carcinoma tissues. Oncol Lett 1(4):579–582. https://doi.org/10.3892/ol_00000102

    Article  PubMed  PubMed Central  Google Scholar 

  192. Kerjaschki D (2005) The crucial role of macrophages in lymphangiogenesis. J Clin Invest 115(9):2316–2319. https://doi.org/10.1172/JCI26354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Karaman S, Detmar M (2014) Mechanisms of lymphatic metastasis. J Clin Invest 124(3):922–928. https://doi.org/10.1172/JCI71606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Archen MG, Stacker SA (2008) Molecular control of lymphatic metastasis. Ann N Y Acad Sci 1131:225–2234. http://doi.org/10.1196/annals.1413.020

  195. Zheng W, Aspelund A, Alitalo K (2014) Lymphangiogenic factors, mechanisms, and applications. J Clin Invest 124(3):878–887. https://doi.org/10.1172/JCI71603

  196. Spinella F, Caprara V, Garrafa E et al (2010) Endothelin axis induces metalloproteinase activation an invasiveness in human lymphatic endothelial cells. Can J Physiol Pharmacol 88(8):782–787. https://doi.org/10.1139/Y10-050

    Article  CAS  PubMed  Google Scholar 

  197. Detry B, Erpicum C, Paupert J et al (2012) Matrix metalloproteinase-2 governs lymphatic vessel formation as an interstitial collagenase. Blood 119(21):5048–5056. https://doi.org/10.1182/blood-2011-12-400267

    Article  CAS  PubMed  Google Scholar 

  198. Du HT, Du LL, Tang XL et al (2017) Blockade of MMP-2 and MMP-9 inhibits corneal lymphangiogenesis. Graefes Arch Clin Exp Ophthalmol 255(8):1573–1579. https://doi.org/10.1007/s00417-017-3651-8

    Article  CAS  PubMed  Google Scholar 

  199. Xu L, Sun K, Xia M et al (2015) MMP13 regulates aggressiveness of pediatric multiple myeloma through VEGF-C. Cell Physiol Biochem 36(2):509–516. https://doi.org/10.1159/000430116

    Article  CAS  PubMed  Google Scholar 

  200. Ingvarsen S, Porse A, Erpicum C et al (2013) Targeting a single function of the multifunctional matrix metalloproteinase MT1-MMP: impact on lymphangiogenesis. J Biol Chem 288(15):10195–10204. https://doi.org/10.1074/jbc.M112.447169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Wong HL, Jin G, Cao R et al (2016) MT1-MMP sheds LYVE-1 on lymphatic endothelial cells and suppresses VEGF-C production to inhibit lymphangiogenesis. Nat Commun 7:10824. https://doi.org/10.1038/ncomms10824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Tatti O, Gucciardo E, Pekkonen P et al (2015) MMP16 mediates a proteolytic switch to promote cell-cell adhesion, collagen alignment, and lymphatic invasion in melanoma. Cancer Res 75(10):2083–2094. https://doi.org/10.1158/0008-5472.CAN-14-1923

    Article  CAS  PubMed  Google Scholar 

  203. Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9(2):108–122. https://doi.org/10.1038/nrc2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196(4):395–406. https://doi.org/10.1083/jcb.201102147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Pandya P, Orgaz JL, Sanz-Moreno V (2017) Modes of invasion during tumour dissemination. Mol Oncol 11(1):5–27. https://doi.org/10.1002/1878-0261.12019

    Article  PubMed  Google Scholar 

  206. Schütz A, Röser K, Klitzsch J et al (2015) Lung adenocarcinoma and lung cancer cell lines show association of MMP-1 expression with STAT3 activation. Transl Oncol 8(2):97–105. https://doi.org/10.1016/j.tranon.2015.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  207. Orgaz JL, Pandya P, Dalmeida R et al (2014) Diverse matrix metalloproteinase functions regulate cancer amoeboid migration. Nat Commun 5:4255. https://doi.org/10.1038/ncomms5255

    Article  CAS  PubMed  Google Scholar 

  208. Ridley AJ (2011) Life at the leading edge. Cell 145(7):1012–1022. https://doi.org/10.1016/j.cell.2011.06.010

    Article  CAS  PubMed  Google Scholar 

  209. Sabeh F, Shimizu-Hirota R, Weiss SJ (2009) Protease-dependent versus-independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol 185(1):11–19. https://doi.org/10.1083/jcb.200807195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Jacob A, Prekeris R (2015) The regulation of MMP targeting to invadopodia during cancer metastasis. Front Cell Dev Biol 3(4). https://doi.org/10.3389/fcell.2015.00004

  211. Andarawewa KL, Boulay A, Masson R et al (2003) Dual stromelysin-3 function during natural mouse mammary tumor virus-ras tumor progression. Cancer Res 63(18):5844–5849. DOI: not available

    CAS  PubMed  Google Scholar 

  212. Brasse D, Mathelin C, Leroux K et al (2010) Matrix metalloproteinase 11/stromelysin-3 exerts both activator and repressor functions during the hematogenous metastatic process in mice. Int J Cancer 127(6):1347–1355. https://doi.org/10.1002/ijc.25309

    Article  CAS  PubMed  Google Scholar 

  213. Li W, Saji S, Sato F et al (2013) Potential clinical application of matrix metalloproteinase inhibitors and their future prospects. Int J Biol Markers 28(2):117–130. https://doi.org/10.5301/jbm.5000026

    Article  CAS  PubMed  Google Scholar 

  214. Yang JS, Lin CW, Su SC et al (2016) Pharmacodynamic considerations in the use of matrix metalloproteinase inhibitors in cancer treatment. Expert Opin Drug Metab Toxicol 12(2):191–200. https://doi.org/10.1517/17425255.2016.1131820

    Article  CAS  PubMed  Google Scholar 

  215. Bahrami B, Hojjat-Farsangi M, Mohammadi H et al (2017) Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett 190:64–83. https://doi.org/10.1016/j.imlet.2017.07.015

    Article  CAS  PubMed  Google Scholar 

  216. Li M, Zhang F, Su Y et al (2018) Nanoparticles designed to regulate tumor microenvironment for cancer therapy. Life Sci 201:37–44. https://doi.org/10.1016/j.lfs.2018.03.044

    Article  CAS  PubMed  Google Scholar 

  217. Roy Chowdhury M, Schumann C, Bhakta-Guha D et al (2016) Cancer nanotheranostics: strategies, promises and impediments. Biomed Pharmaother 84:291–304. https://doi.org/10.1016/j.biopha.2016.09.035

    Article  CAS  Google Scholar 

  218. Li R, Wu W, Liu Q et al (2013) Intelligently targeted drug delivery and enhanced antitumor effect by gelatinase-responsive nanoparticles. PLoS One 8(7):e69643. https://doi.org/10.1371/journal.pone.0069643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Zhu L, Wang T, Perche F et al (2013) Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety. Proc Natl Acad Sci U S A 110(42):17047–17052. https://doi.org/10.1073/pnas.1304987110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonzalez-Avila, G., Sommer, B., García-Hernández, A.A., Ramos, C. (2020). Matrix Metalloproteinases’ Role in Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1245. Springer, Cham. https://doi.org/10.1007/978-3-030-40146-7_5

Download citation

Publish with us

Policies and ethics